
Abstract
In data stream mining, the emergence of new
patterns or a pattern ceasing to exist is called
concept drift. Concept drift makes the learning
process complicated because of the inconsistency
between existing data and upcoming data. Since
concept drift was first proposed, numerous articles
have been published to address this issue in terms of
distribution analysis. However, most distribution-
based drift detection methods assume that a drift
happens at an exact time point, and the data arrived
before that time point is considered not important.
Thus, if a drift only occurs in a small region of the
entire feature space, the other non-drifted regions
may also be suspended, thereby reducing the
learning efficiency of models. To retrieve non-
drifted information from suspended historical data,
we propose a local drift degree (LDD) measurement
that can continuously monitor regional density
changes. Instead of suspending all historical data
after a drift, we synchronize the regional density
discrepancies according to LDD. Experimental
evaluations on three benchmark data sets show that
our concept drift adaptation algorithm improves
accuracy compared to other methods.

1 Introduction
With the rapid development of our digital universe, the ever-
growing amount of data poses a great challenge to statistical
machine learning models: time-changing probability
distributions in high-speed data streams, which is also called
concept drift. In conventional models, the probability
distribution of a target variable is assumed to be stationary.
Under this condition, the statistical theory can minimums the
discrepancy between predictions and actual values, namely
the error rate. However, as pointed out by Zliobaite et al.
[2014] , learning models based on such assumptions are
becoming old-fashioned, whereas concept drift applications
draw increased attention [Shao, et al., 2014]. Typical concept
drift applications include 1) weather prediction models that
change from season to season, 2) customer preference
recommender systems that vary with time, 3) suspicious stock
exchange transaction detection and 4) the web, social media

topic drifting [Li, et al., 2016]. The terminology in other
research fields may differ, such as covariate shift in machine
learning [Sugiyama and Kawanabe, 2012], dataset shift in
pattern recognition, and non-stationary learning in signal
processing [Zliobaite, et al., 2014].

The awareness of concept drift in machine learning has
resulted in a series of in-depth studies of self-adaptive models
[Gama, et al., 2014]. Of these studies, concept drift detection
is a fundamental technique, that is, the decisive factor in the
performance of machine learning under a dynamic
environment. The effectiveness of drift detection directly
contributes to the performance of online adaptive learning.

At present, most concept drift detection and handling
methods are focusing on time-related drift, namely when a
concept drift occurs. They consider that a drift could occur
suddenly at a time point, incremantaly, or gradualy in a time
period [Harel, et al., 2014]. As a result, their solutions are
searching the best time to split the old and new concepts. The
data received before the drift time point is considered as old
concept, while the data received after is considered as new
concept. Accordingly, the old concept data is discarded, while
new concept data is used for updating or training new learners,
which can be seen as a time-oriented “one-cut” process.
However, in real-world scenarios, this assumption is not
always true. A concept drift could only occur within some
specific regions. Such a “one-cut” process does not consider
the non-drifted regions in the old concept. Algouth some
algorithms have introduced a buffer system to keep tracking
drifting concepts and can find the best drift time point to
identify concepts, they are not able to retrieve the location
informtion related to the drifted regions [Liu, et al., 2017].

To better address concept drift problems, we consider both
time-related and spatial-related drfit informtion. In this paper,
we propose a regional density inequality metric, called local
drift degree (LDD), to measure the likelihood of regional drift
in every suspicious region. By analyzing the density
increasing or decreasing in a local region, learning systems are
able to highlight dangerous regions and take relevant actions.

2 Literature Review
Concept drift is defined as a phenomenon whereby the
statistical properties of a target domain change arbitrarily
over time [Gama, et al., 2014]. These changes are usually

Regional Concept Drift Detection and Density Synchronized Drift Adaptation 

Anjin Liu, Yiliao Song, Guangquan Zhang, Jie Lu
Centre for Artificial Intelligence, School of Software

Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia
{Anjin.Liu, Yiliao.Song}@student.uts.edu.au, {Guangquan.Zhang, Jie.Lu}@uts.edu.au

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2280

driven by hidden variables or features that cannot be
measured directly. In regard to online classification
problems, concept drift is defined as follows: in a data stream,
denoting data within a time period (from 0 to 𝑡) as 𝐃𝑡0 =
{𝑑0,⋯ , 𝑑𝑡}, and each data instance d is a (𝑿, 𝑦) pair, where
𝑿 is the feature vector, 𝑦 ∈ 𝑌 is the classification label, we
say a concept drift occurrs at time 𝑖 if the distribution of 𝐃𝑖0
is statistically different from the distribution of 𝐃𝑡𝑖+1 , or
simply denoted as 𝐹(𝐃𝑖0) ≠ 𝐹(𝐃𝑡𝑖+1). Concept drift is critical
to online classification problems, because such inequality
may lead to a inconsistency in decision boundaries, thereby
increasing the error rate. In this paper, the term ‘concept’
refers to data distribution.

Changes in data distribution over time may manifest in
different forms. Given 𝐹1 and 𝐹2 have different probability
density functions, the transformation from 𝐹1 to 𝐹2 can be
categorized into three types [Lu, et al., 2016]: 1) a
sudden/abrupt drift switching from 𝐹1 to 𝐹2 straightaway; 2)
gradual drifts and 3) incremental drifts that consist of several
intermediate concepts in the transformation process. The
major difference between 2) gradual drifts and 3) incremental
drifts is whether the intermediate concepts belong to any of
the two distributions. For incremental drifts, the distribution
of intermediate concepts are affected by both 𝐹1 and 𝐹2 and
belongs to neither. By contrast, in gradual drift cases, the
intermediate concepts can only be the repetitions of previous
concepts or new concepts [Gama, et al., 2014].

