
Itinerary Planner: A Mashup Case Study

Shyam Govardhan and George Feuerlicht

Faculty of Information Technology,
University of Technology, Sydney, Australia

ssgovard@it.uts.edu.au, jiri@it.uts.edu.au

Abstract. The wide adoption of Web Services and the availability of web APIs
are transforming the web into a programmatic environment for developing
innovative web applications that combine information from various sources to
provide a rich user experience. These mashup applications are characterized by
rapid development using existing data sources and the use of new technologies
such as AJAX, JSON, etc. Developers often focus on delivering rich
functionality via the browser environment and pay little attention to the design
and maintainability of the applications. In this paper we describe our experience
in developing an Itinerary Planner travel application, and discuss the challenges
associated with developing mashups. In the conclusion, we briefly discuss the
lessons learned in addressing these challenges and how these lessons can be
applied to future mashup projects.

Keywords: WEB 2.0 mashups, user interface design, data integration design

1 Introduction

Over the past decade the web has undergone a number of dramatic transformations.
Initially emerging as a platform for information retrieval in the mid 1990s and
evolving into a comprehensive e-business (electronic business) platform at the
beginning of this century. The recent proliferation of publicly available web APIs
(Application Programming Interfaces) and AJAX enabled websites is transforming
the web into an environment for collaborative development and information sharing
with extensive user participation. This new web platform, known as WEB 2.0 is
characterized by specialized, publicly available data sources (e.g. mapping data,
weather information, etc.) and it is accessible via light-weight APIs that can be used
to create value-added services in the form of mashups [1].

Well-established and open programming interfaces such as the Google Maps API
allow developers to integrate static data with dynamic mapping interfaces and
produce highly interactive and visual applications. Many of the mashups use
geographic data, and studies indicate that more than 80% of all information can be
represented in geographic terms [2].

2 Shyam Govardhan and George Feuerlicht

Free access to online data aggregation services such as Yahoo Pipes1 and information
sources such as Google Maps2, Google Search3, Picasa4, Flickr5, Amazon6 and Ebay7
has created an environment where users can participate in the development of
applications that combine information from multiple sources and produce novel
applications. Sophisticated use of AJAX in popular applications such as Gmail8 has
resulted in users expecting the native look and feel of desktop applications in dynamic
web environments. Scripting languages such as Javascript have evolved from being a
tool used for simple tasks such as menu navigation and HTML validation to being a
powerful tool for Web 2.0 development [3].

This transformation of the web brings many new opportunities, but at the same
time poses new challenges to the developers of web applications. Software developers
need to deal with disparate types of data such as spatial data, images, music clips and
video clips sourced from different web sites, and under varied levels of quality of
service (i.e. latency, reliability, security, etc). While developers adapt to this dynamic
environment by learning new languages, APIs and tools, at present there are no
widely accepted design and development methods to ensure that the rich functionality
of mashups is achieved without sacrificing performance, maintainability and reuse.
The light-weight programming models used in the development of mashup
applications avoid the complexities of more mature programming environments (e.g.
Web Services) but lack the reliability and robustness that is essential for the
development of mission-critical applications. It is becoming clear that traditional
software design principles need to be adapted to this new application environment.

In this paper we illustrate the issues that developers of mashup applications face
using a travel application - Itinerary Planner Mashup (IPM). IPM is a Single-page
application [4], [5] that allows users to create an itinerary of the destinations (cities)
that they plan to visit and display these destinations on a map. Users can display
additional information about each destination including weather data (derived from
Yahoo Weather RSS feeds) and other local information (derived using the Google
Ajax Search API). A working prototype of the application is available at
http://www.redlifejacket.com. (The IPM application is password protected; access can
be granted upon request).

The next section (section 2) focuses on design issues, discussing user interface and
data integration design. The following section (section 3) describes the
implementation of the IPM application, and section 4 is a discussion of the technical
considerations including security and performance. In conclusion (section 5) we
summarize the lessons learnt from the IPM case study and discuss how we applied
these experiences to new projects. While the IPM application is relatively small, the

1 http://pipes.yahoo.com/pipes/
2 http://www.google.com/apis/maps/
3 http://code.google.com/apis/ajaxsearch/
4 http://code.google.com/apis/picasaweb/overview.html
5 http://www.flickr.com/services/api/
6 http://aws.amazon.com
7 http://developer.ebay.com/common/api/
8 http://www.gmail.com

Itinerary Planner: A Mashup Case Study 3

issues encountered are generic and the lessons learned could be applied to other
mashup applications.

