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Step-like or Hurwicz-like ordered weighted averaging (OWA) (S-H OWA) operators connect
two fundamental OWA operators, step OWA operators and Hurwicz OWA operators. S-H OWA
operators also generalize them and some other well-know OWA operators such as median and
centered OWA operators. Generally, there are two types of determination methods for S-H OWA
operators: One is from the motivation of some existed mathematical results; the other is by a set
of “nonstrict” definitions and often via some intermediate elements. For the second type, in this
study we define two sets of strict definitions for Hurwitz/step degree, which are more effective and
necessary for theoretical studies and practical usages. Both sets of definitions are useful in different
situations. In addition, they are based on the same concept moment of OWA operators proposed in
this study, and therefore they become identical in limit forms. However, the Hurwicz/step degree
(HD/SD) puts more concerns on its numerical measure and physical meaning, whereas the relative
Hurwicz/step degree (rHD/rSD), still being accurate numerically, sometimes is more reasonable
intuitively and has larger potential in further studies and practical applications. C© 2016 Wiley
Periodicals, Inc.

1. INTRODUCTION

A special type of aggregation function (or aggregation operator) with prefer-
ences involved is important in large varieties of applications such as decision-making
problems,1–3 computational intelligence,4–9 and information processing.10,11 There
are many theories about this type that can be found in some part of Yager’s decision
theory involving preferences1,3,7–9,12–26 and some aggregation functions studies.27–33

For example, the well-known ordered weighted averaging (OWA) operator25 has
been widely used in a large variety of areas and applications.3,7–9,11–28,34–36 We have
known that OWA operators can effectively model and generalize many cognitive
concepts such as maximum, minimum, and average of an input arguments set.
Some other concepts such as median, Hurwicz, and median-like operators can also
be generalized by centered OWA operators.7 Centered (and centered-like) OWA op-
erators as another branch of OWA operators that are gradually studied and applied
in practice.7,12
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The orness/andness measure of OWA operators, also introduced by Yager,25

plays a significant role in the researches of OWA operators,7–9,12–15,17–20,25,26 includ-
ing the centered (and centered-like) OWA operators. Generally, as we know, the
orness/andness measure reflects the extent of orlike or andlike of the corresponding
aggregating result of an ordered argument set under a given OWA operator. Note
that the concept orness can also be used to help in determining some centered-
like or Hurwicz-like OWA operators with given preferred parameters.14 Step OWA
operators26 and generalized step OWA operators12 play a crucial role in those deter-
mination methods for generating step-like and Hurwicz-like OWA operators.14 In
this sense, step-like and Hurwicz-like OWA operators can be seen as two contrary
extreme cases, just like the max and min as extreme cases with respect to their orness
degree 1 and 0.

Generally speaking, we can present two classes of determination methods for
these “step-like/Hurwitz-like” (S-H) OWA operators. One is to directly derive these
OWA operators by some special well-known definitions or backgrounds. For ex-
ample, the Gaussian-type OWA operators24 are motivated by Gaussian distribution,
Olympic type of OWA operators26 have their own special meaning, and the bino-
mial OWA operator,10 still being centered-like, has already successfully shown its
application in pattern recognition.10 The other is based on some relatively accurate
measurements12,14 (sometimes via certain “intermediate” elements, which help to
determine those OWA operators). This type of determination methods has its own
advantages because it can consider two parameters “centered degree and orness
degree” provided by different decision makers. That is, we first define a type of
step/Hurwitz degree for any OWA operators with any orness/andness degree; then
decision makers can decide their wanted step/Hurwitz degree with their preferred
orness/andness degree.

In Ref. 14, we defined a type of centered/Hurwitz degree, based on which we
can determine infinitely more OWA operators with different orness/andness degree.
Its definition is closely connected with the “intermediate” elements—still a group
of OWA operators. Though it is sufficiently effective for practical applications, we
shall still give a more strict and effective definition of step/Hurwitz degree.

The more important is that, at present we do not have a set of effective and
accurate definition/measurement on which the generating methods for S-H OWA can
be based. In this study, motivated by the concept moment in physics, we introduce
the concept moment for OWA operators with its own meaning and explanations.
Actually, this meaning is itself evident, because natural intuition can tell us that the
larger moment, the larger Hurwicz degree for an OWA operator, and vice versa.