 In real-world scenarios, one drift could be a mixture of all
three types of drifts [Sarnelle, et al., 2015]. How to handle
the intermediate concepts in a drift is a challenging problem.
So far, most the state-of-the-art drift detection algorithms
only detect when the intermediate conepts drift. Very little
research has discussed the intermediate concepts from a
spatial perspective, such as research on where the drifted

regions are. Considering both when and where a drift occurs
is beneficial to reduce the risk of overestimating the drift
regions, as shown in Figure 1.

To the best of our knowledge, very little research has been
conducted to explicitly address concept drift by detecting and
adapting to regional drifts. In one related publication, [Gama
and Castillo, 2006] , the authors applied a decision tree model
to detect changes in the online error-rate in each internal tree
node, thereby identifying drifted nodes and updating them,
respectively. The experimental results showed a good
performance in detecting drift and in adapting the decision
model to the new concept. Similar algorithms are in
[Ikonomovska and Gama, 2008, Ikonomovska, et al., 2011,
Ikonomovska, et al., 2009]. However, these algorithms
mainly focus on addressing concept drift on regression
problems and they all are based on decision tree models,
which have limited application areas.

 A detailed reviewe of other drift detection algorithms can
be found in [Lu, et al., 2016]. The authors suggested to divid
drift detection algorithms into three categories: 1) a statistical
test monitoring raw data distribution [Lu, et al., 2016, Lu, et
al., 2014]; 2) the outputs (error rates) of learners [Frias-
Blanco, et al., 2015], and 3) the changes of learner parameters
[Su, et al., 2008]. Generally, category 1) algorithms provide
a statistical significance level to ensure that detected drifts are
not caused by sampling errors, but they cannot easily explain
the detected drift regions. Category 2) algorithms have much
less computational complexity but are not sensitive to gradual
and incremental drifts. To the best of our knowledge, only
one attempt at category 3) has been proposed by [Su, et al.,
2008]. Their framework for modeling concept drift is creative
and can be applied to many learning models. However, it is
not suitable for knowledge-based learners and cannot
interpret detected drifts well.

3 Local Drift Degree
In this section, we formally present the proposed test
statistics, Local Drift Degree (LDD). The purpose of LDD is
to quantify regional density discrepancies between two
different sample sets, thereby, identifying density increased,
decreased and stable regions.
 The intuitive idea underlying LDD is that, given two 𝑑-
dimensions populations 𝚨𝑑 and 𝚩𝑑 , if two sample sets, 𝐴
from 𝚨𝑑 and 𝐵 from 𝚩𝑑 , are independent and identically
distributed, their local density discrepancies follow a certain
normal distribtuion. Denote the feature space as 𝑉, for any
subspace 𝑊 ⊆ 𝑉, it has an equality that |𝐴𝑊| 𝑛𝐴⁄ = |𝐵𝑊| 𝑛𝐵⁄
in an ideal situation where |𝐴𝑊|,|𝐵𝑊| represents the number
of data instances in 𝑊 that belong to 𝐴 , 𝐵 , and 𝑛𝐴 , 𝑛𝐵
represents the total number of instances in 𝐴 and 𝐵
separately.
Definition 1. The local drift degree of a subspace 𝑊 is
defined as:

𝛿𝑊 =
|𝐵𝑊| 𝑛𝐵⁄

|𝐴𝑊| 𝑛𝐴⁄
− 1 (1)

Theorem 1. Given 𝚨𝑑 and 𝚩𝑑 have the same distribution,
𝛿𝑊~𝑁(0, 𝜎

2), where 𝜎2 is the theoretical variance of 𝛿𝑊.

decision
boundary (b)

decision
boundary (c)

decision
boundary (a)

decision
boundary (a)

decision
boundary (b)

decision
boundary (c)

(a) decision boundary before concept drift (b) new decision boundary with regional
drift detection

(c) new decision boundary after global drift
detection

(d) overestimated drift regions

over estimated drift
regionsactual drift region

decision
boundary (a)

all historical data
received before drift

time step is discarded

data instances with
different labels

data instances arrived
at different time step

only drifted instances
are discarded

Figure 1. For any notable concept drift, if the distribution difference is only
in a small region, as shown in (b), discarding the entire historical data and
retraining the learner may result in a overestimation of the drift regions, such
as the red shaded regions in (d), and thereby impairing the overall
performance. By contrast, regional drift detection and adaptation only
address targeted regions, and will not over estimate the drifts.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2281

Proof. Define 𝐴𝑖 as Equation (2), and define 𝐵𝑖, 𝚨𝑖𝑑 and 𝚩𝑖𝑑
in the same way.

𝐴𝑖 = {
1 𝑖𝑡ℎ 𝑝𝑜𝑖𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑒𝑠 𝑖𝑛 𝑊
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)
Then 𝛿𝑊 can be rewritten as Equation. (3)

𝛿𝑊 =
∑ 𝐵𝑖/𝑛𝐵
𝑛
𝑖=1

∑ 𝐴𝑖/𝑛𝐴
𝑛
𝑖=1

− 1 =
𝐵̅

𝐴̅
− 1 (3)

Assuming 𝐴̅ contains almost all {𝐴𝑖 = 1} in 𝚨𝑑̅̅ ̅̅ , 𝐴̅ will be
very closed to 𝚨𝑑̅̅ ̅̅ . Therefore, 𝛿𝑊 ≈ 𝐵̅ 𝚨𝑑̅̅ ̅̅⁄ − 1 . In the
Appendix, we have 𝐸(𝐵̅) = 𝐁𝑑̅̅ ̅̅ , and the expectation of 𝛿𝑊
can be acquired by Equation (4)

𝐸(𝛿𝑊) =
𝐸(𝐵̅)

𝚨𝑑̅̅ ̅̅
− 1 =

𝐁𝑑̅̅ ̅̅

𝚨𝑑̅̅ ̅̅
− 1 (4)

If 𝚨𝑑 and 𝚩𝑑 have the same distribution, 𝐁𝑑̅̅ ̅̅ = 𝚨𝑑̅̅ ̅̅ and
𝐸(𝛿𝑊) = 0 . According to the Central Limit Theorem, it
obeys a normal distribution as it is constructed in terms of the
sample average. The variance can be estimated by the Monte
Carlo method. □

4 Drifted Instance Selection and Adaptation

4.1 Drifted Instance Selection
The LDD-based drifted instance selection algorithm (LDD-
DIS) is shown in Algorithm 1. The core idea of LDD-DIS is
to use LDD to identify density decreased (𝐃𝑑𝑒𝑐), increased
(𝐃𝑖𝑛𝑐), and stable (𝐃𝑠𝑡𝑎) instances within two batches of data.
The inputs are the target data batches, 𝐃1 𝐃2, the neighbour-
hood ratio 𝜌, and the drift significant level 𝛼.

