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Abstract— The aim of the paper is to develop 

new aggregation operators using Bonferroni 

means, ordered weighted averaging (OWA) 

operators and some distance measures. We 

introduce the Bonferroni-Hamming weighted 

distance, Bonferroni OWA distance, and 

Bonferroni distances with OWA operators and 

weighted averages. The main advantages of 

using these operators are that they allow 

considering different aggregations contexts, 

multiple-comparison between each argument 

and distance measures in the same formulation.  

 

I. INTRODUCTION  

In the literature there are wide ranges of 

methods for solving decision-making problems. 

Among these methods, aggregation models are 

becoming very popular. The development of these 

aggregation models have created a mathematical 

discipline called aggregation theory [1]. These 

models allow modelling great types of 

relationships and obtaining representative values 

of the aggregated information. One of the most 

used models is the ordered weighted averaging 

OWA operator [2], from which has been 

developed a great deal of extension in 

combination with others mathematical models. 

OWA operator is an instrument that allows 

aggregating information obtaining a single 

representative value of the information [3, 4]. 

From this model, several authors have developed 

new aggregation operators providing a 

parameterized family. Some of these new 

aggregation operators are distance measure for 

OWA operators [5–7]. These new extensions 

allow reflecting the attitudinal character of the 

decision maker at the time of decision-making. 

Likewise, a new aggregation operator is 

proposed by using Bonferroni means [8], which 

allows making multiple-comparison between 

input arguments and capturing its 

interrelationship. The combination of this operator 

with OWA operator allows involving a product of 

each argument with the average of the other 

arguments [1]. Yager [1] suggested generalization 

of this operator by replacing the simple averaging 

by other mean type operators. From this 

application several authors have developed new 

aggregations operators related to Bonferroni 

means (BM) and applied on multi-attribute 

decision-making. Yager [1] and Beliakov [9] 

proposed a generalized of BM. Xu and Yager [10] 

proposed intuitionistic fuzzy Bonferroni means 

and Xia [11] suggested its generalization.  

The aim of this paper is to develop new 

aggregation operators using Bonferroni means, 

OWA operators and some distance measure. We 

introduce the BON-HWD, BON-OWAAC and 

BON-IWOWAD. We are able to include HWD, 

AC, IW in the same formulation with Bonferroni 

means and OWA operator. Thus, we get a new 

group of distance family, which allows analyzing 

the importance of each distance. Likewise, this 

new group of distance family is combined with 

Pichat algorithm to solve group decision-making 

problems. These new methods are used as 

previous step to apply Pichat algorithm in order to 

get different distance between a set of elements 

and gather each element according to the 

maximum similarity sub-relations. We develop an 

illustrative application focused on establishment 

of efficient, cooperatives and creative workgroups 



according to comparison of creative capabilities of 

each member. These algorithms allow aggregating 

information obtained a single value representative 

of the information according to the parameters of 

creative levels of each member. 

The structure of this paper is as follows: Firstly, 

we study preliminary concepts, which are 

composed by a briefly review of Bonferroni 

means, OWA operators and distance measures. 

Secondly, we study Bonferroni means and OWA 

operator in combination with distance measures in 

order to develop new methods based on hybrid 

weighted distance, immediate weighted and 

adequacy coefficient. Thirdly, we propose 

grouping problems using Pichat algorithm and 

new methods proposed in section above. Fourthly, 

we develop an illustrative application to decision-

making in the formation of creative groups and 

present the main results. Finally, we present the 

main conclusions and implications of the research. 

 

II. PRELIMINARIES 

In this section, we briefly review Bonferroni 

means, OWA operator, BON-OWA, distance 

measures and OWAD in order to develop new 

tools based on distance measures in combination 

with Bonferroni means and OWA operators. 

The Bonferroni mean [8] is another type of 

mean that can be used in the aggregation process 

in order to present the information. It can be 

defined by using the following expression. 

B(a1, a2, … , an) = (
1

n

1

1−n
∑ aj

qn
j=1
j≠k

)

1

r+q

,              (1) 

where 𝑟 and 𝑞 are parameters such that 𝑟, 𝑞 ≥ 0 

and the arguments 𝑎 ≥ 0. By rearranging the 

terms (Yager 2009), it can be also formulate in the 

following way: 

B(a1, a2, … , an) = (∑ ak
rn

k=1 (
1

1−n
∑ aj

qn
j=1

j≠k

))

1

r+q

.     (2) 

The OWA operator [2] provides a 

parameterized class of mean type of aggregation 

operators. It can be defined as follows. 

