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Abstract — This paper presents a new solution to unit 

commitment for single-objective and multi-objective 

frameworks. In the first step, the total expected energy not 

supplied (TEENS) is proposed as a separate reliability objective 

function and at the next step, the multi-objective Pareto front 

strategy is implemented to simultaneously optimize the cost and 

reliability objective functions. Additionally, an integer based 

codification of initial solutions is added to reduce the dimension 

of ON/OFF status variables and also to eliminate the negative 

influence of penalty factor. The modified invasive weed 

optimization (MIWO) algorithm is also developed to optimally 

solve the proposed problem. The obtained solutions are compared 

with results in the literature which confirms the applicability and 

superiority of the proposed algorithm for a 10-unit system and 

24-hour scheduling horizon. 

Index Term — Unit commitment, bi-objective optimization, 

the total expected energy not supplied (TEENS), invasive weed 

optimization (MIWO) algorithm. 

I. INTRODUCTION 

Unit commitment (UC) is one of the most important 

optimization problems in the power system operation and 

management [1]. This problem should be solved for achieving 

an appropriate scheduling of generation power units. 

Improvement of the commitment scheduling of units results in 

the reduction of generation cost. Although this improvement 

might seem small, it can provide significant profits in 

remarkable scales of power generation. Therefore, the main 

aim of the UC problem at each time interval is to recognize a 

combination of generation units to serve the system demand at 

a minimum cost subject to a number of equality and inequality 

constraints [2].  

On the other hand, the most economical combination of 

generation units is not necessarily satisfactory from a 

reliability point of view. In other words, the optimal generation 

schedule for operation cost minimization might jeopardize the 

system reliability level. Toward this end, researches have been 

recently directed toward obtaining the optimal generation 

schedules that simultaneously satisfy different objectives. 

Therefore, a hybrid multi-objective approach is proposed in 

this study to solve UC as a multi-objective optimization 

problem considering generation cost and TEENS as two 

objective functions. 

The UC problem consists of some operational constraints 

such as minimum up and down times and ramp rate constraints 

which increases the complexity degree of the problem [3-5].  

UC inherently is a complex mixed integer quadratic 

programming problem which needs to be solved by a robust 

and efficient optimization algorithm. Up to now, different 

mathematical techniques including priority list (PL), dynamic 

programming (DP), mixed integer programming (MIP), 

Lagrangian relaxation (LR) and branch and bound [6, 7] have 

been implemented to solve the UC problem. It is notable that, 

these deterministic techniques are computationally inefficient. 

The UC as one of the most complicated optimization problems 

in power system operation area also gets more complicated by 

extending as a multi-objective optimization problem and 

considering different practical constraints. Therefore, it is 

crucial to recognize an appropriate and powerful optimization 

algorithm for the UC problem. Proposing new algorithms for 

solving UC problem has become a broad potential of research.  

Evolutionary algorithms (EAs) are well-known optimization 

methods to deal with non-linear, mixed integer, and complex 

problems. 

The shuffle frog leaping algorithms (SFLA) for solving the 

UC problem is developed and compared with the results of 

different EAs in [6]. A quasi-oppositional teaching learning-

based optimization (QOTLBO) algorithm is introduced in [8] 

for solving the UC problem considering spinning reserve and 

ramp rate of generating unit.  

The invasive weed optimization (IWO) is efficacious EA 

which has been successfully applied to different optimization 

problems. This algorithm is inspired from the colonization of 

invasive weeds in nature which is firstly proposed in [9]. 

According to the nature of the stochastic evolutionary 

processes, IWO is computationally expensive. Furthermore, it 

has some drawbacks such as trapping in local optimal points 

and premature convergence in some cases. Toward this end, a 

mutation strategy is proposed in this paper to ameliorate the 

deficiencies of the original IWO algorithm. Considering in this 

paper two different objective functions (cost and reliability), 

which are in conflict, has been proposed as a multi-objective 



 

UC problem; it should obtain a set of optimal solutions instead 

of one. In this regard, a repository is utilized to save all non-

dominated solutions (Pareto-optimal solutions). Also, a fuzzy 

decision-making strategy is used for sorting all Pareto-optimal 

solutions based on their importance. 