The neighborhood ratio 𝜌 controls the size of the neigh-
bourhood. Instead of confining the neighbourhood within a
certain range, selecting the k-nearest neighbours (KNN) with
a certain proportion of a data set as the neighbourhood is
more robust (the k value of KNN is equal to |𝐃| × 𝜌). The
reason is that KNN-based neighbourhood is independent of
the shape of the feature space and is friendly to high-dimen-
sional domains. With a proper data structure, like a binary
tree, the complexity of the KNN-search can be reduced
to 𝑂(𝑙𝑜𝑔(𝑛)), where 𝑛 is the total number of data instances in
a sample set.

The drift significance level 𝛼 quantifies the statistical sig-
nificance of concept drift. For example, in our case, if an ob-
servation is in the left tail, the system will be (1 − 𝛼)% con-
fidence that it is a density-decreased region. Similarly, if an
observation is in the right tail, the system will be (1 − 𝛼)%
confidence that it is a density-increased region.

Without any specifications, LDD-DIS will be initialized by
the default input values. LDD-DIS consists of two major
steps. One is to estimate the distribution of LDD when no
drift occurs, namely 𝛿′~𝒩(𝜇, 𝜎2), lines 1-13. The second is to
compute LDD for each data instance according to the input
data batches, and selects the drifted instances correspond-
ingly, lines 14-31.

Lines 1 to 4 computes the k-nearest neighbor map of the
entire data, where findKNN(𝑑𝑖 , 𝐃, |𝐃| ∗ 𝜌) stands for finding
the (|𝐃| ∗ 𝜌) nearest neighbor of 𝑑𝑖 in 𝐃. Then, at line 5, we
shuffle the data and resample two new batches 𝐃1′ , 𝐃2′ with
the same size as 𝐃1, 𝐃2. The resampling guarantees that 𝐃1′
and 𝐃2′ follow an identical distribution. As per theorem 1,
consequently, the 𝛿 ′ follows 0-mean normal distribution, and

the density decreasing and increasing confidence interval can
be calculated by the normal inverse cumulative distribution
function, as shown in lines 12, 13, denoted as
norminv(𝛼, 0, std(𝛿′)), where 𝛼 is the significance level, 0
is the mean, and std(𝛿′) is the estimated standard deviation.
Then, we compute the LDD for each data instance according
to their original distributions. For each data instance, if its
LDD is less than 𝜃𝑑𝑒𝑐, it will be identified as a density de-
creasing instance, while if its LDD is greater than 𝜃𝑖𝑛𝑐, it will
be identified as density increasing instance, as shown in lines
14 to 31. Also, if the LDD is between 𝜃𝑑𝑒𝑐 ≤ 𝛿𝑖 ≤ 𝜃𝑖𝑛𝑐, that
instance will be considered as a no drift instance, or a stable
instance.

Algorithm 1: LDD Drifted Instance Selection (LDD-DIS)
Input: two batches of data instances, 𝐃1, 𝐃2

neighborhood ratio, 𝜌 (default 𝜌 = 0.1)
drift significance level, 𝛼 (default 𝛼 = 0.05)

Output: drifted data sets, 𝓓𝑑𝑟𝑖𝑓𝑡 = {𝐃1
𝑑𝑒𝑐 , 𝐃1

𝑠𝑡𝑎 , 𝐃1
𝑖𝑛𝑐 , 𝐃2

𝑑𝑒𝑐 , 𝐃2
𝑠𝑡𝑎 , 𝐃2

𝑖𝑛𝑐}
1. merge 𝐃1 and 𝐃2 as 𝐃
2. For 𝑑𝑖 : 𝐃
3. retrieve 𝑑𝑖 neighborhood, 𝐃𝑖𝑘𝑛𝑛 = findKNN(𝑑𝑖 , 𝐃, |𝐃| ∗ 𝜌)
4. End
5. shuffle 𝐃 and resample 𝐃1′ , 𝐃2′ without replacement
6. For 𝑑𝑖 : 𝐃
7. If 𝑑𝑖 ∈ 𝐃1′

8. compute the LDD of 𝑑𝑖 by 𝛿𝑖′ =
|𝐃𝑖
𝑘𝑛𝑛∩𝐃2

′ |

|𝐃𝑖
𝑘𝑛𝑛∩𝐃1

′ |
− 1

9. Else
10. compute the LDD of 𝑑𝑖 by 𝛿𝑖′ =

|𝐃𝑖
𝑘𝑛𝑛∩𝐃1

′ |

|𝐃𝑖
𝑘𝑛𝑛∩𝐃2

′ |
− 1

11. End
12. density decrease threshold, θ𝑑𝑒𝑐 = norminv(𝛼, 0, std(𝛿′))
13. density increase threshold, θ𝑖𝑛𝑐 = norminv((1 − 𝛼), 0, std(𝛿′))
14. For 𝑑𝑖 : 𝐃
15. If 𝑑𝑖 ∈ 𝐃1

