
Abstract 
In data stream mining, the emergence of new 
patterns or a pattern ceasing to exist is called 
concept drift. Concept drift makes the learning 
process complicated because of the inconsistency 
between existing data and upcoming data. Since 
concept drift was first proposed, numerous articles 
have been published to address this issue in terms of 
distribution analysis. However, most distribution-
based drift detection methods assume that a drift 
happens at an exact time point, and the data arrived 
before that time point is considered not important. 
Thus, if a drift only occurs in a small region of the 
entire feature space, the other non-drifted regions 
may also be suspended, thereby reducing the 
learning efficiency of models. To retrieve non-
drifted information from suspended historical data, 
we propose a local drift degree (LDD) measurement 
that can continuously monitor regional density 
changes. Instead of suspending all historical data 
after a drift, we synchronize the regional density 
discrepancies according to LDD. Experimental 
evaluations on three benchmark data sets show that 
our concept drift adaptation algorithm improves 
accuracy compared to other methods. 

1 Introduction 
With the rapid development of our digital universe, the ever-
growing amount of data poses a great challenge to statistical 
machine learning models: time-changing probability 
distributions in high-speed data streams, which is also called 
concept drift. In conventional models, the probability 
distribution of a target variable is assumed to be stationary. 
Under this condition, the statistical theory can minimums the 
discrepancy between predictions and actual values, namely 
the error rate. However, as pointed out by Zliobaite et al. 
[2014]     , learning models based on such assumptions are 
becoming old-fashioned, whereas concept drift applications 
draw increased attention [Shao, et al., 2014]. Typical concept 
drift applications include 1) weather prediction models that 
change from season to season, 2) customer preference 
recommender systems that vary with time, 3) suspicious stock 
exchange transaction detection and 4) the web, social media 

topic drifting [Li, et al., 2016]. The terminology in other 
research fields may differ, such as covariate shift in machine 
learning [Sugiyama and Kawanabe, 2012], dataset shift in 
pattern recognition, and non-stationary learning in signal 
processing [Zliobaite, et al., 2014]. 

The awareness of concept drift in machine learning has 
resulted in a series of in-depth studies of self-adaptive models 
[Gama, et al., 2014]. Of these studies, concept drift detection 
is a fundamental technique, that is, the decisive factor in the 
performance of machine learning under a dynamic 
environment. The effectiveness of drift detection directly 
contributes to the performance of online adaptive learning.  

At present, most concept drift detection and handling 
methods are focusing on time-related drift, namely when a 
concept drift occurs. They consider that a drift could occur 
suddenly at a time point, incremantaly, or gradualy in a time 
period [Harel, et al., 2014]. As a result, their solutions are 
searching the best time to split the old and new concepts. The 
data received before the drift time point is considered as old 
concept, while the data received after is considered as new 
concept. Accordingly, the old concept data is discarded, while 
new concept data is used for updating or training new learners, 
which can be seen as a time-oriented “one-cut” process. 
However, in real-world scenarios, this assumption is not 
always true. A concept drift could only occur within some 
specific regions. Such a “one-cut” process does not consider 
the non-drifted regions in the old concept. Algouth some 
algorithms have introduced a buffer system to keep tracking 
drifting concepts and can find the best drift time point to 
identify concepts, they are not able to retrieve the location 
informtion related to the drifted regions [Liu, et al., 2017]. 

To better address concept drift problems, we consider both 
time-related and spatial-related drfit informtion. In this paper, 
we propose a regional density inequality metric, called local 
drift degree (LDD), to measure the likelihood of regional drift 
in every suspicious region. By analyzing the density 
increasing or decreasing in a local region, learning systems are 
able to highlight dangerous regions and take relevant actions. 

2 Literature Review 
Concept drift is defined as a phenomenon whereby the 
statistical properties of a target domain change arbitrarily 
over time [Gama, et al., 2014]. These changes are usually 

Regional Concept Drift Detection and Density Synchronized Drift Adaptation 

Anjin Liu, Yiliao Song, Guangquan Zhang, Jie Lu 
Centre for Artificial Intelligence, School of Software 

Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia 
{Anjin.Liu, Yiliao.Song}@student.uts.edu.au, {Guangquan.Zhang, Jie.Lu}@uts.edu.au 

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2280



driven by hidden variables or features that cannot be 
measured directly. In regard to online classification 
problems, concept drift is defined as follows: in a data stream, 
denoting data within a time period (from 0 to 𝑡) as  𝐃𝑡0 =
{𝑑0,⋯ , 𝑑𝑡}, and each data instance d is a (𝑿, 𝑦) pair, where 
𝑿 is the feature vector, 𝑦 ∈ 𝑌 is the classification label, we 
say a concept drift occurrs at time 𝑖 if the distribution of 𝐃𝑖0 
is statistically different from the distribution of 𝐃𝑡𝑖+1 , or 
simply denoted as 𝐹(𝐃𝑖0) ≠ 𝐹(𝐃𝑡𝑖+1). Concept drift is critical 
to online classification problems, because such inequality 
may lead to a inconsistency in decision boundaries, thereby 
increasing the error rate. In this paper, the term ‘concept’ 
refers to data distribution. 

Changes in data distribution over time may manifest in 
different forms. Given 𝐹1  and 𝐹2  have different probability 
density functions, the transformation from 𝐹1  to 𝐹2  can be 
categorized into three types [Lu, et al., 2016]: 1) a 
sudden/abrupt drift switching from 𝐹1 to 𝐹2 straightaway; 2) 
gradual drifts and 3) incremental drifts that consist of several 
intermediate concepts in the transformation process. The 
major difference between 2) gradual drifts and 3) incremental 
drifts is whether the intermediate concepts belong to any of 
the two distributions. For incremental drifts, the distribution 
of intermediate concepts are affected by both 𝐹1 and 𝐹2 and 
belongs to neither. By contrast, in gradual drift cases, the 
intermediate concepts can only be the repetitions of previous 
concepts or new concepts [Gama, et al., 2014].  