In summary, the main contributions of this paper are listed 

as follows: 

• To apply a method for generating units’ commitment 

statuses without using penalty factors to satisfy the 

ON/OFF status of units and eliminate its negative 

influences on the number of feasible statuses and 

convergence speed. The main benefit of this approach is 

that it can provide feasible and reliable commitment 

statuses in a short computational time by implementing a 

smaller set of integer number to generate commitment 

statuses instead of using large binary matrix. The 

proposed method can reduce the size of decision variables 

to have better numerical results. 

• To apply TEENS index as a separate objective function in 

order to obtain a reliable solution for the UC problem. The 

forced outage rate (FOR) and the reparation time are 

considered to evaluate the system reliability for each 

commitment status and power generations. The reliability 

index (TEENS) and operational cost are optimized 

simultaneously by implementing multi-objective Pareto 

front strategy.   

• To implement a modified IWO algorithm to obtain 

optimal solutions. A mutation strategy is employed to 

improve the performance of the original IWO algorithm 

and avoid trapping in the local optimal solution. 

II.  PROPOSED UNIT COMMITMENT FORMULATION AND 

METHODOLOGY 

Formulation and mathematical modeling of the total 

generation cost and TEENS objective functions, as well as the 

system and unit constrains of the proposed study are as 

follows:  

A.  Operating costs 

The main objective function of the UC problem is energy 

generation cost. The generation cost is defined as follows [10]: 

𝐶𝑜𝑠𝑡 =∑(𝐹𝑡

24

𝑡=1

+ 𝑆𝑈𝑡 + 𝑆𝐷𝑡) 
 

(1) 

𝐹𝑡 = ∑(𝑎𝑛 × 𝑃𝑛,𝑡
2 + 𝑏𝑛 × 𝑃𝑛,𝑡 + 𝑐𝑛) × 𝑆𝑛

𝑡

𝑁𝐺

𝑛=1

 

 

(2) 

𝑆𝑈𝑡 + 𝑆𝐷𝑡 = ∑(𝑠𝑢𝑐𝑛,𝑡

𝑁𝐺

𝑛=1

+ 𝑠𝑑𝑐𝑛,𝑡) 
 

(3) 

where 𝐹𝑡 and 𝑆𝑈/𝑆𝐷𝑡  are generation cost and start-up/shut-

down cost at 𝑡𝑡ℎ interval; 𝑎𝑛, 𝑏𝑛 and 𝑐𝑛 are the fuel cost 

coefficients of 𝑛𝑡ℎ unit; 𝑃𝑛,𝑡 and 𝑆𝑛
𝑡  are the active power and 

state of 𝑛𝑡ℎ unit at 𝑡𝑡ℎ hour (0 for OFF and 1 for ON units), 

respectively; 𝑁𝐺  is number of generating units; 𝑠𝑢𝑐𝑛,𝑡 and 

𝑠𝑑𝑐𝑛,𝑡 represent the formulation for start-up and shut-down 

costs of 𝑛𝑡ℎ generator at 𝑡𝑡ℎ interval, respectively which can 

be defined as follows: 

𝑠𝑢𝑐𝑛,𝑡 = {
𝐶𝑆𝑈𝑛            𝑖𝑓            𝑆𝑛

𝑡 − 𝑆𝑛
𝑡−1 = 1

   0               𝑖𝑓           𝑆𝑛
𝑡 − 𝑆𝑛

𝑡−1 < 1
 

(4) 

𝑠𝑑𝑐𝑛,𝑡 = {
𝐶𝑆𝐷𝑛           𝑖𝑓      𝑆𝑛

𝑡 − 𝑆𝑛
𝑡−1 = −1

   0               𝑖𝑓       𝑆𝑛
𝑡 − 𝑆𝑛

𝑡−1 > −1
 

(5) 

where 𝐶𝑆𝑈𝑛 and 𝐶𝑆𝐷𝑛 are the startup and shut down costs of 

unit 𝑛, respectively. 