16. compute the LDD of 𝑑𝑖 by 𝛿𝑖 =
|𝐃𝑖
𝑘𝑛𝑛∩𝐃𝟐|

|𝐃𝑖
𝑘𝑛𝑛∩𝐃𝟏|

− 1

17. If 𝛿𝑖 < θ𝑑𝑒𝑐
18. 𝐃1𝑑𝑒𝑐 = 𝐃1

𝑑𝑒𝑐 ∪ {𝑑𝑖}
19. Else if 𝛿𝑖 > θ𝑖𝑛𝑐
20. 𝐃1𝑖𝑛𝑐 = 𝐃1

𝑖𝑛𝑐 ∪ {𝑑𝑖}
21. Else
22. 𝐃1𝑠𝑡𝑎 = 𝐃1

𝑠𝑡𝑎 ∪ {𝑑𝑖}
23. Else
24. compute the LDD of 𝑑𝑖 by 𝛿𝑖 =

|𝐃𝑖
𝑘𝑛𝑛∩𝐃𝟏|

|𝐃𝑖
𝑘𝑛𝑛∩𝐃𝟐|

− 1

25. If 𝛿𝑖 < θ𝑑𝑒𝑐
26. 𝐃2𝑑𝑒𝑐 = 𝐃2

𝑑𝑒𝑐 ∪ {𝑑𝑖}
27. Else if 𝛿𝑖 > θ𝑖𝑛𝑐
28. 𝐃2𝑖𝑛𝑐 = 𝐃2

𝑖𝑛𝑐 ∪ {𝑑𝑖}
29. Else
30. 𝐃2𝑠𝑡𝑎 = 𝐃2

𝑠𝑡𝑎 ∪ {𝑑𝑖}
31. End
32. return 𝓓𝑑𝑟𝑖𝑓𝑡 = {𝐃1

𝑑𝑒𝑐 , 𝐃1
𝑠𝑡𝑎, 𝐃1

𝑖𝑛𝑐 , 𝐃2
𝑑𝑒𝑐 , 𝐃2

𝑠𝑡𝑎, 𝐃2
𝑖𝑛𝑐}

4.2 Density Synchronized Drift Adaptation
In this section, a regional drift adaptation algorithm is
developed to synchronize the density discrepancies based on
the identified drifted instances. The set 𝐃1𝑑𝑒𝑐, which returned
by LDD-DIS, represents the data instances belonging to 𝐃1
and have decreased density compared to the set 𝐃2 .
Similarly, the set 𝐃2𝑖𝑛𝑐 represents the data instances
belonging to 𝐃2 and have increased density compared to data
set 𝐃1. It is obvious that, if the size of 𝐃1 and 𝐃2 are the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2282

same, then the size of 𝐃1𝑑𝑒𝑐 and 𝐃2𝑖𝑛𝑐 will be the same, or is
simply denoted as |𝐃1𝑑𝑒𝑐| |𝐃1|⁄ = |𝐃2

𝑖𝑛𝑐| |𝐃2|⁄ . This property is
the foundation of the proposed density synchronized drift
adaptation (DSDA) in Algorithm 2.

The intuitive idea of LDD-DSDA is to merge existing data
𝐃𝑡𝑟𝑎𝑖𝑛 with the recently buffered data 𝐃𝑏𝑢𝑓𝑓𝑒𝑟 and resample a
new batch of training data 𝐃𝑡𝑟𝑎𝑖𝑛 so that the new 𝐃𝑡𝑟𝑎𝑖𝑛 has
the same distribution as 𝐃𝑏𝑢𝑓𝑓𝑒𝑟 . To achieve this goal, we
present the following data merging rules: 1) if no density
discrepancies are detected (which means |𝐃1𝑑𝑒𝑐| |𝐃1|⁄ =
|𝐃2

𝑖𝑛𝑐| |𝐃2|⁄ = 0) then return 𝐃𝑡𝑟𝑎𝑖𝑛 ∪ 𝐃𝑏𝑢𝑓𝑓𝑒𝑟 while if the
unioned data set is considered redundant, return 𝐃𝑏𝑢𝑓𝑓𝑒𝑟
instead; 2) if there are regional density drifts, merging the
drifted data instances as per Equation 5.

{

𝐃𝑖𝑛𝑐 = 𝐃𝑡𝑟𝑎𝑖𝑛
𝑖𝑛𝑐 ∪ 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑑𝑒𝑐

𝐃𝑠𝑡𝑎 = 𝐃𝑡𝑟𝑎𝑖𝑛
𝑠𝑡𝑎 ∪ 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑠𝑡𝑎

𝐃𝑑𝑒𝑐 = 𝐃𝑡𝑟𝑎𝑖𝑛
𝑑𝑒𝑐 ∪ 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑖𝑛𝑐

 (5)

Then, to ensure the drifted regions have the same probability
density as 𝐃𝑏𝑢𝑓𝑓𝑒𝑟, a subset of instances in each drifted region
will be resampled, denoted as 𝐃𝑠𝑎𝑚𝑝𝑙𝑒, shown as Equation 6.

|𝐃𝑠𝑎𝑚𝑝𝑙𝑒
𝑖𝑛𝑐 |: |𝐃𝑠𝑎𝑚𝑝𝑙𝑒

𝑠𝑡𝑎 |: |𝐃𝑠𝑎𝑚𝑝𝑙𝑒
𝑑𝑒𝑐 | = |𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑖𝑛𝑐 |: |𝐃𝑏𝑢𝑓𝑓𝑒𝑟
𝑠𝑡𝑎 |: |𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑑𝑒𝑐 | (6)

where 𝐃𝑠𝑎𝑚𝑝𝑙𝑒𝑖𝑛𝑐 are sampled from 𝐃𝑑𝑒𝑐 in Equation 5. and so on.
At last replace 𝐃𝑡𝑟𝑎𝑖𝑛 by 𝐃𝑠𝑎𝑚𝑝𝑙𝑒, namely 𝐃𝑡𝑟𝑎𝑖𝑛 = 𝐃𝑠𝑎𝑚𝑝𝑙𝑒

In Algorithm 2, line 1 initializes the base learner 𝐿, and
line 3 uses the base learner to predict data instances arriving
at the current time, denoted as 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐿, 𝑑𝑡). From lines 4
to 7, the system maintains the data for training and drift
detection. When both training and buffered data sets reach the
minium batch size, LDD-DIS is triggered, as shown in lines
8, 9. Then the detected drift regions are synchronized, based
on Equations (5), (6). Otherwise, the system incrementally
updates the base learner, denoted as updateLearner(𝐿, 𝑑𝑡),
shown in line 14. Finally, in line 16, the predicted labels are
returned for performance analysis.