 In real-world scenarios, one drift could be a mixture of all 
three types of drifts [Sarnelle, et al., 2015]. How to handle 
the intermediate concepts in a drift is a challenging problem. 
So far, most the state-of-the-art drift detection algorithms 
only detect when the intermediate conepts drift. Very little 
research has discussed the intermediate concepts from a 
spatial perspective, such as research on where the drifted 

regions are. Considering both when and where a drift occurs 
is beneficial to reduce the risk of overestimating the drift 
regions, as shown in Figure 1. 

To the best of our knowledge, very little research has been 
conducted to explicitly address concept drift by detecting and 
adapting to regional drifts. In one related publication, [Gama 
and Castillo, 2006] , the authors applied a decision tree model 
to detect changes in the online error-rate in each internal tree 
node, thereby identifying drifted nodes and updating them, 
respectively. The experimental results showed a good 
performance in detecting drift and in adapting the decision 
model to the new concept. Similar algorithms are in 
[Ikonomovska and Gama, 2008, Ikonomovska, et al., 2011, 
Ikonomovska, et al., 2009]. However, these algorithms 
mainly focus on addressing concept drift on regression 
problems and they all are based on decision tree models, 
which have limited application areas. 

 A detailed reviewe of other drift detection algorithms can 
be found in [Lu, et al., 2016]. The authors suggested to divid 
drift detection algorithms into three categories: 1) a statistical 
test monitoring raw data distribution [Lu, et al., 2016, Lu, et 
al., 2014]; 2) the outputs (error rates) of learners [Frias-
Blanco, et al., 2015], and 3) the changes of learner parameters 
[Su, et al., 2008]. Generally, category 1) algorithms provide 
a statistical significance level to ensure that detected drifts are 
not caused by sampling errors, but they cannot easily explain 
the detected drift regions. Category 2) algorithms have much 
less computational complexity but are not sensitive to gradual 
and incremental drifts. To the best of our knowledge, only 
one attempt at category 3) has been proposed by [Su, et al., 
2008]. Their framework for modeling concept drift is creative 
and can be applied to many learning models. However, it is 
not suitable for knowledge-based learners and cannot 
interpret detected drifts well. 

3 Local Drift Degree 
In this section, we formally present the proposed test 
statistics, Local Drift Degree (LDD). The purpose of LDD is 
to quantify regional density discrepancies between two 
different sample sets, thereby, identifying density increased, 
decreased and stable regions. 
 The intuitive idea underlying LDD is that, given two 𝑑-
dimensions populations 𝚨𝑑  and 𝚩𝑑 , if two sample sets, 𝐴 
from 𝚨𝑑  and 𝐵  from 𝚩𝑑  , are independent and identically 
distributed, their local density discrepancies follow a certain 
normal distribtuion. Denote the feature space as 𝑉, for any 
subspace 𝑊 ⊆ 𝑉, it has an equality that |𝐴𝑊| 𝑛𝐴⁄  = |𝐵𝑊| 𝑛𝐵⁄  
in an ideal situation where |𝐴𝑊|,|𝐵𝑊| represents the number 
of data instances in 𝑊  that belong to 𝐴 , 𝐵 , and 𝑛𝐴 , 𝑛𝐵 
represents the total number of instances in 𝐴  and 𝐵 
separately. 
Definition 1. The local drift degree of a subspace 𝑊  is 
defined as: 

𝛿𝑊 = 
|𝐵𝑊| 𝑛𝐵⁄

|𝐴𝑊| 𝑛𝐴⁄
− 1                              (1) 

Theorem 1. Given 𝚨𝑑  and 𝚩𝑑  have the same distribution, 
𝛿𝑊~𝑁(0, 𝜎

2), where 𝜎2 is the theoretical variance of 𝛿𝑊. 
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Figure 1. For any notable concept drift, if the distribution difference is only 
in a small region, as shown in (b), discarding the entire historical data and 
retraining the learner may result in a overestimation of the drift regions, such 
as the red shaded regions in (d), and thereby impairing the overall 
performance. By contrast, regional drift detection and adaptation only 
address targeted regions, and will not over estimate the drifts. 
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Proof. Define 𝐴𝑖 as Equation (2), and define 𝐵𝑖, 𝚨𝑖𝑑 and 𝚩𝑖𝑑 
in the same way. 

𝐴𝑖 = {
1   𝑖𝑡ℎ 𝑝𝑜𝑖𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑊
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (2) 
Then 𝛿𝑊 can be rewritten as Equation. (3) 

𝛿𝑊 =
∑ 𝐵𝑖/𝑛𝐵
𝑛
𝑖=1

∑ 𝐴𝑖/𝑛𝐴
𝑛
𝑖=1

− 1 =
𝐵̅

𝐴̅
− 1                        (3) 

Assuming  𝐴̅  contains almost all {𝐴𝑖 = 1}  in 𝚨𝑑̅̅ ̅̅ , 𝐴̅ will be 
very closed to 𝚨𝑑̅̅ ̅̅ . Therefore, 𝛿𝑊 ≈ 𝐵̅ 𝚨𝑑̅̅ ̅̅⁄ − 1 . In the 
Appendix, we have 𝐸(𝐵̅) = 𝐁𝑑̅̅ ̅̅ , and the expectation of 𝛿𝑊 
can be acquired by Equation (4) 

𝐸(𝛿𝑊) =
𝐸(𝐵̅)

𝚨𝑑̅̅ ̅̅
− 1 =

𝐁𝑑̅̅ ̅̅

𝚨𝑑̅̅ ̅̅
− 1                       (4) 

If 𝚨𝑑  and 𝚩𝑑  have the same distribution, 𝐁𝑑̅̅ ̅̅ = 𝚨𝑑̅̅ ̅̅  and 
𝐸(𝛿𝑊) = 0 . According to the Central Limit Theorem, it 
obeys a normal distribution as it is constructed in terms of the 
sample average. The variance can be estimated by the Monte 
Carlo method. □ 

4  Drifted Instance Selection and Adaptation 

4.1 Drifted Instance Selection 
The LDD-based drifted instance selection algorithm (LDD-
DIS) is shown in Algorithm 1. The core idea of LDD-DIS is 
to use LDD to identify density decreased (𝐃𝑑𝑒𝑐), increased 
(𝐃𝑖𝑛𝑐), and stable (𝐃𝑠𝑡𝑎) instances within two batches of data. 
The inputs are the target data batches, 𝐃1 𝐃2, the neighbour-
hood ratio 𝜌, and the drift significant level 𝛼.  