B. Reliability assessment 

As mentioned, reliability analysis is one of the main 

contributions of this paper. In this regard, the TEENS is 

evaluated as a reliability objective function. The main reason 

for this choice is that the other reliability indices such as loss 

of load probability (LOLP) index indicate only the probability 

of system failure [11]. Therefore, TEENS is considered to 

cover the wide aspects of power systems’ reliability. TEENS 

can be defined as follows [11]: 

𝐹𝑂𝑅𝑗 =
𝜆𝑗

𝜆𝑗 + 𝜇𝑗
=

𝑀𝑇𝑇𝑅𝑗

𝑀𝑇𝑇𝐹𝑗 +𝑀𝑇𝑇𝑅𝑗
 

(6) 

𝑀𝑇𝑇𝑅𝑗 =
1

𝜇𝑗
 

(7) 

𝑀𝑇𝑇𝐹𝑗 =
1

𝜆𝑗
 

(8) 

where 𝐹𝑂𝑅𝑗 is the force outage rate of 𝑗𝑡ℎ generator, 𝜆𝑗 and 𝜇𝑗 

are the failure rate and repair rate of 𝑗𝑡ℎ generator, respectively; 

𝑀𝑇𝑇𝐹j and 𝑀𝑇𝑇𝑅𝑗  are the mean time of failure and mean time 

of repair of 𝑗𝑡ℎ generator, respectively.  

The probability of each status of generating units is defined 

according to the 𝐹𝑂𝑅 values of generators as follows: 

𝑃𝑟𝑜𝑏𝑖 =∏𝐹𝑂𝑅𝑘
𝑘∈𝑽

×∏(1 − 𝐹𝑂𝑅ℎ)

ℎ∈𝑾

  

(9) 

where 𝑽(𝑾) is the set of available (unavailable) generating 

units at 𝑖𝑡ℎ load point.  

The expected energy not supplied (𝐸𝐸𝑁𝑆) of each time 

interval and each load point is calculated as follows: 

𝐸𝐸𝑁𝑆𝑖,𝑡 = {
(𝑃𝑙𝑡,𝑖 − 𝑃𝐺,𝑖). 𝑃𝑟𝑜𝑏𝑖 𝑖𝑓  𝑃𝑙𝑡,𝑖 > 𝑃𝐺,𝑖
0                              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(10) 

where 𝑃𝑙𝑡,𝑖 is the amount of load demand at 𝑡𝑡ℎ time interval 

and  𝑖𝑡ℎ load point; 𝑃𝐺,𝑖 is a summation of power output of 

available generating units at 𝑖𝑡ℎ load point, and 𝐸𝐸𝑁𝑆𝑖,𝑡 is the 

amount of energy not supplied at 𝑖𝑡ℎ load point and 𝑡𝑡ℎ time 

interval. 

The expected energy not supplied for all load points and 24-

hour time duration is calculated as follows: 

𝑇𝐸𝐸𝑁𝑆 =∑∑𝐸𝐸𝑁𝑆𝑖,𝑡 × 𝑇𝑖

𝐿𝑃

𝑖=1

24

𝑡=1

 
 

(11) 

where 𝐿𝑃 is the total number of load points; 𝑇𝐸𝐸𝑁𝑆 is the total 

amount of expected energy not supplied which is considered 

as the reliability objective function; 𝑇𝑖  is the time duration of  

𝑖𝑡ℎ load point which can be obtained from the 



 

 
Fig. 1  Load duration curve 

load duration curve. Fig. 1 shows an illustration of load 

duration curve and two load points with their related time 

duration. According to this figure, the time duration for two 

different load points is shown. This time duration (i.e. 𝑇𝑖) 
shows the number of hours that energy consumption is greater 

than a particular load points (i.e. 𝑃𝑖 = 𝑃𝑙𝑖,𝑡). 

C. Limitations and constraints 

All equality and inequality constraints related to the 

proposed UC problem are represented as follows: 

• Generation and load balance 

∀𝑡 ∑(𝑃𝑛,𝑡 × 𝑆𝑛
𝑡)

𝑁𝐺

𝑛=1

= 𝑃𝑙,𝑡 
 

(12) 

• Power generation capacity and ramp rate limits  

𝑃𝑛
𝑚𝑖𝑛 ≤ 𝑃𝑛,𝑡 ≤ 𝑃𝑛

𝑚𝑎𝑥       𝑖𝑓 𝑆𝑛
𝑡 = 1, ∀𝑛, 𝑡 

             
(13) 

−𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛,𝑛 ≤ 𝑃𝑛,𝑡 − 𝑃𝑛,𝑡−1 ≤ 𝑅𝑎𝑚𝑝𝑈𝑝,𝑛 

𝑖𝑓 𝑆𝑛
𝑡 − 𝑆𝑛

𝑡−1 = 0, ∀𝑛, 𝑡 
(14) 

• Reserve constraint 

∀𝑡 ∑(𝑃𝑛
𝑚𝑎𝑥 × 𝑆𝑛

𝑡)