Definition 1. An OWA operator of dimension n is 

a mapping OWA: Rn → R that has an associated 

weighting vector W of dimension n with wj  ∈

 [0, 1] and ∑ wj = 1n
j=1 , such that: 

OWA(a1, a2, … , an) =  ∑ wjbj
n
j=1 ,                 (3) 

where 𝑏𝑖 is the jth largest of the 𝑎𝑖. 

The Bonferroni OWA [1] is mean type 

aggregation operator. It can be defined by using 

the following expression. 

BON − OWA(a1, … , an) = (
1

𝑛
∑ 𝑎𝑖

𝑟𝑂𝑊𝐴𝑊(𝑉𝑖)𝑖 )

1

r+q
,(4) 

where 𝑂𝑊𝐴𝑊(𝑉𝑖) = (
1

n−1
∑ a𝑗

𝑞n
j=1
j≠i

) with (𝑉𝑖) 

being the vector of all a𝑗 except a𝑖 and 𝑤 being an 

𝑛 − 1 vector 𝑊𝑖 associated with 𝛼𝑖 whose 

components w𝑖𝑗  are the OWA weights. Let 𝑊 be 

an OWA weighting vector of dimension 𝑛 − 1 

with components 𝑤𝑖 ∈  [0,1] when ∑ 𝑤𝑖𝑖 = 1. 

Then, we can define this aggregation as 

𝑂𝑊𝐴𝑊(𝑉𝑖) = (∑ 𝑤𝑖𝑎𝜋𝑘(𝑗)
𝑛−1
j=1 ), where 𝑎𝜋𝑘(𝑗) is 

the largest element in the tuple 𝑉𝑖 and 𝑤𝑖 = 1

𝑛−1
 

for all 𝑖. Thus, we have observed that this 

aggregation is equal at the original case. 

Furthermore, according to [1] the weight vector 

𝑤𝑖  can be stipulated by different ways. One 

approach is to directly specify the vector W. Other 

form is using [12] approach – ∑ 𝑤𝑗 ln(𝑤𝑗)𝑛−1
𝑗=1  such 

as ∑ 𝑤𝑗
n−j

𝑛−1
= 𝛼𝑛−1

𝑗=1 , ∑ 𝑤𝑗 = 1𝑛−1
𝑗=1 , 0 ≤ 𝑤𝑗 ≤ 1. 

Another approach is via BUM function 𝑓, in 

which we get 𝑤𝑗 = 𝑓( 𝑗

𝑛−1
) − 𝑓(𝑗−1

𝑛−1
). Based on 

this method is develop other approach, which 

starts with a parameterized family of BUM 

functions and define the desired aggregation by 

specifying the value associated parameter [1]. 

Another parameter function is 𝑓(𝑥) = 𝑥𝑟 for r >
0, where from r we get a particular function. 

Attitudinal character is such that α = 1

𝑟+1
 and if we 

specify α we can obtain r = 1−α

α
 [1]. 

The Hamming distance [13] is a useful 

technique for calculating the differences between 

two elements, two sets, etc. In fuzzy set theory, it 

can be useful, for example, for the calculation of 

distances between fuzzy sets, interval-valued 

fuzzy sets, intuitionistic fuzzy sets and interval-

valued intuitionistic fuzzy sets. For two sets A and 

B, the weighted Hamming distance can be defined 

as follows. 

Definition 2. A weighted Hamming distance of 

dimension n is a mapping dWH: RnxRn → R that 

has an associated weighting vector W of 

dimension n with the sum of the weights being 1 

and wj ∈  [0,1] such that: 

dWH(〈x1, y1〉, … , 〈xn, yn〉) = ∑ wj|xi − yi|
n
j=1 ,   (5) 

where xi and yi are the ith arguments of the sets X 

and Y. 

The OWAD operator [3, 14] is an aggregation 

operator that uses OWA operators and distance 



measures in the same formulation. It can be 

defined as follows for two sets X and Y. 