The neighborhood ratio 𝜌 controls the size of the neigh-
bourhood. Instead of confining the neighbourhood within a 
certain range, selecting the k-nearest neighbours (KNN) with 
a certain proportion of a data set as the neighbourhood is 
more robust (the k value of KNN is equal to |𝐃| × 𝜌). The 
reason is that KNN-based neighbourhood is independent of 
the shape of the feature space and is friendly to high-dimen-
sional domains. With a proper data structure, like a binary 
tree, the complexity of the KNN-search can be reduced 
to 𝑂(𝑙𝑜𝑔(𝑛)), where 𝑛 is the total number of data instances in 
a sample set. 

The drift significance level 𝛼 quantifies the statistical sig-
nificance of concept drift. For example, in our case, if an ob-
servation is in the left tail, the system will be (1 − 𝛼)% con-
fidence that it is a density-decreased region. Similarly, if an 
observation is in the right tail, the system will be (1 − 𝛼)% 
confidence that it is a density-increased region. 

Without any specifications, LDD-DIS will be initialized by 
the default input values. LDD-DIS consists of two major 
steps. One is to estimate the distribution of LDD when no 
drift occurs, namely 𝛿′~𝒩(𝜇, 𝜎2), lines 1-13. The second is to 
compute LDD for each data instance according to the input 
data batches, and selects the drifted instances correspond-
ingly, lines 14-31. 

Lines 1 to 4 computes the k-nearest neighbor map of the 
entire data, where findKNN(𝑑𝑖 , 𝐃, |𝐃| ∗ 𝜌) stands for finding 
the (|𝐃| ∗ 𝜌) nearest neighbor of 𝑑𝑖 in 𝐃. Then, at line 5, we 
shuffle the data and resample two new batches 𝐃1′ , 𝐃2′  with 
the same size as 𝐃1, 𝐃2. The resampling guarantees that 𝐃1′  
and 𝐃2′  follow an identical distribution. As per theorem 1, 
consequently, the 𝛿 ′ follows 0-mean normal distribution, and 

the density decreasing and increasing confidence interval can 
be calculated by the normal inverse cumulative distribution 
function, as shown in lines 12, 13, denoted as 
norminv(𝛼, 0, std(𝛿′)), where 𝛼 is the significance level, 0 
is the mean, and std(𝛿′) is the estimated standard deviation. 
Then, we compute the LDD for each data instance according 
to their original distributions. For each data instance, if its 
LDD is less than 𝜃𝑑𝑒𝑐, it will be identified as a density de-
creasing instance, while if its LDD is greater than 𝜃𝑖𝑛𝑐, it will 
be identified as density increasing instance, as shown in lines 
14 to 31. Also, if the LDD is between 𝜃𝑑𝑒𝑐 ≤ 𝛿𝑖 ≤ 𝜃𝑖𝑛𝑐, that 
instance will be considered as a no drift instance, or a stable 
instance. 

Algorithm 1: LDD Drifted Instance Selection (LDD-DIS) 
Input: two batches of data instances, 𝐃1, 𝐃2 

neighborhood ratio, 𝜌 (default 𝜌 = 0.1) 
drift significance level, 𝛼 (default 𝛼 = 0.05) 

Output: drifted data sets, 𝓓𝑑𝑟𝑖𝑓𝑡 = {𝐃1
𝑑𝑒𝑐 , 𝐃1

𝑠𝑡𝑎 , 𝐃1
𝑖𝑛𝑐 , 𝐃2

𝑑𝑒𝑐 , 𝐃2
𝑠𝑡𝑎 , 𝐃2

𝑖𝑛𝑐} 
1. merge 𝐃1 and 𝐃2 as 𝐃 
2. For 𝑑𝑖  : 𝐃 
3.   retrieve 𝑑𝑖  neighborhood, 𝐃𝑖𝑘𝑛𝑛 = findKNN(𝑑𝑖 , 𝐃, |𝐃| ∗ 𝜌) 
4. End  
5. shuffle 𝐃 and resample 𝐃1′ , 𝐃2′  without replacement 
6. For 𝑑𝑖  : 𝐃 
7.   If 𝑑𝑖 ∈ 𝐃1′  

8.     compute the LDD of 𝑑𝑖  by 𝛿𝑖′ =
|𝐃𝑖
𝑘𝑛𝑛∩𝐃2

′ |

|𝐃𝑖
𝑘𝑛𝑛∩𝐃1

′ | 
− 1 

9.   Else  
10.     compute the LDD of 𝑑𝑖  by 𝛿𝑖′ =

|𝐃𝑖
𝑘𝑛𝑛∩𝐃1

′ |

|𝐃𝑖
𝑘𝑛𝑛∩𝐃2

′ |
− 1 

11. End 
12. density decrease threshold, θ𝑑𝑒𝑐 = norminv(𝛼, 0, std(𝛿′)) 
13. density increase threshold, θ𝑖𝑛𝑐 = norminv((1 − 𝛼), 0, std(𝛿′)) 
14. For 𝑑𝑖  : 𝐃 
15.   If 𝑑𝑖 ∈ 𝐃1 