5 Experiment and Evaluation
In this section, we describe three groups of experiments to
evaluate the proposed LDD. The first group examines the
normality of LDD under different circumstances. The second
group evaluates the LDD-DIS algorithm. Lastly, we apply the
LDD-DSDA algorithm to three real-world evolving data
streams and compare the results with other methods. All
experiments are conducted on a 2×3.1GHz 8 core CPU
128GB RAM cluster node with unique access.

5.1 Evaluation of the Validity of LDD
Experiment 1 The distribution of LDD
To verify the normality of LDD, two 1D data sets 𝐴, 𝐵 of
equal size (5,000,000) are generated. Given a neighborhood
of randomly picked points in this domain, we randomly select
10,000 points from 𝐵 , and observe the number of points
located in 10,000 neighborhood of points in 𝐵. This process
is repeated 10,000 times to approximately describe the
distribution of 𝛿 . The histogram of 10,000 𝛿 is shown in
Figure 2.

According to Theorem 1, LDD is normally distributed with
the parameters (0, 𝑉(𝛿)). To compare the real and theoretical
distribution of LDD, the line in Figure 2 represents the
theoretical values of a normal distribution 𝑁(0, 𝑉(𝛿)) ,
where 𝑉(𝛿) stands for the variance of 𝛿.

5.2 Evaluation of LDD-DIS
In this section, we evaluate the LDD-DIS algorithm in terms
of two 2D synthetic drifted data sets. For each data set, 1,000
training cases are drawn from a specific distribution and 500
testing cases are drawn from a different distribution. We plot
the estimated probability density curve of the selected feature
in subfigure (a), the entire data set in subfigure (b) (blue dots
represent the training set and red crosses represent the testing
set), the detected drifted instances in subfigure (c) (blue dots
represent decreasing density, red dots represent increasing
density), and the value of LDD of the corresponding
instances in subfigure (d) to demonstrate the relationship
between LDD and regional density changes. The
configurations of LDD are set as the default values described
in Algorithm 1.
Experiment 2 Gaussian Data with Drifted Variance
This data set is generated from a bivariate Gaussian
distribution. The training set has mean 𝜇 = [5, 5] and the

Algorithm 2: Density Synchronized Drift Adaptation (LDD-DSDA)
Input: data instance arriving at each time step 𝑑0,⋯ , 𝑑𝑡

minimum data batch size, 𝑤 (default 𝑤 = 100)
base learner, 𝐿 (default 𝐿 = Naive Bayes Classifier)

Output: prediction results, 𝑦̂0, ⋯ , 𝑦̂𝑡
1. initial 𝐃𝑡𝑟𝑎𝑖𝑛, 𝐿 = buildLearner(𝐃𝑡𝑟𝑎𝑖𝑛)
2. while stream not end, denote current time step as 𝑡
3. 𝑦̂𝑡 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐿, 𝑑𝑡)
4. If |𝐃𝑡𝑟𝑎𝑖𝑛| < 𝑤
5. 𝐃𝑡𝑟𝑎𝑖𝑛 = 𝐃𝑡𝑟𝑎𝑖𝑛 ∪ {𝑑𝑡}
6. Else
7. 𝐃𝑏𝑢𝑓𝑓𝑒𝑟 = 𝐃𝑏𝑢𝑓𝑓𝑒𝑟 ∪ {𝑑𝑡}
8. If |𝐃𝑡𝑟𝑎𝑖𝑛| ≥ 𝑤 and |𝐃𝑏𝑢𝑓𝑓𝑒𝑟| ≥ 𝑤
9. 𝓓𝑑𝑟𝑖𝑓𝑡 = LDD-DIS(𝐃𝑡𝑟𝑎𝑖𝑛 , 𝐃𝑏𝑢𝑓𝑓𝑒𝑟), 𝑤ℎ𝑒𝑟𝑒

 𝓓𝑑𝑟𝑖𝑓𝑡 = {𝐃𝑡𝑟𝑎𝑖𝑛
𝑑𝑒𝑐 , 𝐃𝑡𝑟𝑎𝑖𝑛

𝑠𝑡𝑎 , 𝐃𝑡𝑟𝑎𝑖𝑛
𝑖𝑛𝑐 , 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑑𝑒𝑐 , 𝐃𝑏𝑢𝑓𝑓𝑒𝑟
𝑠𝑡𝑎 , 𝐃𝑏𝑢𝑓𝑓𝑒𝑟

𝑖𝑛𝑐 }
10. merge the detected drift regions as per Equation (5)
11. based on the density of 𝐃𝑏𝑢𝑓𝑓𝑒𝑟, resample the data as 𝐃𝑡𝑟𝑎𝑖𝑛, as

per Equation (6)
12. build new learner, 𝐿 = buildLearner(𝐃𝑡𝑟𝑎𝑖𝑛)
13. Else
14. updateLearner(𝐿, 𝑑𝑡)
15. End
16. return 𝑦̂0 , ⋯ , 𝑦̂𝑡

Figure 2. Real and theoretical distribution of LDD

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2283

covariance matrix is Σ = [
1 0
0 1

]. The testing set has the same
mean vector while its covariance matrix drifts to Σ = [

3 0
0 3

].
This drift forms a ring-shaped drifted region as shown in
Figure 3(c).