2 IPM Design Considerations

In this section we consider two main design stages that characterize most mashup
applications: User interface design (section 2.1) and Data integration design (section
2.2).

2.1 User Interface Design

An important design consideration for the IPM application was to make the most
effective use of the entire web browser window to display the map and present users
with additional information as and when needed.

Fig. 1. Planning a travel route using Google Maps API and Yahoo Weather RSS feeds

User interface features such as moveable and resizable windows were implemented
using the Dojo Floating pane widget. The text auto-completion feature is
implemented using the Dojo combo-box widget.

4 Shyam Govardhan and George Feuerlicht

The Trip Planner floating pane allows users to type the country name into a Dojo
combo box widget; the Trip Planner then populates the list-box with the list of major
cities and charts the route on the map as illustrated in Figure 1. When users select
(click on) a place marker on the map, the application displays the current weather
information using the Yahoo weather RSS feeds.

Selecting a destination from the list-box and clicking the “Google” icon causes the

application to launch a new floating pane containing the search results that relate to
the selected destination. The search floating pane includes Video, Blog, News, Book,
Local and Web results as shown in Figure 2. The place markers on the map are
numbered according to the order specified in the Trip Planner list and the colors
indicate the start (green) and end (red) of the trip.

Fig. 2. Using the Google Ajax Search API to display local information for a selected city

2.2 Data Integration Design
As illustrated in Figure 3, the IPM application combines content from a number of
different sources and presents an integrated view of the information to the user. The

Itinerary Planner: A Mashup Case Study 5

Google Maps API retrieves Google Maps, the Google Ajax Search API allows
customized display of Google Search results and the Yahoo RSS Weather feeds
provide the current weather and forecast information. While the Google Maps API
and the Google Ajax Search API are accessed directly by the client-side Javascripts,
the Yahoo RSS feeds are retrieved by a server-side PHP script. The PHP XML_RSS9
Parser was used to process the RSS feeds and return the latest weather forecast
information as a JSON data structure as explained in section 3.

The following factors need to be considered when addressing the data requirements
of mashup applications:

i) what information is required and where to source it from
ii) Data synchronization requirements, i.e. how frequently should the

information be refreshed
iii) decisions about the locality of data, i.e. should the information be replicated

locally

Fig. 3. Context diagram of the IPM application showing local and remote data sources

The above design decisions impact on the correctness of the information,
application performance and availability of data. Excessive asynchronous API
requests between the client and the server affect application performance, resulting in

9 http://pear.php.net/package/XML_RSS

6 Shyam Govardhan and George Feuerlicht

“chatty” applications. While the chattiness of mashups is heavily influenced by the
API features of third party information sources such as Google Maps and Google
Ajax Search, application performance can be significantly improved by storing static
data in a local database. Storing static data (e.g. city/country listings, Yahoo weather
RSS Feed location ID settings, latitude and longitude values for the various locations)
avoids the need for continuously refreshing this information. The caching of latitude
and longitude values in a local (MySQL) database was an important factor in
optimizing the performance of the IPM application. Real-time geocode resolution
would incur a heavy cost in terms of latency and the number of geocode requests sent
over the network during map rendering.

3. IPM Implementation

The IPM application relies heavily on the AJAX features available in the Dojo
Javascript Toolkit. The following sections describe the implementation of the various
features used in the IPM application. The text auto-completion feature (implemented
with the Dojo combo-box widget) and the geocode lookup feature both use the JSON
format to interact with the server.

3.1 Country lookup Auto-completion

Each character typed in the combo-box results in a GET request being sent to the
getCountries.php script on the server. The “type” GET parameter indicates that the
client expects the response in JSON format and the “matching” GET parameter
indicates that the client expects a list of all countries beginning with “a”.

Request
http://www.redlifejacket.com/getCountries.php?type=json&matching=a

Response (JSON)
{"AFGHANISTAN": "AFGHANISTAN","ALGERIA":
"ALGERIA","ARGENTINA": "ARGENTINA","AUSTRALIA":
"AUSTRALIA","AUSTRIA": "AUSTRIA"}

3.2 City list lookup
When the “onValueChanged” event is triggered in the combo-box, a GET request is
sent to the getCities.php script. The “country” GET parameter is set to AUSTRALIA,
indicating that the client expects a list of major cities within Australia. The response
from the server is a comma separated list of cities. The callback Javascript function
populates the listbox with the list of cities fetched from the server.