16.     compute the LDD of 𝑑𝑖  by 𝛿𝑖 =
|𝐃𝑖
𝑘𝑛𝑛∩𝐃𝟐|

|𝐃𝑖
𝑘𝑛𝑛∩𝐃𝟏|

− 1 

17.     If 𝛿𝑖 < θ𝑑𝑒𝑐   
18.       𝐃1𝑑𝑒𝑐 = 𝐃1

𝑑𝑒𝑐 ∪ {𝑑𝑖} 
19.     Else if 𝛿𝑖 > θ𝑖𝑛𝑐  
20.       𝐃1𝑖𝑛𝑐 = 𝐃1

𝑖𝑛𝑐 ∪ {𝑑𝑖} 
21.     Else  
22.       𝐃1𝑠𝑡𝑎 = 𝐃1

𝑠𝑡𝑎 ∪ {𝑑𝑖} 
23.   Else  
24.     compute the LDD of 𝑑𝑖  by 𝛿𝑖 =

|𝐃𝑖
𝑘𝑛𝑛∩𝐃𝟏|

|𝐃𝑖
𝑘𝑛𝑛∩𝐃𝟐|

− 1 

25.     If 𝛿𝑖 < θ𝑑𝑒𝑐   
26.       𝐃2𝑑𝑒𝑐 = 𝐃2

𝑑𝑒𝑐 ∪ {𝑑𝑖} 
27.     Else if 𝛿𝑖 > θ𝑖𝑛𝑐  
28.       𝐃2𝑖𝑛𝑐 = 𝐃2

𝑖𝑛𝑐 ∪ {𝑑𝑖} 
29.     Else  
30.       𝐃2𝑠𝑡𝑎 = 𝐃2

𝑠𝑡𝑎 ∪ {𝑑𝑖} 
31. End 
32. return 𝓓𝑑𝑟𝑖𝑓𝑡 = {𝐃1

𝑑𝑒𝑐 , 𝐃1
𝑠𝑡𝑎, 𝐃1

𝑖𝑛𝑐 , 𝐃2
𝑑𝑒𝑐 , 𝐃2

𝑠𝑡𝑎, 𝐃2
𝑖𝑛𝑐} 

4.2 Density Synchronized Drift Adaptation 
In this section, a regional drift adaptation algorithm is  
developed to synchronize the density discrepancies based on 
the identified drifted instances. The set 𝐃1𝑑𝑒𝑐, which returned 
by LDD-DIS, represents the data instances belonging to 𝐃1 
and have decreased density compared to the set 𝐃2 . 
Similarly, the set 𝐃2𝑖𝑛𝑐  represents the data instances 
belonging to 𝐃2 and have increased density compared to data 
set 𝐃1. It is obvious that, if the size of 𝐃1 and 𝐃2 are the  
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same, then the size of 𝐃1𝑑𝑒𝑐 and 𝐃2𝑖𝑛𝑐 will be the same, or is 
simply denoted as |𝐃1𝑑𝑒𝑐| |𝐃1|⁄ = |𝐃2

𝑖𝑛𝑐| |𝐃2|⁄ . This property is 
the foundation of the proposed density synchronized drift 
adaptation (DSDA) in Algorithm 2. 

The intuitive idea of LDD-DSDA is to merge existing data 
𝐃𝑡𝑟𝑎𝑖𝑛 with the recently buffered data 𝐃𝑏𝑢𝑓𝑓𝑒𝑟 and resample a 
new batch of training data 𝐃𝑡𝑟𝑎𝑖𝑛 so that the new 𝐃𝑡𝑟𝑎𝑖𝑛 has 
the same distribution as 𝐃𝑏𝑢𝑓𝑓𝑒𝑟 . To achieve this goal, we 
present the following data merging rules: 1) if no density 
discrepancies are detected (which means |𝐃1𝑑𝑒𝑐| |𝐃1|⁄ =
|𝐃2

𝑖𝑛𝑐| |𝐃2|⁄ = 0 ) then return 𝐃𝑡𝑟𝑎𝑖𝑛 ∪ 𝐃𝑏𝑢𝑓𝑓𝑒𝑟  while if the 
unioned data set is considered redundant, return 𝐃𝑏𝑢𝑓𝑓𝑒𝑟 
instead; 2) if there are regional density drifts, merging the 
drifted data instances as per Equation 5. 

{

𝐃𝑖𝑛𝑐 = 𝐃𝑡𝑟𝑎𝑖𝑛
𝑖𝑛𝑐 ∪ 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑑𝑒𝑐

𝐃𝑠𝑡𝑎 = 𝐃𝑡𝑟𝑎𝑖𝑛
𝑠𝑡𝑎 ∪ 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑠𝑡𝑎

𝐃𝑑𝑒𝑐 = 𝐃𝑡𝑟𝑎𝑖𝑛
𝑑𝑒𝑐 ∪ 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑖𝑛𝑐

                        (5) 

Then, to ensure the drifted regions have the same probability 
density as 𝐃𝑏𝑢𝑓𝑓𝑒𝑟, a subset of instances in each drifted region 
will be resampled, denoted as 𝐃𝑠𝑎𝑚𝑝𝑙𝑒, shown as Equation 6. 

|𝐃𝑠𝑎𝑚𝑝𝑙𝑒
𝑖𝑛𝑐 |: |𝐃𝑠𝑎𝑚𝑝𝑙𝑒

𝑠𝑡𝑎 |: |𝐃𝑠𝑎𝑚𝑝𝑙𝑒
𝑑𝑒𝑐 | = |𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑖𝑛𝑐 |: |𝐃𝑏𝑢𝑓𝑓𝑒𝑟
𝑠𝑡𝑎 |: |𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑑𝑒𝑐 |  (6) 

where 𝐃𝑠𝑎𝑚𝑝𝑙𝑒𝑖𝑛𝑐  are sampled from 𝐃𝑑𝑒𝑐 in Equation 5. and so on. 
At last replace 𝐃𝑡𝑟𝑎𝑖𝑛 by 𝐃𝑠𝑎𝑚𝑝𝑙𝑒, namely 𝐃𝑡𝑟𝑎𝑖𝑛 = 𝐃𝑠𝑎𝑚𝑝𝑙𝑒 

In Algorithm 2, line 1 initializes the base learner 𝐿, and 
line 3 uses the base learner to predict data instances arriving 
at the current time, denoted as 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐿, 𝑑𝑡). From lines 4 
to 7, the system maintains the data for training and drift 
detection. When both training and buffered data sets reach the 
minium batch size, LDD-DIS is triggered, as shown in lines 
8, 9. Then the detected drift regions are synchronized, based 
on Equations (5), (6). Otherwise, the system incrementally 
updates the base learner, denoted as updateLearner(𝐿, 𝑑𝑡), 
shown in line 14. Finally, in line 16, the predicted labels are 
returned for performance analysis. 