Since the covariance of 𝑥1, 𝑥2 is 0, the patterns of drifted
regions are the same from only 𝑥1 perspective. In Figure 3(a),
we plot the kernel smoothing estimated density function of
feature 𝑥1 for both training set (red line) and testing set (blue
line). If we consider the density drift from the training set
perspective, when the blue line is higher than the red line, this
means in that region, the training set density is decreasing,
and vice versa. Accordingly, the instances located in these
regions will be identified as 𝐃𝑡𝑟𝑎𝑖𝑛𝑑𝑒𝑐 or 𝐃𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑐 , as shown in
Figure 3(c), where the red dots belong to 𝐃𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑐 , and the blue
dots belong to 𝐃𝑡𝑟𝑎𝑖𝑛

𝑑𝑒𝑐 . The corresponding LDD value of each
data instance is ploted in Figure 3(d). The higher the value of
LDD, the higher the probability that this instance will drift.

Experiment 3 Mixture Distribution with Drifting Mean
To demonstrate how LDD works in a more general situation,
we create a drifting Gaussian mixture data set and apply LDD
to detect the drifted instances. The Gaussian mixture
distribution consists of three bivariate Gaussian distributions.
The three distributions for the testing set are generated based
on the paramters given in Equation (7), while the testing set
is generated based on the paramters given in Equation (8).
The results of LDD-DIS are shown in Figure 4 with the same
meaning as Figure 3.

{

 μ1 = [8, 5], Σ1 = [

1 0
0 1

]

μ2 = [2, 5], Σ2 = [
2 0
0 2

]

μ3 = [5, 5], Σ3 = [
5 0
0 5

]

 (7)

{

 μ1 = [10, 5], Σ1 = [

1 0
0 1

]

μ2 = [4, 5], Σ2 = [
2 0
0 2

]

μ3 = [7, 5], Σ3 = [
5 0
0 5

]

 (8)

5.3 Evaluation of LDD-DSDA
In this section, we evaluate LDD-DSDA on three real-world
evolving data streams. We compare its performance to sev-
eral representatives of data stream classification paradigms.

The selected comparison methods are: Hoeffding Adaptive
Tree (HAT) [Bifet and Gavaldà, 2009], Accuracy Updated
Ensemble (AUE) [Brzeziński and Stefanowski, 2011],
SAMkNN [Losing, et al., 2016], exponentially weighted
moving average charts drift detection (ECDD) [Ross, et al.,
2012], and HDDM family algorithms [Frias-Blanco, et al.,
2015]. All these algorithms were implemented based on the
MOA framework [Bifet, et al., 2010], which is a commonly
used software for evolving data stream analysis. To quantita-
tively evaluate LDD-DSDA, we consider the following per-
formance metrics: accuracy (Acc.), precision (Pre.), recall
(Rec.), f1-score (F1.) and computation time (Time), where
Pre=TP/(TP+FP), Rec=TP/(TP+FN), and F1=2∙Pre∙Rec/(Pre+Rec).
The term TP represents the number of true positive predic-
tions, FN represents the number of false negative predictions.
These metrics were evaluated in a prequential manner. To
fairly compare these drift adaptation algorithms, the default
parameters suggested by the authors are used, and the base
classification model is set as Naïve Bayes classifier, except
for SAMkNN, which is only designed for IBk classifier. The
parameters for IBk classifier of SAMkNN are 𝑘 = 10 and
weighting method = uniformly weighted. Because LDD-
DSDA involves a random sampling process, the results may
vary at different runs, we run LDD-DSDA 50 times on each
data set and state the mean and standard deviation of the re-
sults. To avoid confusion on the F1-score metric, we only
take the mean of Pre. and Rec. to calculate the F1 for LDD-
DSDA. The source code of LDD-DSDA is available at
https://sites.google.com/view/anjin-concept-drift/home.
Experiment 4 Electricity Price Prediction Data Set (Elec)
Elec contains 45,312 instances, collected every thirty minutes
from the Australian New South Wales Electricity Market
between 7 May 1996 and 5 Dec 1998. In this market, prices
are not fixed and are affected by demand and supply. This
data set contains eight features and two classes (up, down)
and has been widely used for concept drift adaptation
evaluation. We considered the classes as equally important,
because both price up and down in the market is considered

Figure 4 LDD-DIS on Mixture Mean Drifted Distribution

Figure 3 LDD-DIS on Gaussian Variance Drifted Distribution

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2284

critical to users, and the ratio of classes is balanced, which is
58% down and 42% up. Therefore, we take the average
precision (Pre.) and recall (Rec.) of both classes as the
performance evaluation metrics, where average Pre =

(Pre𝑐𝑙𝑎𝑠𝑠1 + Pre𝑐𝑙𝑎𝑠𝑠2) 2⁄ , average Rec = (Rec𝑐𝑙𝑎𝑠𝑠1 + Rec𝑐𝑙𝑎𝑠𝑠2) 2⁄ .
Experiment 5 Nebraska Weather Prediction Data Set
(Weather)
This data set was compiled by the U.S. National Oceanic and
Atmospheric Administration. It contains 8 features and
18,159 instances with 31% positive (rain) class, and 69%
negative (no-rain) class. This data set was summarized by
[Elwell and Polikar, 2011]. In relation to the performance
metrics Pre. Rec. and F1, only the positive class (rain) is con-
sidered. This is because a correct prediction of rain is consid-
ered more important than a correct prediction of no-rain.
Experiment 6 Spam Filtering Data Set (Spam Filtering)
This data set is a collection of 9,324 email messages derived
from the Spam Assassin collection. The original data set con-
tains 39,916 features, and 9,324 emails (around 20% spam
emails and 80% legitimate emails). It is commonly consid-
ered to be a typical gradual drift data set [Katakis, et al.,
2009]. According to [Katakis, et al., 2009], 500 attributes
were retrieved using the chi-square feature selection ap-
proach. The correct classification of legitimate emails is used
to evaluate the algorithms [Katakis, et al., 2009].
Experiment Summary
As shown in Table 1, LDD-DSDA achieve the best perfor-
mance in most cases. Although the execution time of LDD is
slightly longer than that of the other algorithms on high-di-
mensional data (experiment 6), the improvement is notable.
LDD-DSDA addresses a critical problem in data stream min-
ing from a novel perspective and achieved a competitive re-
sult compared to the state-of-the-art algorithms. LDD-DSDA
has the best average rank (2.33) crossing the tested data sets.
Compared to the second place, which is ECDD (2.67), LDD-
DSDA improves the average F1 by 0.0114. According to the

Friedman Test, the differences between LDD-DSDA and
ECDD on Acc., Pre., Rec. and F1 are significant.