Definition 3. An OWAD operator of dimension n 

is a mapping OWAD: RnxRn → R that has an 

associated weighting vector W, ∑ wj = 1n
j=1  and 

wj ∈  [0,1] such that: 

OWAD(〈x1, y1〉, … , 〈xn, yn〉) = ∑ wjDj
n
j=1 ,         (6) 

where 𝐷𝑗  represents the jth largest of the 

|𝑥𝑖 − 𝑦𝑖|. 
The MOWAD operator is an aggregation 

operator that uses OWA operators and distance 

measures in the same formulation. It can be 

defined as fallows for two sets A and B. 

Definition 4. A MOWAD operator of dimension 

n is a mapping OWAD: RnxRn → R that has an 

associated weighting vector W, ∑ wj = 1n
j=1  and 

wj ∈  [0,1] such that: 

MOWAD(d1, d2, … , dn) = (∑ wjDj
λn

j=1 )
1

λ⁄
,      (7) 

where Dj represents the jth largest of the 𝑑𝑖 and 𝑑𝑖 

is the individual distance between A and B. That 

is, 𝑑𝑖 = |𝑥𝑖 − 𝑦𝑖|. 𝜆 is a parameter such that λ ∈
(−∞, ∞). 

The OWAWAD operator is a distance measure 

that uses the WA and the OWA operator in the 

normalization process of the Hamming distance 

by using OWAWA operator. Thus the reordering 

of the individual distance is developed according 

to the values of the individual formed by 

comparing two sets. It can be defined as follows 

for two sets for two sets 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 

𝑌 = {𝑦1 , 𝑦2, … , 𝑦𝑛}. 

Definition 5. An OWAWAD operator is a 

mapping OWAWAD: RnxRn → R of dimension n, 

if it has an associated weighting vector W, with 

∑ wj = 1n
j=1  and wj ∈  [0,1] and a weighting 

vector V that affects the WAD, with ∑ vj = 1n
j=1  

and 𝑣𝑖 ∈ [0,1], such as: 

OWAWAD(〈x1, y1〉, 〈x2, y2〉, … , 〈xn, yn〉) =
β ∑ wjbj

n
j=1 + (1 − β) ∑ vi|xi − yi|

n
i=1 ,              (8) 

where 𝑏𝑗 is the jth largest of the arguments 

|𝑥𝑖 − 𝑦𝑖| and 𝛽 ∈ [0,1]. 
 

III. BONFERRONI OWA DISTANCE 

In this section, we briefly review of aggregation 

operators such as: Bonferroni distance (BD), 

Bonferroni OWAD (BON-OWAD) and 

Bonferroni OWAWAD (BON-OWAWAD). 

Likewise, we present news aggregation operators 

using Bonferroni means, OWA operator and 

others distance measure Hibryd Weight distance, 

Immediate weighted and Adequacy coefficient. 

Bonferroni means and distance measures have 

been studied is new aggregation operators using 

Bonferroni means, distance measure and OWA 

operator. This proposal has suggested a new group 

of operators, such as: Bonferroni distance, 

Bonferroni OWAD and Bonferroni OWAWAD. 

For dealing with distance measures using 

Bonferroni means, the arguments 𝑎𝑖 and 𝑎𝑗 are 

two sets of variables instead of one but 

methodology is the same. The mains concepts of 

new group of operators are defined as follows. 

Definition 6. Bonferroni distance for two sets 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} is given by: 

BD(〈x1, y1〉, … , 〈xn, yn〉) =

(
1

𝑛
∑ di

rn
k=1 (

1

n−1
∑ dj

qn
j=1
j≠k

))

1

r+q

,                          (9) 

where 𝑑𝑖 and 𝑑𝑗 are the individual such that 𝑑𝑖 =

|𝑥𝑖 − 𝑦𝑖| and 𝑑𝑗 = |𝑥𝑗 − 𝑦𝑗|. 