5 Experiment and Evaluation 
In this section, we describe three groups of experiments to 
evaluate the proposed LDD. The first group examines the 
normality of LDD under different circumstances. The second 
group evaluates the LDD-DIS algorithm. Lastly, we apply the 
LDD-DSDA algorithm to three real-world evolving data 
streams and compare the results with other methods. All 
experiments are conducted on a 2×3.1GHz 8 core CPU 
128GB RAM cluster node with unique access. 

5.1 Evaluation of  the Validity of LDD 
Experiment 1 The distribution of LDD  
To verify the normality of LDD, two 1D data sets 𝐴, 𝐵 of 
equal size (5,000,000) are generated. Given a neighborhood 
of randomly picked points in this domain, we randomly select 
10,000 points from 𝐵 , and observe the number of points 
located in 10,000 neighborhood of points in 𝐵. This process 
is repeated 10,000 times to approximately describe the 
distribution of  𝛿 . The histogram of 10,000 𝛿  is shown in 
Figure 2. 

According to Theorem 1, LDD is normally distributed with 
the parameters (0, 𝑉(𝛿)). To compare the real and theoretical 
distribution of LDD, the line in Figure 2 represents the 
theoretical values of a normal distribution 𝑁(0, 𝑉(𝛿)) , 
where  𝑉(𝛿) stands for the variance of 𝛿. 

5.2 Evaluation of LDD-DIS 
In this section, we evaluate the LDD-DIS algorithm in terms 
of two 2D synthetic drifted data sets. For each data set, 1,000 
training cases are drawn from a specific distribution and 500 
testing cases are drawn from a different distribution. We plot 
the estimated probability density curve of the selected feature 
in subfigure (a), the entire data set in subfigure (b) (blue dots 
represent the training set and red crosses represent the testing 
set), the detected drifted instances in subfigure (c) (blue dots 
represent decreasing density, red dots represent increasing 
density), and the value of LDD of the corresponding 
instances in subfigure (d) to demonstrate the relationship 
between LDD and regional density changes. The 
configurations of LDD are set as the default values described 
in Algorithm 1.  
Experiment 2 Gaussian Data with Drifted Variance 
This data set is generated from a bivariate Gaussian 
distribution. The training set has mean 𝜇 = [5, 5]  and the 

Algorithm 2: Density Synchronized Drift Adaptation (LDD-DSDA) 
Input: data instance arriving at each time step 𝑑0,⋯ , 𝑑𝑡  

minimum data batch size, 𝑤 (default 𝑤 = 100) 
base learner, 𝐿 (default 𝐿 = Naive Bayes Classifier) 

Output: prediction results, 𝑦̂0, ⋯ , 𝑦̂𝑡  
1. initial 𝐃𝑡𝑟𝑎𝑖𝑛, 𝐿 = buildLearner(𝐃𝑡𝑟𝑎𝑖𝑛) 
2. while stream not end, denote current time step as 𝑡 
3.   𝑦̂𝑡 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐿, 𝑑𝑡) 
4.   If |𝐃𝑡𝑟𝑎𝑖𝑛| < 𝑤 
5.     𝐃𝑡𝑟𝑎𝑖𝑛 = 𝐃𝑡𝑟𝑎𝑖𝑛 ∪ {𝑑𝑡} 
6.   Else 
7.     𝐃𝑏𝑢𝑓𝑓𝑒𝑟 = 𝐃𝑏𝑢𝑓𝑓𝑒𝑟 ∪ {𝑑𝑡} 
8.   If |𝐃𝑡𝑟𝑎𝑖𝑛| ≥ 𝑤 and |𝐃𝑏𝑢𝑓𝑓𝑒𝑟| ≥ 𝑤 
9.     𝓓𝑑𝑟𝑖𝑓𝑡 = LDD-DIS(𝐃𝑡𝑟𝑎𝑖𝑛 , 𝐃𝑏𝑢𝑓𝑓𝑒𝑟), 𝑤ℎ𝑒𝑟𝑒 

     𝓓𝑑𝑟𝑖𝑓𝑡 = {𝐃𝑡𝑟𝑎𝑖𝑛
𝑑𝑒𝑐 , 𝐃𝑡𝑟𝑎𝑖𝑛

𝑠𝑡𝑎 , 𝐃𝑡𝑟𝑎𝑖𝑛
𝑖𝑛𝑐 , 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑑𝑒𝑐 , 𝐃𝑏𝑢𝑓𝑓𝑒𝑟
𝑠𝑡𝑎 , 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑖𝑛𝑐 } 
10.     merge the detected drift regions as per Equation (5)   
11.     based on the density of 𝐃𝑏𝑢𝑓𝑓𝑒𝑟, resample the data as 𝐃𝑡𝑟𝑎𝑖𝑛, as           

per Equation (6) 
12.     build new learner, 𝐿 = buildLearner(𝐃𝑡𝑟𝑎𝑖𝑛) 
13.   Else  
14.     updateLearner(𝐿, 𝑑𝑡) 
15. End 
16. return 𝑦̂0 , ⋯ , 𝑦̂𝑡  

 
Figure 2. Real and theoretical distribution of LDD 
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covariance matrix is Σ = [
1 0
0 1

]. The testing set has the same 
mean vector while its covariance matrix drifts to Σ = [

3 0
0 3

]. 
This drift forms a ring-shaped drifted region as shown in 
Figure 3(c).  