Itinerary Planner: A Mashup Case Study 7

Request
http://www.redlifejacket.com/getCities.php?country=AUSTRALIA

Response (CSV)
Adelaide,Alice
Springs,Brisbane,Darwin,Melbourne,Perth,Sydney

3.3 Geocode lookup

When users click on the “Map” button, a GET request is sent to the getGeocode.php
script on the server with the “cityList” GET parameter set to a comma-separated list
of cities. The response from the server is in JSON format. The data structure used for
the JSON response is an array of cities. Each city element has the Name, Latitude,
Longitude, Description and YahooRssFeed attributes.

Request
http://www.redlifejacket.com/getGeocode.php?citylist=Sydney

Response (JSON)

The getGeocode.php script performs a number of sequential tasks. Firstly, the city

information is retrieved from the local database using the following SQL query:
SELECT city.name, latitude, longitude, yahooLocationId
FROM city, country
WHERE city.Country_idCountry = country.idCountry
AND country.name like '%AUSTRALIA%'

Name latitude longitude yahooLocationId
Brisbane 27° 28' S 153° 2' E ASXX0016
Melbourne 37° 49' S 144° 58' E ASXX0075
Sydney 33° 52' S 151° 12' E ASXX0112

8 Shyam Govardhan and George Feuerlicht

Then the latitude and longitude values are converted into decimal format and a
Yahoo RSS feed URL constructed using the YahooLocationId values. The “u=c”
GET parameter indicates that the client expects the result in Celsius. Next, the
Yahoo RSS feed is parsed and the “description” element stored. Finally, a new
instance of the JSON service is created and the JSON encoded city list array is
returned back to the client (Table 1).

1. $sql = "select name, latitude, longitude,
yahooLocationId from city where lcase(name) in
$str";

2. $city['lat'] =
getLatLonAsDecimal($row['latitude']);

3. $city['lng'] =
getLatLonAsDecimal($row['longitude']);

4. $city['yahooRssFeed'] =
"http://xml.weather.yahoo.com/forecastrss?p=" .
$row['yahooLocationId'] . "&u=c";

5. $city['description'] = "<div
class=\"placemark\">" . $city['name'] .
parseRss($city['yahooRssFeed']) . "</div>";

6. $json = new Services_JSON();

7. echo $json->encode($cities);

Table 1. Code snippet from the getGeocode.php script

4 Technical Considerations

In this section we discuss the technical challenges encountered when developing
mashup applications, including security, performance, and debugging.

4.1 Security

The widespread adoption of AJAX has resulted in security vulnerabilities such as
exposure to Cross-site scripting (XSS) [6], Cross-Site Request Forgery (CSRF) [7]
and phishing [8], [9]. The increasing trend towards the use of JSON formatting
instead of XML makes an attack against the data transport mechanism (e.g. Javascript
Hijacking) possible as the security model of web browsers does not support the use of
Javascript for the transport of confidential information and allows attackers to
circumvent the “Same Origin” policy [10]. The typical way of using JSON responses

Itinerary Planner: A Mashup Case Study 9

from the server (i.e. by invoking the eval() function) can expose the application to
attacks. One way to address this issue is to enclose the JSON response with Javascript
comment characters (/* */) on the server-side and remove these comment characters
before evaluating the response on the client-side.

In our IPM application we initially considered using XML as the format for data
interchange with server-side PHP scripts, but it soon became evident that JSON was a
more viable option due to its seamless integration with the client-side Javascript
application. XML was found to be too verbose, and considerably less programming
effort was required to exchange data between the client and server using JSON as this
avoids the parsing of XML messages. However, as noted above, there are security
considerations that need to be addressed when using JSON as the data interchange
format.

The server-side PHP scripts, used in the IPM application, are accessed using
REST-based interactions [11]. These scripts extract the GET parameters from the
URL and pass them as arguments to SQL queries to fetch data from the database. It
would be possible for a malicious user to perform a SQL injection attack by passing
invalid arguments to the server-side scripts. For instance, in the absence of any
safeguards against such an attack, a hacker could delete all data from the underlying
MySQL database. The application can be protected against these attacks by using the
“mysql_real_escape” function to escape special characters used to hijack the SQL
queries and by using Prepared Statements to bind variables into the SQL query at
runtime.

While there are well established standards, such as WS-Security and WS-
Secureconversation for securing XML based messages using the SOAP protocol [12],
so far there has been little progress on this front for JSON based message exchanges.
While some techniques are available that mitigate against this risk [13] the security
issues in the context of Javascript remain largely unresolved.