Definition 7. A BON-OWAD distance for two 

sets 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2 , … , 𝑦𝑛} is 

given by: 

BON − OWAD(〈x1, y
1
〉, … , 〈xn, y

n
〉) =

(
1

𝑛
∑ 𝐷𝑖

𝑟𝑂𝑊𝐴𝐷𝜔𝑖
(𝑉𝑖)𝑖 )

1

r+q
,                              (10) 

where 𝑂𝑊𝐴𝐷𝜔𝑖
(𝑉𝑖) = (

1

n−1
∑ D𝑗

𝑞n
j=1
j≠i

) with (𝑉𝑖) 

being the vector of all |𝑥𝑗 − 𝑦𝑗| except |𝑥𝑖 − 𝑦𝑖| 

and 𝜔𝑖 being an 𝑛 − 1 vector 𝑊𝑖 associated with 

𝛼𝑖 whose components w𝑖𝑗  are the OWA weights. 

Likewise, 𝐷𝑖  is the kth smallest of the individual 

distance |𝑥𝑖 − 𝑦𝑖|. 
Definition 8. A BON-OWAWAD distance for 

two sets 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 =
{𝑦1, 𝑦2, … , 𝑦𝑛} is given by: 

BON − OWAWAD(〈x1, y1〉, … , 〈xn, yn〉) = β ×

(
1

𝑛
∑ 𝐷𝑖

𝑟𝑂𝑊𝐴𝐷𝜔𝑖
(𝑉𝑖)𝑖 )

1

r+q
+ (1 − β) ×

(
1

𝑛
∑ D𝑖

𝑟n
i=1 𝑊𝐴𝐷𝑉𝑖

(𝑉𝑖))

1

r+q
                             (11) 

where 𝐷𝑖  is the kth smallest of the individual 

distance |𝑥𝑖 − 𝑦𝑖| and 𝛽 ∈ [0,1]. Observe that 𝛽 =
1 forms the BON-OWAD operator and 𝛽 = 0 the 

weighted Bonferroni distance (BON-WAD) that is 

expressed as: 



BON − WAD(〈x1, y1〉, … , 〈xn, yn〉) =

(
1

𝑛
∑ D𝑖

𝑟n
i=1 𝑊𝐴𝐷𝑣𝑖

(𝑉𝑖))

1

r+q
,                            (12) 

where 𝑊𝐴𝐷𝑣𝑖
(𝑉𝑖) = (

1

n−1
∑ D𝑗

𝑞n
j=1
j≠k

) with (𝑉𝑖) 

being the vector of all |𝑥𝑗 − 𝑦𝑗| except |𝑥𝑖 − 𝑦𝑖| 

and 𝑣𝑖 being an 𝑛 − 1 vector 𝑉𝑖 associated with 𝜆𝑖 

whose components v𝑖𝑗 are the WAD weights. 

Likewise, 𝐷𝑖  is the kth smallest of the individual 

distance |𝑥𝑖 − 𝑦𝑖|. 
In order to understand the BON-OWAD and 

BON-OWAWAD numerically, let us present a 

simple example. 

Example 1. Let X = (0.2, 0.5, 0.4) and Y =
(0.5, 0.1, 0.7) be two sets of arguments. 𝑤𝑖  is the 

weighting vector of the argument |𝑥𝑖 − 𝑦𝑖| 
associated with 𝛼𝑖 whose components v𝑖𝑗. Here 

we shall let 𝛼1 = 0.4, 𝛼2 = 0.7 and 𝛼3 = 0.5. We 

take 𝑟 = q = 1. In addition: 𝑉1 = |0.5 −

0.1| 𝑎𝑛𝑑 |0.4 − 0.7|, 𝑉2 = |0.2 −
0.5| 𝑎𝑛𝑑 |0.4 − 0.7| and 𝑉3 = |0.2 −
0.5| 𝑎𝑛𝑑 |0.5 − 0.1|. Using this get: 

𝑂𝑊𝐴𝐷𝑣1
(𝑉1) = 0.4 × (|0.5 − 0.1| +

|0.4 − 0.7|) = 0.28; 𝑂𝑊𝐴𝐷𝑣2
(𝑉2) = 0.7 ×

(|0.2 − 0.5| + |0.4 − 0.7|) = 0,42; 

𝑂𝑊𝐴𝐷𝑣3
(𝑉3) = 0.5 × (|0.2 − 0.5| +

|0.5 − 0.1|) = 0.35. 