𝑁𝐺

𝑛=1

= 𝑃𝑙,𝑡 + 𝑅𝑡 
 

(15) 

• Minimum up and down times 

∀𝑛, 𝑡

{
  
 

  
 

∑ 𝑆𝑛
𝑖

𝑡−1

𝑖=𝑡−𝑇𝑂𝑁𝑛

= 𝑇𝑂𝑁𝑛   𝑖𝑓 (𝑆𝑛
𝑡 − 𝑆𝑛

𝑡−1 = −1)

∑ 𝑆𝑛
𝑖

𝑡−1

𝑖=𝑡−𝑇𝑂𝐹𝐹𝑛

= 0       𝑖𝑓 (𝑆𝑛
𝑡 − 𝑆𝑛

𝑡−1 = +1)

     

 

 

(16) 

where  𝑃𝑛
𝑚𝑎𝑥 (𝑃𝑛

𝑚𝑖𝑛) and Rt are the maximum (minimum) 

power limits of 𝑛𝑡ℎ generator and the forecasted spinning 

reserve at 𝑡𝑡ℎ interval, respectively; 𝑇𝑂𝑁𝑛 and 𝑇𝑂𝐹𝐹𝑛 are the 

minimum up time and minimum down time of 𝑛𝑡ℎ generator, 

respectively. 

D. Proposed commitment status variables 

In order to have a set of feasible variables which satisfy the 

minimum up-time and down-time constraints, penalty factors 

are applied. However, it is worth mentioning that the penalty 

factor has a negative influence on convergence speed and 

obtaining the optimal solution. In this regard, a new integer 

variable coding approach (penalty factor free) is presented to 

reduce the commitment decision variables’ dimension. 

The proposed integer variable is defined as follows:   

𝐺(𝑖, 𝑑) = {
−round((1 + 𝑟𝑎𝑛𝑑) × 𝑇𝑂𝐹𝐹𝑖) 𝑖𝑓 𝑟 = 0

round((1 + 𝑟𝑎𝑛𝑑) × 𝑇𝑂𝑁𝑖) 𝑖𝑓 𝑟 = 1
 

𝑟 = 𝑟𝑎𝑛𝑑(0 𝑜𝑟 1) 

(17) 

It should be mentioned that the minimum up-time and 

down-time constraints are satisfied automatically because all 

generated integer variables are bigger than the lower bounds. 

ALGORITHM-I shows how to generate initial population, 

which provides a better understanding of the proposed 

approach. Also, Fig. 2 displays an illustration of the proposed 

integer variables. 

ALGORITHM I: Initial Population Generation  

1. 
Input:  Number of units, Units' ON/OFF Time Limitation, 

T=24. 

2. While i ≤  Number of units 

3.  m=1. 

P=0. 

4.   While P ˂ T 

5.    r=random number (0 or 1). 

6.     if  r=0 

7.      G(m,i)=-[round((1+rand)× 𝑇𝑂𝐹𝐹𝑖)]. 

8.      m=m+1. 

9.     Else 

10

. 
     G(m,i)=[round((1+rand)× 𝑇𝑂𝑁𝑖)]. 

11

. 
     m=m+1. 

12

. 
    End 

13

. 
   P=sum(abs(G(: , i))). 

14

. 
  End 

15

. 
 i=i+1. 

16

. 
End 

III. OPTIMIZATION TOOL 

In this paper, the IWO algorithm is implemented as an 

optimization technique to find the optimal solution. This 

algorithm is a novel population-based numerical stochastic 

technique and inspired from the colonization of invasive weeds 

in nature [9]. The weeds produce the seeds according to their 

finesses. The weed which has more fitness value produces the 

maximum number of seeds, while the weed with minimum 

fitness value produces the minimum number of seeds. 

𝑆𝑁(𝑖) = 𝑆𝑁𝑚𝑎𝑥 − 𝑎𝑏𝑠(𝑓𝑙𝑜𝑜𝑟(
𝐹𝑔𝑏𝑒𝑠𝑡−𝐹𝑖

𝐹𝑔𝑏𝑒𝑠𝑡−𝐹𝑤𝑜𝑟𝑡ℎ
× 𝑆𝑁𝑚𝑎𝑥)) 

(18) 

where  𝑆𝑁(𝑖) and 𝑆𝑁𝑚𝑎𝑥  are the number of seeds produced by 

𝑖𝑡ℎ weed and the maximum number of seeds, respectively. 