We shall present two sets of definitions about Hurwicz/step degree (later also
called HD/SD). The first set puts more concerns on its numerical measure; that
is, it is more near the original physical meaning. However, the second set of def-
initions, defining the relative Hurwicz/Step degree (later also called rHD/rSD), is
more reasonable intuitively and has larger potential in further studies and applica-
tions. One of the features of these definitions for rHD/rSD is that it can effectively
avoid some dilemma or unpleasant situations HD/SD may face, as we shall discuss
later.

International Journal of Intelligent Systems DOI 10.1002/int



S-H OWA OPERATORS WITH MOMENT MEASURE 3

The remainder of this study is organized as follows: Section 2 reviews some
concepts related to OWA operators. Section 3 briefly reviews four types of generation
methods for centered-like or step-like OWA operators and points out their own
backgrounds, advantages, and shortcomings, respectively. In Section 4, we propose
the concept moment of OWA operators and present a set of definitions for HD/SD.
In Section 5, a set of definitions for rHD/rSD is proposed and compared with its
counterpart in Section 4. Section 6 summarizes the main results and conclusions.

2. PRELIMINARY

The well-known OWA operator and orness/andness degree were proposed by
Yager25 as follows.

DEFINITION 1.25 An OWA operator of dimension n is a mapping F: Rn → R that has
an associated weighting vector w = (w1, w2, . . . , wn) having the properties

w1 + w2 + · · · + wn = 1; 0 ≤ wj ≤ 1; j = 1, 2, . . . , n

and such that

Fw(a1, a2, . . . , an) =
n∑

j=1

wjbj , (1)

with bj being the jth largest of ai .
Using vector form, (1) can be rewritten as

Fw(a) = wbT ,

where a = (a1, a2, . . . , an) is the original arguments vector, whereas b =
(b1, b2, . . . , bn) is its ordered form with b1 ≥ b2 ≥ · · · ≥ bn, and w =
(w1, w2, . . . , wn) is the OWA operator.

DEFINITION 2.25 The degree of “orness” associated with this operator is defined as

orness(w) = 1

n − 1

n∑
i=1

(n − i)wi =
n∑

i=1

n − i

n − 1
wi. (2)

The measure of “andness” associated with an OWA operator is the complement
of its “orness”, and is defined as

andness(w) = 1 − orness(w)

or

andness(w) = 1

n − 1

n∑
i=1

(i − 1)wi =
n∑

i=1

i − 1

n − 1
wi.
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PROPOSITION 1. 25 If the max, min, and average operator correspond to w∗, w∗,
and wA, respectively, where w∗ = (1, 0, . . . , 0), w∗ = (0, 0, . . . , 1), and wA =
(1/n, 1/n, . . . , 1/n), then orness(w∗) = 1, orness(w∗) = 0 and orness(wA) = 1/2.

In decision-making problems, max, min, and average operator correspond
to fully optimistic decision, fully pessimistic decision, and Laplace decision
criterion, respectively. Apart from these, the Hurwicz decision model,wH (α) =
(α, 0, . . . , 0, 1 − α), also serves as a class of fundamental OWA operator, where
FwH (α) (a1, a2, . . . , an) = αmax(ai) + (1 − α)min(ai) and orness(wH (α)) = α.

The next proposition shows one particular reverse property related to the orness
degree of two OWA operators that are reverse of each other.

PROPOSITION 2. 25 (Reverse Property). For any OWA weighting vector
w = (w1, w2, . . . , wn), orness(w) = α, then for the reverse of w:w′ =
(w′

1, w
′
2, . . . , w

′
n) = (wn, wn−1, . . . , w1),orness(w′) = 1 − α.

DEFINITION 3.20 For an OWA operator w = (w1, w2, . . . , wn), if ∀i, j, i < j , im-
plies wi ≤ wj , then we call w a monotonic increasing OWA operator; reversely, if
∀i, j, i < j , implies wi ≥ wj , then we call w a monotonic decreasing OWA operator.
Both of the monotonic increasing and decreasing OWA operators can be collectively
referred to as the monotonic OWA operator.

DEFINITION 4.26 A step OWA operator of dimension n wstep = (w1, w2, . . . , wn) is
of the following form:

wt = 1,

wi = 0 , i 	= t.