𝐵𝑂𝑁 − 𝑂𝑊𝐴𝐷 = (
1

3
× ((|0.2 − 0.5| × 0.28) +

(|0.5 − 0.1| × 0.42) + (|0.4 − 0.7| ×

0.35)))
0.5

= 0.345. 

Since, BON-OWAD is part of BON-OWAWAD 

corresponding to β × (
1

𝑛
∑ 𝐷𝑖

𝑟𝑂𝑊𝐴𝐷𝜔𝑖
(𝑉𝑖)𝑖 )

1

r+q
, 

now we develop the other part (1 − β) ×

(
1

𝑛
∑ D𝑖

𝑟n
i=1 𝑊𝐴𝐷𝑉𝑖

(𝑉𝑖))

1

r+q
. 𝑣𝑖 = (0.1, 0.2, 0.1) is 

the weighting vector associated with WAD and 

𝛽 = 0.3. Using this get: 

𝑊𝐴𝐷𝑣1
(𝑉1) = 0.1 × (|0.5 − 0.1| +

|0.4 − 0.7|) = 0.07; 𝑊𝐴𝐷𝑣2
(𝑉2) = 0.2 ×

(|0.2 − 0.5| + |0.4 − 0.7|) = 0.12; 

𝑊𝐴𝐷𝑣3
(𝑉3) = 0.1 × (|0.2 − 0.5| +

|0.5 − 0.1|) = 0.07 

𝐵𝑂𝑁 − 𝑊𝐴𝐷 = (
1

3
× ((|0.2 − 0.5| × 0.07) +

(|0.5 − 0.1| × 0.12) + (|0.4 − 0.7| ×

0.07)))
0.5

= 0.3. 

𝐵𝑂𝑁 − 𝑂𝑊𝐴𝑊𝐴𝐷 = 0.3 × 0.345 + (1 − 0.3) ×
0.300 = 0.3135. 

Let us discuss the properties of BON-OWAD. 

Note that the proofs are trivial and thus omitted. 

Theorem 1: (Commutativity-OWA aggregation). 

Assume 𝑓 is the BON-OWAD operator, then 

𝑓(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) = 𝑓(〈𝑐1, 𝑑1〉, … , 〈𝑐𝑛, 𝑑𝑛〉). 

Theorem 2: (Commutativity-OWA distance 

measure). Assume 𝑓 is the BON-OWAD operator, 

then 

𝑓(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) = 𝑓(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛 , 𝑦𝑛〉). 

Theorem 3: (Monotonicity). Assume 𝑓 is the 

BON-OWAD operator; if |𝑥𝑖 − 𝑦𝑖| ≥ |𝑐𝑖 − 𝑑𝑖| for 

all 𝑖𝑖, then 

𝑓(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) ≥ 𝑓(〈𝑐1, 𝑑1〉, … , 〈𝑐𝑛, 𝑑𝑛〉). 

Theorem 4: (Bounded). Assume 𝑓 is the BON-

OWAD operator, then 

𝑚𝑖𝑛{|𝑥𝑖 − 𝑦𝑖|} ≤ 𝑓(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛 , 𝑦𝑛〉) ≤
𝑚𝑎𝑥{|𝑥𝑖 − 𝑦𝑖|}. 
Theorem 5: (Idempotency). Assume 𝑓 is the 

BON-OWAD operator; if |𝑥𝑖 − 𝑦𝑖| = 𝑎 for all 𝑖, 
then 

𝑓(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) = a. 

Theorem 6: (Non-negativity). Assume 𝑓 is the 

BON-OWAD operator then 

𝑓(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) ≥ 0. 

Theorem 7: (Reflexivity). Assume 𝑓 is the BON-

OWAD operator then 

𝑓(〈𝑥1, 𝑦1〉, … , 〈𝑥𝑛, 𝑦𝑛〉) = 0. 

The hybrid-weighted distance [15] is a distance 

measure that unifies weighted distance (WD) and 

ordered weighted distance (OWD) (Xu and Chen, 

2008) in the same formulation. It can be defined 

as follows. 