𝐹𝑔𝑏𝑒𝑠𝑡 (𝐹𝑤𝑜𝑟𝑡ℎ) is the best (worth) fitness. 

The seeds produced around their relative weed based on a 

normal distribution with mean (i.e. equals 0) and standard 

deviation which is decreased by an increase in the iteration. 
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𝜎𝑖𝑡𝑒𝑟 = (𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙) × (
(𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)𝑛    (19) 

where 𝜎𝑖𝑡𝑒𝑟  and 𝑛 (i.e. equals to 5) are the standard deviation 

of particular iteration and nonlinear modulation index, 

respectively. 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (i.e. equals to 2) and 𝜎𝑓𝑖𝑛𝑎𝑙  (equals to 

0.0001) are initial and final standard deviation, respectively. 

𝑖𝑡𝑒𝑟 and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  are the number of iteration and maximum 

predetermined iteration number, respectively. 

ALGORITHM II: Modified IWO application on UC problem 

1 Input: Algorithm parameters (i.e. Number of Population 

(𝑁𝑤𝑒𝑒𝑑), Maximum Iteration) and units’ Data. 

2 The weeds (initial population) are initialized depending upon 

the ALGORITHM-I. 

Iter=1. 

3 While iter< Maximum iteration 

4  The seed number is calculated according to Eq. (18). 

i=0. 

5   While i <  Number of Population 

6    Calculate the standard division according to Eq. (19). 

7 

   
The seeds are produced around their relative weed 

based on normal distribution. 

i= i+1. 

8   End 

9  Calculate the fitness function for each produced seeds 

   Apply mutation strategy. 

11  Sort all weeds and produced seeds according to the 

fitness function value. 

12 
 

Keep 𝑁𝑤𝑒𝑒𝑑 of populations (which have the best fitness) 

as a new weeds. 

iter= iter+1. 

13 End 

The mathematical formulation of mutation employed in this 

framework is shown as follows: 

𝑋𝑀𝑢𝑡 = 𝑋
𝐺𝑏𝑒𝑠𝑡 +𝜑 × (𝑋𝑟𝑎𝑛𝑑1 − 𝑋𝑟𝑎𝑛𝑑2) (20) 

where 𝑋𝐺𝑏𝑒𝑠𝑡 is the best solution in each iteration. 𝑋𝑟𝑎𝑛𝑑1 ≠
𝑋𝑟𝑎𝑛𝑑2 are randomly selected mutant seeds. 𝜑 is mutation 

constant which is normally equal to 2 [12]. 

Day Hour 
Binary 
Model  

 

 

 Today 

1 0 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 New Integer 

model 8 0 

9 1 -8 

10 1 9 

11 1 -8 

12 1 

 

13 1 

14 1 

15 1 

16 1 

17 1 

18 0 

19 0 

20 0 

21 0 

22 0 

23 0 

24 0 

 Tomorrow 1 0 

Fig. 2  A simple example of proposed integer variable converted to its 

binary equivalent  

TABLE I. COMPARISON OF BEST COST FOR 10-

UNIT TEST SYSTEM 

Algorithms Cost ($) 

PSO [1] 565804.00 

BGSA [13] 563937.00 

TLBO [8] 564402.90 

QOTLBO [8] 564394.00 

GHS-JGT [14] 563937.68 

BSA [15] 563937.70  

Proposed Approach 563637.19 

 

The proposed method application on UC problem is presented 

in ALGORITHM-II. 

IV. SIMULATION RESULTS 

The system under study is a 10-unit generating system. 

Details of this case study are available in [16]. In order to 

confirm the ability of the proposed commitment status 

variables and MIWO algorithm in solving UC and more 

specifically multi-objective UC problems, three different 

scenarios are considered for the proposed test system in this 

study which is listed below: 

Case 1: Cost is minimized individually;  

Case 2: TEENS is minimized individually;  

Case 3: Cost and TEENS are minimized simultaneously; Case 

I (Cost objective function)  

In the first part of numerical simulation, in order to show 

the capability of proposed method, a comparison between the 

obtained result of MIWO algorithm and those reported in the 

literature including PSO [1], BGSA [13], TLBO [8], QOTLBO 

[8], GHS-JGT [14] and BSA [15] algorithms, for Case I are 

provided in TABLE I. According to this table, it is obvious that 

the proposed algorithm can converge to a better solution 

comparing to the other optimization algorithms. Furthermore, 

the contribution of each generator related to the optimal cost 

objective function is depicted in Fig. 3. 