4.3 Performance

Although the Dojo Javascript toolkit provides a rich collection of widgets for
sophisticated AJAX application development, there are significant performance
tuning and optimization issues that need to be addressed during the development and
deployment of mashup applications. For example, the initial loading of the IPM
application was significantly impacted by the time taken to load the Dojo widgets. As
shown in Figure 4, the Firebug profiling tool was used to identify bottlenecks in the
application (e.g. shyam.js file took 13.23s to load). This delay could be attributed to
dependency resolution in the Dojo framework. Delaying the loading of these widgets
to later in the application execution, in response to user interaction could reduce the
time taken for system initialization.

10 Shyam Govardhan and George Feuerlicht

Fig. 4. Identifying performance bottlenecks using the Firebug profiling tool.

The Dojo community aims to address the performance tuning issues [14] by focusing
on four areas, namely, download, parsing, instantiation and deferred download.
Dependency resolution through synchronous widget requests using the dojo.require()
statement results in latency and network overhead. A significant reduction in the
network I/O and CPU load times can be achieved by configuring the web server to
cache static content such as Javascript files without requesting status information
[15].

4.4 Debugging and Validation Tools

Since most of the processing happens within the context of the web browser,
traditional server-side debugging techniques such as setting different log levels and
log file inspection are not adequate in AJAX development. Specialized debugging
tools such as Firebug10 help troubleshoot AJAX applications. Firebug provides several
useful features such as Javascript debugging, profiling, network monitoring, CSS
editing, CSS visualization and HTML inspection. Firebug was used extensively
during development to troubleshoot event handling and Dojo IO binding issues. Other
tools such as the Mozilla DOM Inspector11, Mozilla Venkman Debugger12 and
Firefox Inspect Element13 are also useful in AJAX development.

4.4.1 XHTML Validation

Ensuring that the application conformed to the W3C XHTML validation standards
was a key consideration during development. XHTML conformance would allow
better integration of the application to other mashups, feeds, web services and third-
party APIs. This requirement was imposed upon the application as an after-thought
(after the selection of Dojo). This section briefly discusses the issues encountered in
meeting this requiment using the Dojo framework. Use of the “dojotype” attribute
resulted in XHTML validation errors. There are two ways of using widgets in Dojo:
1) creating the widget using specialized Dojo attributes in HTML, 2) creating the

10 http://www.getfirebug.com/
11 http://www.mozilla.org/projects/inspector/
12 http://www.mozilla.org/projects/venkman/
13 https://addons.mozilla.org/en-US/firefox/addon/434

Itinerary Planner: A Mashup Case Study 11

widget programmatically in Javascript. While the first method is easier to implement,
it does not produce valid XHTML. Creating widgets programmatically in Javascript,
results in simple and clean HTML. The following example illustrates how the Dojo
Taskbar widget was converted from HTML to Javascript.

Method 1: Create the widget using specialized Dojo attributes in HTML

<div dojoType="TaskBar" id="mytaskbar"
resizable="false"; class="headContainer">
</div>

Method 2: Create the widget programmatically in Javascript

<div id="taskbar" class="taskbar"></div>
<script type="text/javascript">
 function initTaskBar() {
 var properties = {
 id:"mytaskbar",
 resizable:false
 }
 var taskbarNode = dojo.byId('taskbar');
 taskbar =
dojo.widget.createWidget("TaskBar",properties,taskbarNo
de);
}</script>

4.5 Cross-platform Issues
Given the prevalence of web browser incompatibilities and the varying levels of
conformance to standards amongst web browser vendors [3], there is an increasing
need for proven, tested and verified frameworks to assist the developers of mashup
applications. Several competing client-side frameworks such as the Google Web
Toolkit (GWT)14, Dojo15, Prototype16, Scriptaculous17, Mochikit18, Yahoo UI19, etc
aim to alleviate the cross-browser compatibility issues by hiding the browser specific
functionality, and allowing developers to focus on high level user interface design
using widgets. Although these frameworks facilitate fast development of small to
medium sized web applications, their suitability for mission-critical and scalable,
enterprise applications is yet to be determined.