Definition 9. A hybrid weighted distance measure 

is a mapping HWD: RnxRn → R of dimension n, it 

has an associated weighting vector V associated 

with HWD measure, with ∑ vj = 1n
j=1 , vj ≥ 0 vj ∈

 [0,1] and a weighting vector W of the argument 

|𝑥𝑖 − 𝑦𝑖|, with ∑ wj = 0n
j=1 , wj ≥ 0 wj ∈  [0,1] 

and 𝑚 is a balancing coefficient which plays a 

role of balance, such as: 

HWD(x, y) = (∑ vj
n
k=1 Δ(xσ(j), yσ(j)))

1
λ⁄

,   λ > 0, (13) 

where Δ(𝑥𝜎(𝑗), 𝑦𝜎(𝑗)) is the jht largest of weighted 

arguments Δ(𝑥𝑗 , 𝑦𝑗). Here Δ(𝑥𝑗 , 𝑦𝑗) =

𝑚𝑤𝑖|𝑥𝑖 − 𝑦𝑖|𝜆 , 𝑖 = 1, 2, … 𝑛. 

Definition 10. A Bonferroni Hybrid Weighted 

distance for two sets 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 =
{𝑦1, 𝑦2, … , 𝑦𝑛} is given by: 



BON − HWD(〈x1, y1〉, … , 〈xn, yn〉) =

((
1

𝑛
∑ 𝐷𝑖

𝑟𝐻𝑊𝐷𝑣𝑖
(𝑉𝑖)𝑖 )

1
λ⁄
)

1

r+q

,                        (14) 

where 𝐻𝑊𝐷𝑤𝑖
(𝑉𝑖) = (

1

1−n
∑ 𝑣𝑖𝑛(𝐷𝑗

𝑞
)

𝜆n
j=1
j≠i

) with 

(𝑉𝑖) being the vector of all |𝑥𝑗 − 𝑦𝑗| except 

|𝑥𝑖 − 𝑦𝑖|, 𝑤𝑖  being an 𝑛 − 1 vector 𝑉𝑖 associated 

with 𝛼𝑖 whose components of the argument 

|𝑥𝑖 − 𝑦𝑖|  are weights, a weighting vector 𝑣𝑖 

associated with the HWD and 𝑛 is a balancing 

coefficient which plays a role of balance. 
Likewise, 𝐷𝑖  is the kth smallest of the individual 

distance |𝑥𝑖 − 𝑦𝑖|.  

Furthermore, as we can see, if vj = 1/n for all j, 

we get the Bonferroni Minkowski distance 

(BMD), that is expressed as: 

BON − WD(〈x1, y1〉, … , 〈xn, yn〉) =

((
1

𝑛
∑ Di

rn
i=1 (

1

1−n
∑ (𝐷𝑗

𝑞
)

𝜆n
j=1
j≠i

))

1
λ⁄

)

1

r+q

,         (15) 

if λ = 1 we obtain Bonferroni weighted distance 

(BWHD), if λ = 0 we can obtain Bonferroni 

geometric distance (BGD) and if λ = 2 we can 

obtain Bonferroni weighted Euclidean distance 

(BWED). 

Likewise, if wi = 1/n (where n = 1 1⁄ − n) 

for all i, we get the Bonferroni hybrid distance 

(BON-HD), that is expressed as: 

BON − HD(x, y) =

((
1

𝑛
∑ Di

rn
i=1 (∑ 𝑣𝑖(𝐷𝑗

𝑞
)

𝜆n
j=1
j≠i

))

1
λ⁄

)

1

r+q

,           (16) 

Definition 11. An IWOWAD operator of 

dimension n is a mapping IWOWAD: RnxRn → R 

that has an associated weighted vector W of 

dimension n wj ∈  [0,1] and ∑ wj = 1n
j=1 , such 

that: 

IWOWAD(〈x1, y1〉, … , 〈xn, yn〉) = ∑ v̂jbj
n
j=1 ,   (20) 

where 𝑏𝑗 is the jth largest of the|𝑥𝑖 − 𝑦𝑖|, each 

|𝑥𝑖 − 𝑦𝑖| has associated a WA 𝑣𝑖, 𝑣𝑗 is the 

associated WA of 𝑏𝑗, and 𝑣̂𝑗 = (𝑤𝑗𝑣𝑗 ∑ wj𝑣𝑗
n
j=1⁄ ). 