With the step OWA operator, we have just one nonzero weight and that is the kth
weight, e.g., wstep = (0, · · · , 1, · · · , 0). It is easily seen that the aggregation under
this step OWA Fwstep

(a1, · · · , an) = bk , where bk is the kth largest of the arguments.
Note that n-dimensional step OWA operators can only have n different andness

degrees. So we could generalize the step OWA operator with this form (depending
on its orness/andness):12

wstep = [0, 0, · · · , (1 − k), k, · · · , 0,0] .

DEFINITION 5.12 A generalized step OWA operator of dimension n wstep =
(w1, w2, . . . , wn) is of the following form:

wt = 1 − k , wt+1 = k , (k ∈ [0, 1]) ;

wi = 0, i 	= t and i 	= t + 1,

This type of generalized step OWA operators can take any value in [0,1] as
the predefined orness/andness degree. The next theorem presents the method for
generating this generalized Step OWA with a given andness degree.
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THEOREM 1.12 To generate the n-dimensional generalized step OWA w(n)
step with

predefined andness α, let

k = (n − 1)α − �(n − 1)α� and 1 − k = �(n − 1)α� + 1 − (n − 1)α

where �� is the greatest integer function, and let

w(n)
step = (0, 0, . . . , w�(n−1)α+1�, w�(n−1)α+2�, . . . , 0,0)

= (0, 0, . . . , (1 − k), k, . . . , 0,0),

then andness(w(n)
step) = α.

Example 1. Generate the generalized step OWA operator w(7)
step with predefined

andness α = 0.8.

Solution. k = (n − 1)α − �(n − 1)α� = 6 · 0.8 − �6 · 0.8� = 4.8 − 4 = 0.8, 1 −
k = 0.2

So w�(n−1)α+1� = w5 = 1 − k = 0.2, w6 = 0.8,
thus w(7)

step = (0, 0, 0, 0, 0.2, 0.8, 0).

3. THE S-H OWA OPERATORS DERIVED BY SOME KNOWN
MATHEMATICAL RESULTS

In this section, we review some step-like or Hurwicz-like OWA operators that
are motivated by or derived from some known results and have many applications
(like in image reduction) and good theoretical values.

3.1. Centered OWA Operators

Before the introduction of centered OWA operators proposed by Yager,7 OWA
operators mainly focused on the extent to which the preference is given to larger
or smaller arguments. In other words, they seldom consider those general situations
where most of weights are put near one particular argument (or position). For
example, when orness is 0.5, this situation reflects a neutral attitudinal character (or
decision preference). But we must find that having orness = 0.5 does not necessarily
guarantee preference being given to the arguments which lie in the central position.
More generally, suppose orness is α; it also does not guarantee that the preference
can be placed to the arguments which lie near the 100 α% position (from smaller
ones) of that ordered arguments set. Assume the orness is predetermined, we do not
know whether most of weights are placed on both “ends” of an ordered arguments
vector (like the Hurwicz decision model), or on the “middle or 100 α% position” of
that ordered arguments set (like step OWA operators).

DEFINITION 6.7 An OWA operator of dimension n is said to be a centered OWA
operator if its associated weighting vector w satisfies the following conditions:
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1. Symmetric: wn+1−j = wj .
2. Strongly decaying: If i < j ≤ (n + 1)/2, then wi < wj and if i > j ≥ (n + 1)/2, then
wi < wj .
3. Inclusive: wj > 0.

A weaker edition of condition 2 is defined as follows:7

2. Softly decaying: If i < j ≤ (n + 1)/2, then wi ≤ wj and if i > j ≥ (n + 1)
/2, then wi ≤ wj .

It is clear that the Centered OWA operators have only one orness degree with 0.5
though it can have different Centered degrees. However, this pioneering definition
is very successful and enlightening, because for the first time it systematically and
numerically proposes the problem and provides useful way to solve this type of
problems.

3.2. Binomial OWA Operators

Derived from binomial polynomials, the binomial OWA operator is defined as
follows:

DEFINITION 7.10 The OWA operator w = (w1, w2, . . . , wn) with the weights such that

wi =
(

n − 1
i − 1

)
(1 − α)i−1αn−i (3)

is called the binomial OWA operator. Note that it has the constant orness degree:
orness(w) = α, irrespective of its dimension.