6 Conclusion and Further Study
In this paper, we analyzed existing concept drift adaptation
algorithms and recognized the necessity of tracking regional
drifts. Through investigating the distribution of data nearest-
neighbors, we proposed a novel metric, called LDD, to detect
regional concept drift. Accordingly, an LDD-based density
synchronization algorithm was proposed to adapt the density
discrepancies. The validity of LDD and the performance of
LDD-based algorithms were thoroughly evaluated using six
experiments.

Acknowledgments
This work is supported by the Australian Research Coun-cil
(ARC) under discovery grant DP150101645. Also, the
authors would like to thank the anonymous reviewers for
their valuable feedback and all members of the CAI for
discussion.

A Proof of Theorem 1
To demonstrate theorem1 we introduce a random variable 𝐼𝑖

 𝐼𝑖 = {1 𝐁𝑖
𝑑𝜖𝐵

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A.1)

According to the sampling techniques, selecting 𝑛 units
from N, the probability that each unit will be selected in n
draws is 𝐶𝑁−1𝑛−1 𝐶𝑁

𝑛⁄ = 𝑛 𝑁⁄ (𝐶𝑁𝑛 is the number of n-permutations
of N) and the probability that two units will be selected in n
draws is 𝑛(𝑛 − 1) 𝑁(𝑁 − 1)⁄ . Under this condition, 𝐼𝑖 satisfies
the following equations:

 𝐸(𝐼𝑖) =
𝑛

𝑁
, 𝑖 = 1,2,… ,𝑁 (A.2)

By using 𝐼𝑖, 𝐵̅ can be rewritten by Equation. (A.3) and its
expectation equals 𝐁𝑑̅̅ ̅̅

 𝐵̅ =
1

𝑛
∑ 𝚩𝑖

𝑑𝐼𝑖
𝑁
𝑖=1 (A.3)

 𝐸(𝐵̅) =
𝐸(∑ 𝚩𝑖

𝑑𝐼𝑖
𝑁
𝑖=1)

𝑛
=

∑ 𝚩𝑖
𝑑𝑁

𝑖=1 𝐸(𝐼𝑖)

𝑛
=

1

𝑛
∙
𝑛

𝑁
∑ 𝚩𝑖

𝑑𝑁
𝑖=1

 =
1

𝑁
∑ 𝚩𝑖

𝑑𝑁
𝑖=1 = 𝐁𝑑̅̅ ̅̅

 (A.4)

Data Stream #Insts #Dim #Class Algorithms Acc. Pre. Rec. F1 (rank) Time (ms)

Elec 45,312 8 2

LDD-DSDA 0.8776±6.8E-5 0.8750±7.4E-5 0.8743±6.2E-5 0.8747 (1) 1776.4±243.5

HAT 0.8131 0.8100 0.8057 0.8078 (5) 2071

AUE 0.7544 0.7514 0.7408 0.7461 (7) 3005

SAMkNN 0.7561 0.7506 0.74835 0.7495 (6) 305082

ECDD 0.8676 0.8643 0.8650 0.8646 (2) 1005

HDDM-A-Test 0.8492 0.8462 0.8446 0.8454 (3) 3063

HDDM-W-Test 0.8409 0.8374 0.8367 0.8371 (4) 1004

Weather 18,159 8 2

LDD-DSDA 0.7256±4.7E-4 0.8070±4.2E-4 0.7876±7.2E-4 0.7972 (5) 982.4±177.7

HAT 0.7248 0.8039 0.7922 0.7980 (4) 2069

AUE 0.7243 0.7862 0.8217 0.8036 (2) 1006

SAMkNN 0.7486 0.6778 0.3787 0.4859 (7) 121001

ECDD 0.7279 0.7960 0.8183 0.8070 (1) 1004

HDDM-A-Test 0.7238 0.8221 0.7626 0.7912 (6) 1063

HDDM-W-Test 0.7282 0.8018 0.8021 0.8019 (3) 1004

Spam Filtering 9,324 500 2

LDD-DSDA 0.9412±4.3E-4 0.9503±5.1E-4 0.9719±4.3E-4 0.9610 (1) 9942.3±746.3

HAT 0.8893 0.9430 0.9060 0.9241 (6) 5067

AUE 0.8406 0.9246 0.8556 0.8888 (7) 7012

SAMkNN 0.9247 0.9227 0.9809 0.9509 (2) 255923

ECDD 0.8884 0.9012 0.9546 0.9271 (5) 2005

HDDM-A-Test 0.9079 0.9341 0.9426 0.9383 (4) 2003

HDDM-W-Test 0.9165 0.9293 0.9608 0.9448 (3) 2003

Table 1. Performance of Different Data Stream Classification Algorithms on Real-world Data Sets

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2285

References
[Bifet and Gavaldà, 2009] Albert Bifet and Ricard Gavaldà,

"Adaptive learning from evolving data streams," in
Proceedings of the Eighth International Symposium on
Intelligent Data Analysis, pp. 249-260: Springer, 2009.

[Bifet, et al., 2010] Albert Bifet, Geoff Holmes, Richard
Kirkby, and Bernhard Pfahringer, "MOA: Massive online
analysis," The Journal of Machine Learning Research,
vol. 99, pp. 1601–1604, 2010.