Since the covariance of 𝑥1, 𝑥2 is 0, the patterns of drifted 
regions are the same from only 𝑥1 perspective. In Figure 3(a), 
we plot the kernel smoothing estimated density function of 
feature  𝑥1 for both training set (red line) and testing set (blue 
line). If we consider the density drift from the training set 
perspective, when the blue line is higher than the red line, this 
means in that region, the training set density is decreasing, 
and vice versa. Accordingly, the instances located in these 
regions will be identified as 𝐃𝑡𝑟𝑎𝑖𝑛𝑑𝑒𝑐  or 𝐃𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑐 , as shown in 
Figure 3(c), where the red dots belong to 𝐃𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑐 , and the blue 
dots belong to 𝐃𝑡𝑟𝑎𝑖𝑛

𝑑𝑒𝑐 . The corresponding LDD value of each 
data instance is ploted in Figure 3(d). The higher the value of 
LDD, the higher the probability that this instance will drift.  

Experiment 3 Mixture Distribution with Drifting Mean 
To demonstrate how LDD works in a more general situation, 
we create a drifting Gaussian mixture data set and apply LDD 
to detect the drifted instances. The Gaussian mixture 
distribution consists of three bivariate Gaussian distributions. 
The three distributions for the testing set are generated based 
on the paramters given in Equation (7), while the testing set 
is generated based on the paramters given in Equation (8). 
The results of LDD-DIS are shown in Figure 4 with the same 
meaning as Figure 3. 

{
 
 

 
 μ1 = [8, 5], Σ1 = [

1 0
0 1

]

μ2 = [2, 5], Σ2 = [
2 0
0 2

]

μ3 = [5, 5], Σ3 = [
5 0
0 5

] 

         (7)           

{
 
 

 
 μ1 = [10, 5], Σ1 = [

1 0
0 1

]

μ2 = [4, 5], Σ2 = [
2 0
0 2

]

μ3 = [7, 5],   Σ3 = [
5 0
0 5

] 

       (8)                          

5.3 Evaluation of LDD-DSDA 
In this section, we evaluate LDD-DSDA on three real-world 
evolving data streams. We compare its performance to sev-
eral representatives of data stream classification paradigms. 

The selected comparison methods are: Hoeffding Adaptive 
Tree (HAT) [Bifet and Gavaldà, 2009], Accuracy Updated 
Ensemble (AUE) [Brzeziński and Stefanowski, 2011], 
SAMkNN [Losing, et al., 2016], exponentially weighted 
moving average charts drift detection (ECDD) [Ross, et al., 
2012], and HDDM family algorithms [Frias-Blanco, et al., 
2015]. All these algorithms were implemented based on the 
MOA framework [Bifet, et al., 2010], which is a commonly 
used software for evolving data stream analysis. To quantita-
tively evaluate LDD-DSDA, we consider the following per-
formance metrics: accuracy (Acc.), precision (Pre.), recall 
(Rec.), f1-score (F1.) and computation time (Time), where 
Pre=TP/(TP+FP), Rec=TP/(TP+FN), and F1=2∙Pre∙Rec/(Pre+Rec). 
The term TP represents the number of true positive predic-
tions, FN represents the number of false negative predictions. 
These metrics were evaluated in a prequential manner. To 
fairly compare these drift adaptation algorithms, the default 
parameters suggested by the authors are used, and the base 
classification model is set as Naïve Bayes classifier, except 
for SAMkNN, which is only designed for IBk classifier. The 
parameters for IBk classifier of SAMkNN are 𝑘 = 10 and 
weighting method = uniformly weighted. Because LDD-
DSDA involves a random sampling process, the results may 
vary at different runs, we run LDD-DSDA 50 times on each 
data set and state the mean and standard deviation of the re-
sults. To avoid confusion on the F1-score metric, we only 
take the mean of Pre. and Rec. to calculate the F1 for LDD-
DSDA. The source code of LDD-DSDA is available at 
https://sites.google.com/view/anjin-concept-drift/home. 
Experiment 4 Electricity Price Prediction Data Set (Elec) 
Elec contains 45,312 instances, collected every thirty minutes 
from the Australian New South Wales Electricity Market 
between 7 May 1996 and 5 Dec 1998. In this market, prices 
are not fixed and are affected by demand and supply. This 
data set contains eight features and two classes (up, down) 
and has been widely used for concept drift adaptation 
evaluation. We considered the classes as equally important, 
because both price up and down in the market is considered 

 
Figure 4 LDD-DIS on Mixture Mean Drifted Distribution 

 
Figure 3 LDD-DIS on Gaussian Variance Drifted Distribution  
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critical to users, and the ratio of classes is balanced, which is 
58% down and 42% up. Therefore, we take the average 
precision (Pre.) and recall (Rec.) of both classes as the 
performance evaluation metrics, where average Pre =

(Pre𝑐𝑙𝑎𝑠𝑠1 + Pre𝑐𝑙𝑎𝑠𝑠2) 2⁄ , average Rec = (Rec𝑐𝑙𝑎𝑠𝑠1 + Rec𝑐𝑙𝑎𝑠𝑠2) 2⁄ . 
Experiment 5 Nebraska Weather Prediction Data Set 
(Weather) 
This data set was compiled by the U.S. National Oceanic and 
Atmospheric Administration. It contains 8 features and 
18,159 instances with 31% positive (rain) class, and 69% 
negative (no-rain) class. This data set was summarized by 
[Elwell and Polikar, 2011]. In relation to the performance 
metrics Pre. Rec. and F1, only the positive class (rain) is con-
sidered. This is because a correct prediction of rain is consid-
ered more important than a correct prediction of no-rain. 
Experiment 6 Spam Filtering Data Set (Spam Filtering) 
This data set is a collection of 9,324 email messages derived 
from the Spam Assassin collection. The original data set con-
tains 39,916 features, and 9,324 emails (around 20% spam 
emails and 80% legitimate emails). It is commonly consid-
ered to be a typical gradual drift data set [Katakis, et al., 
2009]. According to [Katakis, et al., 2009], 500 attributes 
were retrieved using the chi-square feature selection ap-
proach. The correct classification of legitimate emails is used 
to evaluate the algorithms [Katakis, et al., 2009]. 
Experiment Summary 
As shown in Table 1, LDD-DSDA achieve the best perfor-
mance in most cases. Although the execution time of LDD is 
slightly longer than that of the other algorithms on high-di-
mensional data (experiment 6), the improvement is notable. 
LDD-DSDA addresses a critical problem in data stream min-
ing from a novel perspective and achieved a competitive re-
sult compared to the state-of-the-art algorithms. LDD-DSDA 
has the best average rank (2.33) crossing the tested data sets. 
Compared to the second place, which is ECDD (2.67), LDD-
DSDA improves the average F1 by 0.0114. According to the 

Friedman Test, the differences between LDD-DSDA and 
ECDD on Acc., Pre., Rec. and F1 are significant. 