The binomial OWA operator can have different orness degree with parameter
α changing and has shown significant application in pattern recognition.10 Never-
theless, it lacks the variation in the step-like or Hurwicz-like degrees.14

3.3. Stancu OWA Operators

As the generalization form of binomial OWA operators and even Hurwicz
OWA operators, Stancu OWA operators36 can have more variation in the possible
Hurwicz-like extent, though with much more complex mathematical structures.

The Stancu OWA operators36 are defined as follows: For an OWA operator
of dimension i, u(i) = (ui1, ui2, . . . , uii) (i = 1, 2, . . . ), if its weights satisfy the
condition (an empty product denotes 1)

uij =

(
i − 1
i − j

)∏i−j−1
s=0 (t + sα)

∏j−2
s=0 (1 − t + sα)∏i−2

s=0 (1 + sα)
(4)

with t ∈ [0, 1], α ≥ 0 being two parameters, then it is called a Stancu OWA operator.
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It is important that the orness of Stancu OWA operators is just the parameter
t irrespective of α(α ≥ 0) and dimension i (i = 1, 2, . . . ). It is also very significant
that average OWA operators, binomial OWA operators, and Hurwicz OWA operators
are special cases of Stancu OWA operators with parameters (t = 0, 5; α = 0.5),
(t = orness; α = 0) and (t = orness; α = +∞), respectively.36

We can find that sometimes it is not easy to control and get the desired Hurwicz-
like degrees due to the complexity of Stancu polynomials. Apart from this, it cannot
effectively generalize step-like OWA operators.

3.4. Piled OWA Operators

The concept “piled OWA operator”14 actually is a set of definitions and OWA
determination mechanisms. The piled OWA operators can effectively generalize the
centered OWA operators and also connect the generalized step OWA operators with
the Hurwicz OWA operators with the given orness degree. They can also provide
controllable algorithms to generate infinitely more step-like or Hurwicz-like OWA
operators with two preferred parameters provided by decision makers: (1) orness
degree and (2) step-like or Hurwicz-like degree.

It is clear that this type of piled OWA operators has more flexibility and is more
controllable under the preferences of different decision makers. However, there still
does not exist a strict measurement for different definitions to be based on.

Remark. The structures and properties of some dynamic families of OWA op-
erators like Stancu OWA operators are quite complex mathematically. However,
although those dynamic families are very interesting and have less or more sense
of “centered” style, it is not easy of them to be used in all of related applications.
More seriously, at present there are no strict definitions to measure the degree of
“centering.” But motivated from some physics concepts, we proposed the moment
measure, step/Hurwicz degree, relative step/Hurwicz Degree and gave some math-
ematical properties of them, which can present a strict and standard definition for
“centering” as we will see in the next section.

4. THE MOMENT, STEP DEGREE, AND HURWICZ DEGREE
OF OWA OPERATORS

As we discussed before, there needs a strict measurement on which different
step degree definitions can be based. The concept moment (M) is naturally a rea-
sonable and effective measurement for further possible definitions. Thus, before
defining step degree (SD), and Hurwicz degree (HD) of OWA operators, we shall
present some necessary definitions about the moment (M) of OWA operators first.

DEFINITION 8 (Moment). For any OWA operators of dimension n, w =
(w1, w2, . . . , wn) with andness α, its moment (M) is defined as follows:

M(w) =
n∑

i=1

(
wi ·

∣∣∣∣ i − 1

n − 1
− α

∣∣∣∣
)

(5)
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Remark. An equivalent definition using “orness” can be written as for any OWA op-
erators of dimension n, w = (w1, w2, . . . , wn) with orness α. Its moment is defined
as follows:

M ′(w) =
n∑

i=1

(
wi ·

∣∣∣∣ n − i

n − 1
− α

∣∣∣∣
)

DEFINITION 9. For any OWA operators of dimension n, w = (w1, w2, . . . , wn) with
andness α, its left moment (LM) is defined as follows:

LM(w) =
t∑

i=1

(
wi ·

∣∣∣∣ i − 1

n − 1
− α

∣∣∣∣
)

(6)

such that t−1
n−1 ≤ α and t

n−1 ≥ α.