E. Case II (TEENS objective function)  

The two objective functions, cost and TEENS, are in 

conflict. In order to have an optimal solution with minimum 

cost, the best option is to meet the load with the units with the 

least generation cost; while, in order to have a more reliable 

operation scheme, it is better to meet load with more reliable 

units. Fig. 4 depicts the contribution of units in scheduling 

with optimal TEENS. The value of TEENS in the cost based 

UC scheme is 24511152.02 (MWh/year), while this value is 

6782722.07 (MWh/year) in TEENS objective based case 

which shows a significant improvement. Similarly, there is a 

big gap between cost values in this case and previous case 

which shows 8.64% increase in the amount of cost. 



 

 
Fig. 3  The power scheduling in optimal cost 

 
Fig. 4  The power scheduling in optimal TEENS 

 

 In this condition, the generators’ commitment schedule 

during the 24-h time horizon is different compared with that in 

the optimal cost scenario. In this scenario, some expensive and 

more reliable generating units are committed only to increase 

the system reliability. However, in optimal cost based scenario, 

due to the decreasing generation cost, the expensive units are 

not committed. 

 
Fig. 5  Two-dimensional Pareto-solutions for cost & TEENS objectives 

 
Fig. 6  The power scheduling in best-compromised solution 

F. Case III (Multi-objective UC)  

In this case, the bi-objective optimization problem is solved 

using the MIWO algorithm. A convex Pareto-optimal front 

including best proposed compromised solution (i.e. red star) is 

shown in Fig. 5. This set of non-dominated solutions satisfies 

the operation requirements for power system operators. It is 

also noted that the convex character of the Pareto-optimal front 

becomes well visible to show the conflicted relationship 

between two proposed objective functions. As can be seen 

from Fig. 5, a lower TEENS generally corresponds to a higher 

cost. For instance, to have minimum cost $ 6.093× 105, the 

TEENS value is 1.346× 107 (MWh/year). Similarly, in order 

to minimize the TEENS 1.16× 107 (MWh/year), the cost 

value is $ 6.254× 105. 
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Fig. 7  The percentage of reserve for three scenarios; scenario-1 (optimal 

cost), scenario-2 (optimal TEENS) and scenario-3 (best compromised 

solution)  

According to the obtained set of non-dominated solutions, a 

best compromised solution can be selected by the system 

operator according to the practical requirements as well as 

technical constraints. 

The cost and TEENS values in the best compromise 

solution found by the MIWO algorithm are $609958.0825 and 

12238877.42 (MWh/year), respectively. The commitment 

statuses and output power scheduling of this case are more 

reliable than that of output power scheduling in optimal cost 

case. 

The optimal active power scheduling and percentage of 

reserves are shown in Fig. 6 and Fig. 7, respectively. Fig. 6 

shows the dispatched power of generating units which are 

committed to the best compromised solution. It can be seen 

that number of commitment in this situation is more than the 

previous solutions (minimum cost and minimum TEENS 

cases). From this figure, it is obvious that a set of units which 

are committed in minimum cost solution or minimum TEENS 

solution is committed to a best compromised solution to have 

a reasonable cost as well as reliability level. Fig. 7 shows that 

the reserve constraint is satisfied in all three solutions. The 

reserve percentage in scenarios corresponding to minimum 

TEENS and the best compromised solution is more than the 

reserve percentage in case of minimum cost.  

V. CONCLUSION 

In this paper, a bi-objective UC framework to reach optimal 

solutions of generation cost versus reliability values, based on 

units’ forced outage rate considering some technical 

constraints, has been developed. TEENS is modeled as the 

reliability objective function besides the generation cost. An 

integer codification of commitment variables with high 

capability to satisfy all the constraints especially the ON/OFF 

time has been employed aiming at generating the initial 

population and also simultaneous eliminating negative impacts 

of penalty factor. The capability of proposed approach with 

MIWO algorithm has been confirmed by comparing its results 

with the results of previous researches. Furthermore, the 

Pareto-front strategy is employed to find a set of non-

dominated optimal solutions. The results provide an approach 

to show how the power system operator is able to select a best 

compromised solution from the Pareto-optimal front in order 

to have a good tradeoff between two conflicted objective 

functions. 
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