6 Conclusion and Further Study 
In this paper, we analyzed existing concept drift adaptation 
algorithms and recognized the necessity of tracking regional 
drifts. Through investigating the distribution of data nearest-
neighbors, we proposed a novel metric, called LDD, to detect 
regional concept drift. Accordingly, an LDD-based density 
synchronization algorithm was proposed to adapt the density 
discrepancies. The validity of LDD and the performance of 
LDD-based algorithms were thoroughly evaluated using six 
experiments. 
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A Proof of Theorem 1 
To demonstrate theorem1 we introduce a random variable 𝐼𝑖 

 𝐼𝑖 = {1 𝐁𝑖
𝑑𝜖𝐵

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                (A.1) 

According to the sampling techniques, selecting 𝑛 units 
from N, the probability that each unit will be selected in n 
draws is 𝐶𝑁−1𝑛−1 𝐶𝑁

𝑛⁄ = 𝑛 𝑁⁄  (𝐶𝑁𝑛 is the number of n-permutations 
of N) and the probability that two units will be selected in n 
draws is 𝑛(𝑛 − 1) 𝑁(𝑁 − 1)⁄ . Under this condition, 𝐼𝑖 satisfies 
the following equations: 

 𝐸(𝐼𝑖) =
𝑛

𝑁
, 𝑖 = 1,2,… ,𝑁                         (A.2) 

By using 𝐼𝑖, 𝐵̅ can be rewritten by Equation. (A.3) and its 
expectation equals 𝐁𝑑̅̅ ̅̅  

 𝐵̅ =
1

𝑛
∑ 𝚩𝑖

𝑑𝐼𝑖
𝑁
𝑖=1                                (A.3) 

 𝐸(𝐵̅) =
𝐸(∑ 𝚩𝑖

𝑑𝐼𝑖
𝑁
𝑖=1 )

𝑛
=

∑ 𝚩𝑖
𝑑𝑁

𝑖=1 𝐸(𝐼𝑖)

𝑛
=

1

𝑛
∙
𝑛

𝑁
∑ 𝚩𝑖

𝑑𝑁
𝑖=1

            =
1

𝑁
∑ 𝚩𝑖

𝑑𝑁
𝑖=1 = 𝐁𝑑̅̅ ̅̅

          (A.4) 

Data Stream #Insts #Dim #Class Algorithms Acc. Pre. Rec. F1 (rank) Time (ms) 

Elec 45,312 8 2 

LDD-DSDA 0.8776±6.8E-5 0.8750±7.4E-5 0.8743±6.2E-5 0.8747 (1) 1776.4±243.5 

HAT 0.8131 0.8100 0.8057 0.8078 (5) 2071 

AUE 0.7544 0.7514 0.7408 0.7461 (7) 3005 

SAMkNN 0.7561 0.7506 0.74835 0.7495 (6) 305082 

ECDD 0.8676 0.8643 0.8650 0.8646 (2) 1005 

HDDM-A-Test 0.8492 0.8462 0.8446 0.8454 (3) 3063 

HDDM-W-Test 0.8409 0.8374 0.8367 0.8371 (4) 1004 

Weather 18,159 8 2 

LDD-DSDA 0.7256±4.7E-4 0.8070±4.2E-4 0.7876±7.2E-4 0.7972 (5) 982.4±177.7 

HAT 0.7248 0.8039 0.7922 0.7980 (4) 2069 

AUE 0.7243 0.7862 0.8217 0.8036 (2) 1006 

SAMkNN 0.7486 0.6778 0.3787 0.4859 (7) 121001 

ECDD 0.7279 0.7960 0.8183 0.8070 (1) 1004 

HDDM-A-Test 0.7238 0.8221 0.7626 0.7912 (6) 1063 

HDDM-W-Test 0.7282 0.8018 0.8021 0.8019 (3) 1004 

Spam Filtering 9,324 500 2 

LDD-DSDA 0.9412±4.3E-4 0.9503±5.1E-4 0.9719±4.3E-4 0.9610 (1) 9942.3±746.3 

HAT 0.8893 0.9430 0.9060 0.9241 (6) 5067 

AUE 0.8406 0.9246 0.8556 0.8888 (7) 7012 

SAMkNN 0.9247 0.9227 0.9809 0.9509 (2) 255923 

ECDD 0.8884 0.9012 0.9546 0.9271 (5) 2005 

HDDM-A-Test 0.9079 0.9341 0.9426 0.9383 (4) 2003 

HDDM-W-Test 0.9165 0.9293 0.9608 0.9448 (3) 2003 

Table 1. Performance of Different Data Stream Classification Algorithms on Real-world Data Sets 

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2285



References 
[Bifet and Gavaldà, 2009] Albert Bifet and Ricard Gavaldà, 

"Adaptive learning from evolving data streams," in 
Proceedings of the Eighth International Symposium on 
Intelligent Data Analysis, pp. 249-260: Springer, 2009. 

[Bifet, et al., 2010] Albert Bifet, Geoff Holmes, Richard 
Kirkby, and Bernhard Pfahringer, "MOA: Massive online 
analysis," The Journal of Machine Learning Research, 
vol. 99, pp. 1601–1604, 2010. 

[Brzeziński and Stefanowski, 2011] Dariusz Brzeziński 
and Jerzy Stefanowski, "Accuracy updated ensemble for 
data streams with concept drift," in International 
Conference on Hybrid Artificial Intelligence Systems, pp. 
155-163: Springer, 2011. 