DEFINITION 10. For any OWA operators of dimension n, w = (w1, w2, . . . , wn) with
andness α, its right moment (RM) is defined as follows:

RM(w) =
n∑

i=t+1

(
wi ·

∣∣∣∣ i − 1

n − 1
− α

∣∣∣∣
)

(7)

such that t−1
n−1 ≤ α and t

n−1 ≥ α.

PROPOSITION 3. For any OWA operators of dimension n, w = (w1, w2, . . . , wn) with
andness α, we have M(w) = LM(w) + RM(w).

Example 2. Given the OWA operator w = (0.15, 0.3, 0.15.0.4) with andness 0.6, it
has M, LM, and RM as follows:

M(w) =
4∑

i=1

(
wi ·

∣∣∣∣ i − 1

n − 1
− 0.6

∣∣∣∣
)

= (0.15) · 0.6 + (0.3) ·
(

0.6 − 1

3

)
+ (0.15) ·

(
2

3
− 0.6

)
+ (0.4) · (1 − 0.6)

= 0.09 + 0.08 + 0.01 + 0.16 = 0.34.

Since 1
3 ≤ 0.6 and 2

3 ≥ 0.6, then t = 2; thus

LM(w) =
2∑

i=1

(
wi ·

∣∣∣∣ i − 1

n − 1
− 0.6

∣∣∣∣
)

= (0.15) · 0.6 + (0.3) ·
(

0.6 − 1

3

)
= 0.09 + 0.08 = 0.17,
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RM(w) =
4∑

i=2+1

(
wi ·

∣∣∣∣ i − 1

n − 1
− 0.6

∣∣∣∣
)

= (0.15) ·
(

2

3
− 0.6

)
+ (0.4) · (1 − 0.6) = 0.01 + 0.16 = 0.17.

From Example 1, we can find the following fact:

THEOREM 2. For any OWA operators of dimension n, w = (w1, w2, . . . , wn) with
andness α, we have LM(w) = RM(w) = 1

2M(w).

Proof. Since andness(w) = α =
n∑

i=1

i−1
n−1wi , then when t satisfies t−1

n−1 ≤ α and

t
n−1 ≥ α,

RM(w) − LM(w) =
n∑

i=t+1

(
wi ·

∣∣∣∣ i − 1

n − 1
− α

∣∣∣∣
)

−
t∑

i=1

(
wi ·

∣∣∣∣ i − 1

n − 1
− α

∣∣∣∣
)

=
n∑

i=t+1

(
wi ·

(
i − 1

n − 1
− α

))
+

t∑
i=1

(
wi ·

(
i − 1

n − 1
− α

))

=
n∑

i=1

wi ·
(

i − 1

n − 1
− α

)
=

(
n∑

i=1

i − 1

n − 1
wi

)
− α = 0

�
It is clear that M(w) ≥ 0; and M(w) = 0 if and only if w is a step OWA operator

(specially note that here it is not “generalized step OWA operator”; recall Definitions
4 and 5). For any OWA operator w of dimension n, generally we cannot always have
min(M(w)) = 0; but when n is large, the minimum moment it can take is very near
zero, as later we shall see.

However, for the maximum moment it can take, we have the following impor-
tant property.

THEOREM 3. For any OWA operator of dimension n, w = (w1, w2, . . . , wn) with
andness α, its moment has a maximum value: max(M(w)) = M(wH (1−α)) = 2α(1 −
α) where wH (1−α) = (1 − α, 0, . . . , 0, α), the Hurwicz OWA operator with andness
α (orness 1 − α).

Proof. First, by Definition 8, it is clear that M(wH (1−α)) = 2α(1 − α) and then

LM(wH (1−α)) = RM(wH (1−α)) = α(1 − α)

Second, suppose there is an OWA operator v = (v1, v2, . . . , vn) also with and-
ness α, and its moment is larger than M(wH (1−α)), i.e., M(v) > M(wH (1−α)). This
also implies that

LM(v) > LM(wH (1−α)) and RM(v) > RM(wH (1−α)). (8)
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When t satisfies t−1
n−1 ≤ α and t

n−1 ≥ α, if (8) holds, then we can easily see that
t∑

i=1
vi > 1 − α and

n∑
i=t+1

vi > α, which mean 1 =
n∑

i=1
vi =

t∑
i=1

vi +
n∑

i=t+1
vi >

1 − α + α = 1.
It is contradictory and then we must have max(M(w)) = M(wH (1−α)) =

2α(1 − α). �
PROPOSITION 4. For any OWA operator of dimension n, w = (w1, w2, . . . , wn) with
any andness degree, it takes the (global) maximum moment 0.5 when andness
α = 0.5.