14 http://code.google.com/webtoolkit/
15 http://dojotoolkit.org/
16 http://www.prototypejs.org/
17 http://script.aculo.us/
18 http://www.mochikit.com/
19 http://developer.yahoo.com/yui/

12 Shyam Govardhan and George Feuerlicht

5 Conclusions

Currently there is extensive developer interest in Web 2.0 and more specifically in the
development of second generation web applications using AJAX. With the emergence
of free online data aggregation and manipulation services such as Yahoo Pipes20, the
level of interest is likely to increase even more dramatically.

At present, mashups are used primarily for developing innovative applications with
emphasis on providing rich user experience and without much consideration for the
long-term viability of such applications. Many of these applications will not survive
the test of time and end up as “disposable applications” with short lifetimes. The
suitability of mashups for the development of mission-critical, high availability
applications is yet to be determined and requires careful design consideration.

It is inevitable that new standards and best practices will emerge to address the
current security and performance challenges. However, given the fast-changing nature
of the underlying information sources and the continuous emergence of new
specialized APIs, there is an urgent need for methods to support the seamless
integration of various types of data. Different types of mashup applications share
many common features and design patterns are emerging that are applicable to
mashup applications.

The experience gained during the implementation of the IPM application and
described in this paper was invaluable for our next project, the Olympic Torch Relay
Mashup (OTRM) application. Similar to the IPM application, we have adopted a
solution that uses a local database to store static information to improve the
performance of the application. The city, region and the scheduled date of arrival of
the torch are stored in a local MySQL database along with the latitude and longitude
values which are derived using the Google Maps API. (Beijing Olympic torch relay
route is represented in a chronological form at
http://torchrelay.beijing2008.cn/en/journey/.)

Another important lesson learnt from the implementation of the IPM application is
that the representation of information as required by the user-interface needs to be
taken into account when choosing a suitable data structure for storing the data. While
the IPM application uses the text auto-completion feature provided by the Dojo
combo-box widget, the OTRM application uses the Dojo Tree widget to store the
region and city information. Both applications required transformation of relational
data stored in a local database into a hierarchical structure for easy traversal using
Javascript when the data is being displayed. Further research is needed to identify
data transformation patterns that are frequently used in geospatial mashup
applications and to provide generic solutions for such requirements.

References

1. www.oreillynet.com. O'Reilly -- What Is Web 2.0. 2008 [cited 30 January
2008]; Available from:

20 http://pipes.yahoo.com/pipes/

Itinerary Planner: A Mashup Case Study 13

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-
20.html?page=1.

2. Zhao, L., Integrating rank correlation techniques with GIS for marketing
analysis, in GeoComputation 2000. 2000: University of Greenwich, United
Kingdom.

3. Doernhoefer, M., (2006) JavaScript. SIGSOFT Softw. Eng. Notes, Vol. 31
(4): p. 16-24, ISSN 0163-5948

4. Wikipedia Single page application. [cited 2007; Available from:
http://en.wikipedia.org/wiki/Single_page_application.

5. Mesbah, A., Ajaxifying Classic Web Applications, in Companion to the
proceedings of the 29th International Conference on Software Engineering.
2007, IEEE Computer Society.

6. Neville-Neil, G., (2005) Vicious XSS. Queue, Vol 3 (10): p. 12-15, ISSN
1542-7730

7. Johnson, D., A. White, and A. Charland, Enterprise Ajax. 1 ed. 2008:
Prentice Hall. ISBN 978-0-13-224206-0

8. Fette, I., N. Sadeh, and A. Tomasic, Learning to detect phishing emails, in
Proceedings of the 16th international conference on World Wide Web. 2007,
ACM Press: Banff, Alberta, Canada.

9. Yu, D., et al., JavaScript instrumentation for browser security, in
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 2007, ACM Press: Nice, France.

10. Chess, B., Y. Tsipenyuk O'Neil, and J. West, JavaScript Hijacking. 2007.
11. www.ics.uci.edu. Architectural Styles and the Design of Network-based

Software Architectures. 2002 [cited 31 January 2008]; Available from:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

12. Bhargavan, K., et al., (2007) Secure sessions for Web services. ACM Trans.
Inf. Syst. Secur., Vol. 10 (2): p. 8, ISSN 1094-9224

13. A Note on "JavaScript Hijacking". 2007 [cited; Available from:
http://dojotoolkit.org/node/619.

14. Performance Optimization. 2007 [cited; Available from:
http://dojotoolkit.org/book/dojo-book-0-4/part-6-customizing-dojo-builds-
better-performance/performance-optimization.

15. Improving performance of Dojo-based web applications. 2007 [cited;
Available from: http://lazutkin.com/blog/2007/feb/1/improving-
performance/.