[Elwell and Polikar, 2011] Ryan Elwell and Robi Polikar, 
"Incremental learning of concept drift in nonstationary 
environments," (in eng), IEEE Transactions on Neural 
Networks, Research Support, U.S. Gov't, Non-P.H.S. vol. 
22, no. 10, pp. 1517-31, Oct 2011. 

[Frias-Blanco, et al., 2015] Isvani Frias-Blanco, Jose del 
Campo-Avila, Gonzalo Ramos-Jimenes, Rafael Morales-
Bueno, Agustin Ortiz-Diaz, and Yaile Caballero-Mota, 
"Online and Non-Parametric Drift Detection Methods 
Based on Hoeffding's Bounds," IEEE Transactions on 
Knowledge and Data Engineering, vol. 27, no. 3, pp. 810-
823, 2015. 

[Gama and Castillo, 2006] João Gama and Gladys Castillo, 
"Learning with local drift detection," in International 
Conference on Advanced Data Mining and Applications, 
pp. 42-55: Springer, 2006. 

[Gama, et al., 2014] João Gama, Indrė Zliobaitė, Albert Bifet, 
Mykola Pechenizkiy, and Abdelhamid Bouchachia, "A 
survey on concept drift adaptation," ACM Computing 
Surveys, vol. 46, no. 4, pp. 1-37, 2014. 

[Harel, et al., 2014] Maayan Harel, Shie Mannor, Ran El-
Yaniv, and Koby Crammer, "Concept drift detection 
through resampling," in Proceedings of the Thirty-first 
International Conference on Machine Learning, pp. 
1009-1017, 2014. 

[Ikonomovska and Gama, 2008] Elena Ikonomovska and 
Joao Gama, "Learning Model Trees from Data Streams," 
in Proceedings of the Eleventh International Conference 
on Discovery Science, pp. 52-63, Berlin: Springer, 2008. 

[Ikonomovska, et al., 2011]Elena Ikonomovska, João Gama, 
and Sašo Džeroski, "Learning model trees from evolving 
data streams," Data Mining and Knowledge Discovery, 
vol. 23, no. 1, pp. 128-168, 2011. 

[Ikonomovska, et al., 2009]Elena Ikonomovska, João Gama, 
Raquel Sebastião, and Dejan Gjorgjevik, "Regression 
Trees from Data Streams with Drift Detection," in 
Proceedings of the Twelfth International Conference on 
Discovery Science, pp. 121-135, Berlin: Springer, 2009. 

[Katakis, et al., 2009] Ioannis Katakis, Grigorios 
Tsoumakas, Evangelos Banos, Nick Bassiliades, and 
Ioannis Vlahavas, "An adaptive personalized news 

dissemination system," Journal of Intelligent Information 
Systems, vol. 32, no. 2, pp. 191-212, 2009. 

[Li, et al., 2016] Peipei Li, Lu He, Xuegang Hu, Yuhong 
Zhang, Lei Li, and Xindong Wu, "Concept based short 
text stream classification with topic drifting detection," in 
Proceedings of the Sixteenth International Conference on 
Data Mining, pp. 1009-1014, 2016. 

[Liu, et al., 2017] Anjin Liu, Guangquan Zhang, and Jie Lu, 
"Fuzzy time windowing for gradual concept drift 
adaptation," in Proceedings of the Twenty-sixth IEEE 
International Conference on Fuzzy Systems, Naples Italy: 
IEEE, 2017. 

[Losing, et al., 2016] Viktor Losing, Barbara Hammer, and 
Heiko Wersing, "KNN Classifier with Self Adjusting 
Memory for Heterogeneous Concept Drift," in 
Proceedings of the Sixteenth IEEE International 
Conference on Data Mining, 2016. 

[Lu, et al., 2016] Ning Lu, Jie Lu, Guangquan Zhang, and 
Ramon Lopez De Mantaras, "A concept drift-tolerant 
case-base editing technique," Artificial Intelligence, vol. 
230, pp. 108-133, 2016. 

[Lu, et al., 2014] Ning Lu, Guangquan Zhang, and Jie Lu, 
"Concept drift detection via competence models," 
Artificial Intelligence, vol. 209, pp. 11-28, 2014. 

[Ross, et al., 2012] Gordon J Ross, Niall M Adams, Dimitris 
K Tasoulis, and David J Hand, "Exponentially weighted 
moving average charts for detecting concept drift," 
Pattern Recognition Letters, vol. 33, no. 2, pp. 191-198, 
2012. 

[Sarnelle, et al., 2015] Joseph Sarnelle, Anthony Sanchez, 
RRobert Capo, Joshua Haas, and Robi Polikar, 
"Quantifying the limited and gradual concept drift 
assumption," in The Proceedings of 2015 International 
Joint Conference on Neural Networks, pp. 1-8, 2015. 

[Shao, et al., 2014] Junming Shao, Zahra Ahmadi, and 
Stefan Kramer, "Prototype-based learning on concept-
drifting data streams," in Proceedings of the Twentieth 
ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, New York, USA, pp. 412-
421, 2623609: ACM, 2014. 

[Su, et al., 2008] Bai Su, Yi-Dong Shen, and Wei Xu, 
"Modeling concept drift from the perspective of 
classifiers," in Proceedings of IEEE Conference on 
Cybernetics and Intelligent Systems, Chengdu, China, pp. 
1055-1060: IEEE, 2008. 

[Sugiyama and Kawanabe, 2012] Masashi Sugiyama and 
Motoaki Kawanabe, Machine learning in non-stationary 
environments: Introduction to covariate shift adaptation. 
MIT Press, 2012. 

[Zliobaite, et al., 2014] Indre Zliobaite, Albert Bifet, 
Bernhard Pfahringer, and Geoffrey Holmes, "Active 
Learning with drifting streaming data," IEEE 
Transactions on Neural Networks and Learning Systems, 
vol. 25, no. 1, pp. 27-39, 2014. 

 

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2286