Remark. Though it is the “global” maximum, it is only one of those maximum
moments; that is, it has no significant meaning in practice because our concern is
only on the extent to which more weights are put near the 100% α position (from
smaller ones).

PROPOSITION 5. For two OWA operators of dimension n, u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn), with M(u) = a and M(v) = b, if w = λu + (1 − λ)v, then
M(w) = λa + (1 − λ)b.

The definitions and related properties above presented are nonnormalized and
hence are not very suitable for practical applications. It is natural that we must
provide the subsequent standard definitions.

DEFINITION 11 (Hurwicz Degree). For any OWA operator of dimension n (n > 2),
w = (w1, w2, . . . , wn) with andness α(α ∈ (0, 1)), its HD is defined as

HD(w) = M(w)

M(wH (1−α))
= M(w)

2α(1 − α)
(9)

DEFINITION 12 (Step Degree). For any OWA operator of dimension n (n > 2),
w = (w1, w2, . . . , wn) with andness α(α ∈ (0, 1)), its SD is defined as

SD(w) = 1 − HD(w) = 1 − M(w)

M(wH (1−α))
= 1 − M(w)

2α(1 − α)
. (10)

Remarks.

1. From Definitions 11 and 12, we normalized the moment for practical measurements.
For any OWA operator of dimension n (n > 2), w = (w1, w2, . . . , wn), HD(w) ∈ [0, 1],
SD(w) ∈ [0, 1], and HD(w) + SD(w) = 1. One can see it is reasonable and effective in
practice both intuitively and numerically.

2. We need not consider the cases where andness is 0 or 1 since they are trivial, i.e., they
have only one form.

PROPOSITION 6. Any step OWA operator wstep has SD(wstep) = 1, whereas any
Hurwicz OWA operator wH (α) has HD(wH (α)) = 1.
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PROPOSITION 7. For two OWA operators of dimension n with the same andness, u =
(u1, u2, . . . , un) and v = (v1, v2, . . . , vn), with HD(u) = k and HD(v) = l fulfills, if
w = λu + (1 − λ)v, then HD(w) = λk + (1 − λ)l.

Example 3. Given the OWA operator w = (0.15, 0.3, 0.15, 0.4) with andness α =
0.6, it has M(w) = 0.34 and M(wH (1−α)) = 2α(1 − α) = 0.48, and

HD(w) = M(w)

M(wH (1−α))
= 0.34

0.48
= 17

24
, SD(w) = 1 − HD(w) = 7

24

For an OWA operator w, larger SD means more weights are put near the 100% α
position from wn to w1; larger HD means more weighs are proportionally (according
to α) split and put near two end w1 and wn. Thus, with this flexible and controllable
mechanism, we can device many accurate algorithms to generate infinite more
S-H OWA operators with given preferences of decision makers.

5. THE RELATIVE STEP DEGREE AND RELATIVE HURWICZ
DEGREE OF OWA OPERATORS

From Theorem 2 and some symmetrical properties, we can present some algo-
rithms for generating S-H OWA operators with given orness/andness and SD/HD.
The idea within the method for obtaining piled OWA operators14 can also be used
as one that we shall improve or modify in later works. Next, we shall present a set
of new definitions that are more accurate and reasonable in some sense. We first see
a simple example with some possible dilemmas or unpleasant situations.

For a four-dimensional OWA operators with andness α = 0.5, if it is Hurwicz
OWA, wH (1−α), it must have HD(wH (1−α)) = 1. But if it is a generalized step OWA
(also as median in this case), wstep = (0, 0.5, 0.5, 0), we cannot have HD(wstep) = 0
under Definition 11. We only have

HD(wstep) = M(w)

M(wH (1−α))
= M(w)

2α(1 − α)
= 0.5 · (1/6) · 2

0.5
= 1

3

We shall see that this is the minimum HD (also minimum moment), a four-
dimensional OWA with andness 0.5 can take. In some situations, we always wish to
get HD(wstep) = 0 since it is the very “median” as possible as we can make.