In this case, if 𝑤𝑗 = 1/𝑛 for all j, we get the 

weighted Hamming distance and if 𝑣𝑗 = 1/𝑛 for 

all j, the OWAD operator. This measure was also 

extended using OWAAC and OWAIMAM for 

getting IWOWAAC and IWOWAIMAM ([16]. 

Definition 12. Bonferroni immediate weights for 

two sets 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 =
{𝑦1, 𝑦2, … , 𝑦𝑛} is given by: 

BIW(〈x1, y1〉, … , 〈xn, yn〉) =

(
1

𝑛
∑ ak

rn
i=1 𝐼𝑊𝜔𝑖

(𝑉𝑖))

1

r+q
,                                  (17) 

where 𝐼𝑊𝜔𝑖
(𝑉𝑖) = (

1

1−n
∑ (𝑣𝑗/ ∑ 𝑣𝑗)n

j=1 a𝑗
𝑞n

j=1
j≠k

) 

with (𝑉𝑖) being the vector of all 𝑎𝑗 except 𝑎𝑖, 𝜔𝑖 

being an 𝑛 − 1 vector 𝑊𝑖 associated with 𝛼𝑖 

whose components w𝑖𝑗  are the weighting vector 

and a weighting vector 𝑣𝑖 associated with the WA. 

Definition 13. A BON-IWOWAD distance for 

two sets 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 =
{𝑦1, 𝑦2, … , 𝑦𝑛} is given by: 

BON − IWOWAD(〈x1, y1〉, … , 〈xn, yn〉) =

(
1

𝑛
∑ Dk

rn
k=1 𝐼𝑊𝑂𝑊𝐴𝐷𝜔𝑖

(𝑉𝑖))

1

r+q
,                    (18) 

where 𝐼𝑊𝑂𝑊𝐴𝐷𝜔𝑖
(𝑉𝑖) = (

1

1−n
∑ (𝑣𝑗/n

j=1
j≠k

∑ 𝑣𝑗)n
j=1 D𝑗

𝑞
) with (𝑉𝑖) being the vector of all 

|𝑥𝑗 − 𝑦𝑗| except |𝑥𝑖 − 𝑦𝑖| and 𝜔𝑖 being an 𝑛 − 1 

vector 𝑊𝑖 associated with 𝛼𝑖 whose components 

w𝑖𝑗  are the OWA weights and a weighting vector 

𝑣𝑖 associated with the WA. Likewise, 𝐷𝑖  is the kth 

smallest of the individual distance |𝑥𝑖 − 𝑦𝑖|. In 

this case, if 𝑤𝑗 = 1/𝑛 for all j, we get the BON-

IWD and if 𝑣𝑗 = 1/𝑛 for all j, the BON-OWAD 

operator. If one of the sets is empty, we get the 

Bonferroni immediate weight (BIW) operator. 

 

IV. CONCLUSIONS 

We have studied OWA operators, some 

distance measures, hybrid-weighted distance and 

Bonferroni means in order to propose new 

aggregation operators. We have introduced new 

aggregation operators using HWD, AC and IW in 

the same formulation with Bonferroni means and 

OWA operator. The methods introduced are called 

BON-OWAAC, BON-HWD and BON-

IWOWAD. The main advantages on using these 

operators are that they allow considering 

continuous aggregations, multiple-comparison 

between each argument and distance measures in 

the same formulation. Besides, each method has 

specific advantage. For BON-OWAAC the 

differences between two sets is establishes a 

threshold in the comparison process when one set 



is higher than the other so the results are equal 

from this point. For BON-HWD the distance and 

ordered weighted reflect the importance of the 

argument and its ordered position, i.e. it considers 

the importance of ordered position of each value 

rather than the importance of each value itself. For 

BON-IWOWAD ordered weighted average 

considers the degree of importance of the 

information. Likewise, we have obtained other 

methods such as BAC, BIW, BON-WD and BON-

HD. Thus, we get a new group of distance family, 

which allows analysing the importance and 

interrelationship of each distance. 

Furthermore, these new algorithms can be used 

in different fields. Firstly, they used in fields such 

as: sports teams, strategy marketing and 

entrepreneurship. Secondly, they allow 

aggregating objective and subjective information 

from different sources. Thirdly, they allow 

considering continuous aggregations, multiple-

comparison between each argument. 
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