[Brzeziński and Stefanowski, 2011] Dariusz Brzeziński
and Jerzy Stefanowski, "Accuracy updated ensemble for
data streams with concept drift," in International
Conference on Hybrid Artificial Intelligence Systems, pp.
155-163: Springer, 2011.

[Elwell and Polikar, 2011] Ryan Elwell and Robi Polikar,
"Incremental learning of concept drift in nonstationary
environments," (in eng), IEEE Transactions on Neural
Networks, Research Support, U.S. Gov't, Non-P.H.S. vol.
22, no. 10, pp. 1517-31, Oct 2011.

[Frias-Blanco, et al., 2015] Isvani Frias-Blanco, Jose del
Campo-Avila, Gonzalo Ramos-Jimenes, Rafael Morales-
Bueno, Agustin Ortiz-Diaz, and Yaile Caballero-Mota,
"Online and Non-Parametric Drift Detection Methods
Based on Hoeffding's Bounds," IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 3, pp. 810-
823, 2015.

[Gama and Castillo, 2006] João Gama and Gladys Castillo,
"Learning with local drift detection," in International
Conference on Advanced Data Mining and Applications,
pp. 42-55: Springer, 2006.

[Gama, et al., 2014] João Gama, Indrė Zliobaitė, Albert Bifet,
Mykola Pechenizkiy, and Abdelhamid Bouchachia, "A
survey on concept drift adaptation," ACM Computing
Surveys, vol. 46, no. 4, pp. 1-37, 2014.

[Harel, et al., 2014] Maayan Harel, Shie Mannor, Ran El-
Yaniv, and Koby Crammer, "Concept drift detection
through resampling," in Proceedings of the Thirty-first
International Conference on Machine Learning, pp.
1009-1017, 2014.

[Ikonomovska and Gama, 2008] Elena Ikonomovska and
Joao Gama, "Learning Model Trees from Data Streams,"
in Proceedings of the Eleventh International Conference
on Discovery Science, pp. 52-63, Berlin: Springer, 2008.

[Ikonomovska, et al., 2011]Elena Ikonomovska, João Gama,
and Sašo Džeroski, "Learning model trees from evolving
data streams," Data Mining and Knowledge Discovery,
vol. 23, no. 1, pp. 128-168, 2011.

[Ikonomovska, et al., 2009]Elena Ikonomovska, João Gama,
Raquel Sebastião, and Dejan Gjorgjevik, "Regression
Trees from Data Streams with Drift Detection," in
Proceedings of the Twelfth International Conference on
Discovery Science, pp. 121-135, Berlin: Springer, 2009.

[Katakis, et al., 2009] Ioannis Katakis, Grigorios
Tsoumakas, Evangelos Banos, Nick Bassiliades, and
Ioannis Vlahavas, "An adaptive personalized news

dissemination system," Journal of Intelligent Information
Systems, vol. 32, no. 2, pp. 191-212, 2009.

[Li, et al., 2016] Peipei Li, Lu He, Xuegang Hu, Yuhong
Zhang, Lei Li, and Xindong Wu, "Concept based short
text stream classification with topic drifting detection," in
Proceedings of the Sixteenth International Conference on
Data Mining, pp. 1009-1014, 2016.

[Liu, et al., 2017] Anjin Liu, Guangquan Zhang, and Jie Lu,
"Fuzzy time windowing for gradual concept drift
adaptation," in Proceedings of the Twenty-sixth IEEE
International Conference on Fuzzy Systems, Naples Italy:
IEEE, 2017.

[Losing, et al., 2016] Viktor Losing, Barbara Hammer, and
Heiko Wersing, "KNN Classifier with Self Adjusting
Memory for Heterogeneous Concept Drift," in
Proceedings of the Sixteenth IEEE International
Conference on Data Mining, 2016.

[Lu, et al., 2016] Ning Lu, Jie Lu, Guangquan Zhang, and
Ramon Lopez De Mantaras, "A concept drift-tolerant
case-base editing technique," Artificial Intelligence, vol.
230, pp. 108-133, 2016.

[Lu, et al., 2014] Ning Lu, Guangquan Zhang, and Jie Lu,
"Concept drift detection via competence models,"
Artificial Intelligence, vol. 209, pp. 11-28, 2014.

[Ross, et al., 2012] Gordon J Ross, Niall M Adams, Dimitris
K Tasoulis, and David J Hand, "Exponentially weighted
moving average charts for detecting concept drift,"
Pattern Recognition Letters, vol. 33, no. 2, pp. 191-198,
2012.

[Sarnelle, et al., 2015] Joseph Sarnelle, Anthony Sanchez,
RRobert Capo, Joshua Haas, and Robi Polikar,
"Quantifying the limited and gradual concept drift
assumption," in The Proceedings of 2015 International
Joint Conference on Neural Networks, pp. 1-8, 2015.

[Shao, et al., 2014] Junming Shao, Zahra Ahmadi, and
Stefan Kramer, "Prototype-based learning on concept-
drifting data streams," in Proceedings of the Twentieth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, New York, USA, pp. 412-
421, 2623609: ACM, 2014.

[Su, et al., 2008] Bai Su, Yi-Dong Shen, and Wei Xu,
"Modeling concept drift from the perspective of
classifiers," in Proceedings of IEEE Conference on
Cybernetics and Intelligent Systems, Chengdu, China, pp.
1055-1060: IEEE, 2008.

[Sugiyama and Kawanabe, 2012] Masashi Sugiyama and
Motoaki Kawanabe, Machine learning in non-stationary
environments: Introduction to covariate shift adaptation.
MIT Press, 2012.

[Zliobaite, et al., 2014] Indre Zliobaite, Albert Bifet,
Bernhard Pfahringer, and Geoffrey Holmes, "Active
Learning with drifting streaming data," IEEE
Transactions on Neural Networks and Learning Systems,
vol. 25, no. 1, pp. 27-39, 2014.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2286