DEFINITION 13.14 We denote a generalized step OWA operator with orness α as sα .
Obviously, maximum operator w∗ = s1, minimum operator w∗ = s0, and median
operator wmd = s0.5.

According to Definition 13, the Hurwicz OWA operator wH (1−α) can also
be expressed as the convex combination form: wH (1−α) = αs0 + (1 − α)s1, whose
HD(wH (1−α)) = 1. If s1−α is just a step OWA operator with andness α, then
HD(s1−α) = 0; if not, then its HD is not equal to 0. If s1−α is not a step OWA
operator, i.e., it has the form s1−α = [0, 0, . . . , w�(n−1)α+1�, w�(n−1)α+2�, . . . , 0,0]
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12 WANG, MERIGÓ, AND JIN

(see Theorem 1), then it has the minimum HD (or moment) as next we shall prove.
We denote this minimum HD (s1−α takes) by m, and (m, 1] is then the interval these
OWA operators (with andness α and same dimension) can take. Though it is clear
that when n is very large m will decrease near zero, sometimes we need a set of
more suitable definitions, from which we shall get a consistent concept, i.e., any
generalized step OWA operator s1−α (or sα by symmetry) has zero HD.

THEOREM 4. For any OWA operator of dimension n, w = (w1, w2, . . . , wn) with
andness α, its moment has a minimum value: min(M(w)) = M(s1−α) = 2k(1−k)

n−1
where k = (n − 1)α − �(n − 1)α�.

Proof. First, we can see that

M(s1−α) = (1 − k) ·
∣∣∣∣�(n − 1)α�

n − 1
− α

∣∣∣∣ + k ·
∣∣∣∣�(n − 1)α + 1�

n − 1
− α

∣∣∣∣ ;

and by Theorem 2, we also have

LM(s1−α) = (1 − k) ·
∣∣∣∣�(n − 1)α�

n − 1
− α

∣∣∣∣ = k ·
∣∣∣∣�(n − 1)α + 1�

n − 1
− α

∣∣∣∣ = RM(s1−α)

And note that

(1 − k) ·
∣∣∣∣�(n − 1)α�

n − 1
− α

∣∣∣∣ = (1 − k) ·
(

α − �(n − 1)α�
n − 1

)
= (1 − k)

k

n − 1

(by Theorem 1).
Second, (similar to the proof in Theorem 3), suppose there is an OWA operator

v = (v1, v2, . . . , vn) also with andness α, and its moment is smaller than M(s1−α),
i.e., M(v) < M(s1−α). This also implies that

LM(v) < LM(s1−α) and RM(v) < RM(s1−α) .

When t satisfies t−1
n−1 ≤ αand t

n−1 ≥ α, then we can easily see that

t∑
i=1

vi < 1 − k and
n∑

i=t+1

vi < k,

which means

1 =
n∑

i=1

vi =
t∑

i=1

vi +
n∑

i=t+1

vi < 1 − k + k = 1.

It is contradictory and then we must have min(M(w)) = M(s1−α) = 2k(1−k)
n−1 . �
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COROLLARY 1. For the generalized step OWA operator of dimension n, when n → ∞,
M(s1−α) → 0.

We now present the following alternative definitions that in some sense are
more reasonable and have their own special usages and properties.

DEFINITION 14 (relative Hurwicz Degree). For any OWA operator of dimension n
(n > 2), w = (w1, w2, . . . , wn) with andness α, its relative Hurwicz degree (rHD)
is defined as

rHD(w) = M(w) − M(s1−α)

M(wH (1−α)) − M(s1−α)
. (11)

DEFINITION 15 (relative Step Degree). For any OWA operator of dimension n (n > 2),
w = (w1, w2, . . . , wn) with andness α, its relative step degree (rSD) is defined as

rSD(w) = 1 − rHD(w)

= 1 − M(w) − M(s1−α)

M(wH (1−α)) − M(s1−α)

= M(wH (1−α)) − M(w)

M(wH (1−α)) − M(s1−α)
. (12)

Remark. It is clear that for any dimension and andness degree, rHD(wH (1−α)) = 1
and rHD(s1−α) = 0.

PROPOSITION 8. For two OWA operators of dimension n with the same andness,
u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), with rHD(u) = k and rHD(v) = l, if
w = λu + (1 − λ)v, then rHD(w) = λk + (1 − λ)l.

PROPOSITION 9 (Symmetricity). For any OWA operator w = (w1, w2, . . . , wn),
and its reverse w′ = (w′

1, w
′
2, . . . , w

′
n) = (wn, wn−1, . . . , w1), M(w) = M(w′);

HD(w) = HD(w′); rHD(w) = rHD(w′).

Example 4.

1. For the Hurwicz OWA operator wH (0.5) and generalized step OWA operator s0.5 of
dimension 4 with andness 0.5, respectively,

M(wH (0.5)) = 2 · 0.5 · (0.5) = 0.5; M(s0.5) = 2 · 0.5 · (1/6) = 1/6;

2. For the average OWA operator of dimension 4, w = (0.25, 0.25, 0.25, 0.25), we can get

M(w) = 2 · (0.25 · (0.5) + 0.25 · (1/6)) = 1/3

rHD(w) = M(w) − M(s1−0.5)

M(wH (1−0.5)) − M(s1−0.5)
= 1/3 − 1/6

0.5 − 1/6
= 0.5 = rSD(w),

while HD(w) = 2/3;
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3. Given the OWA operator w = (0.15, 0.3, 0.15, 0.4) with andness α = 0.6, it has M(w) =
0.34 and we have M(wH (1−α)) = 2α(1 − α) = 2 · (0.6) · (0.4) = 0.48, and M(s1−0.6) =
2 · 0.2 · (4/15) = 8/75 = 0.107.

rHD(w) = M(w) − M(s1−0.6)

M(wH (1−0.6)) − M(s1−0.6)
= 0.34 − 0.107

0.48 − 0.107
= 0.6247

Recall that in Example 3, HD(w) = M(w)
M(wH (1−α))

= 0.34
0.48 = 17

24 = 0.7083. �

Remark. In Examples 3 and 4(3), though we get different HD and rHD, in practice
both of them are reasonable in some sense, and then provide more choices for
practitioners in different situations. In addition, when dimension n is large, this
difference will become small. Figuratively speaking, it seems a narrow “hollow”
within s1−α if it is under the rHD/rSD definition, whereas it is always “full” under
the HD/SD definition.

We present two types of the simplest generation methods for the S-H OWA
operator with given HD/SD and rHD/rSD.

Suppose we need to obtain an OWA operator of dimension 4 with andness 0.5
and HD 0.5 (or rHD 0.5). By “taking the middle position,” if it is based on the
HD/SD definition, we may get

w = 0.5 (s0.25 + s0.75)

= 0.5 ((0.25, 0.75, 0, 0) + (0, 0, 0.75, 0.25))

= (0.125, 0.375, 0.375, 0.125)

For another generation choice, suppose now we are under the rHD/rSD definition;
and by “taking the average of the two extreme cases,” we can get

w = 0.5wH (1−0.5) + 0.5s1−0.5 = (0.25, 0.25, 0.25, 0.25)

Based on these ideas mentioned above, we can easily devise several suitable and
more complex methods for generating S-H OWA operators with given preferences.

In later studies, we shall analyze and present more related properties, gener-
ation algorithms, adjustment methods, and applications about S-H OWA operators
involving HD/SD and rHD/rSD.

6. CONCLUSIONS

In this study, we have reviewed and further summarized some general concepts
of Hurwicz-, step-, or centered-like OWA operators, and they can connectively called
S-H OWA operators. We have listed four types of existed generating and defining
methods and then pointed out each importance and possible shortcoming.

By introducing the concept moment of OWA operators, we further have pre-
sented two sets of definitions to give standard measurements for determining and
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generating S-H OWA operators. In detail, we have defined HD/SD and rHD/rSD. We
have also proposed several of their properties. Both sets of definitions are suitable
for different situations. Furthermore, for generating OWA operators with the same
HD and rHD, respectively, generally we get two different OWA operators, though
with large dimension this difference must gradually become very tiny.

Although both sets of definitions are based on the same concept moment of
OWA operators, the HD/SD puts more concerns on its numerical measure, whereas
the rHD/rSD is more reasonable intuitively and has larger potential in further theo-
retical studies and applications.
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