
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

Adaptive Motion Planning in Bin-Picking with Object Uncertainties

Thomas Fridolin Iversen1, Lars-Peter Ellekilde1 and Jaime Valls Miró2

1 The Maersk McKinney Moller Institute, University of Southern Denmark
Campusvej 55, 5230 Odense M, Denmark, {thfi,lpe}@mmmi.sdu.dk

2Centre for Autonomous Systems, Faculty of Engineering, University of Technology Sydney
NSW2007, Australia, Jaime.VallsMiro@uts.edu.au

Abstract: Doing motion planning for bin-picking with object uncertainties requires either a re-grasp of picked objects
or an online sensor system. Using the latter is advantageous in terms of computational time, as no time is wasted doing
an extra pick and place action. It does, however, put extra requirements on the motion planner, as the target position may
change on-the-fly.
This paper solves that problem by using a state adjusting Partial Observable Markov Decision Process, where the state
space is modified between runs, to better fit earlier solved problems. The approach relies on a set of waypoints, containing
information about which parts of the state space may contain feasible solutions. Waypoints are pushed around the state
space by observing which states in the neighborhood lead to successfully solved problems.
Two bin-picking scenarios are modeled with the proposed method. One scenario in which the system receives an object
pose update while moving towards the place position. Another where the update includes the object type being grasped out
of a fixed number of options, each class to be deposited in a different place. When an online POMDP solver is utilized, the
state adjusting POMDP is improving performance by up to 28% on execution times compared to a not adjusted POMDP.

Keywords: Manipulation and Motion Planning, Industrial Robotics, Adaptive Motion Planning

1. INTRODUCTION

In industrial bin-picking, fast and efficient motions are
necessary to keep production times low, but also high pre-
cision is crucial when placing objects to be used later in
an automatic production line. Problems in bin-picking
usually arise as sensor systems have a hard time pose es-
timating with a 100% accuracy. One solution is to re-
pick objects in a place without other objects cluttering the
scene views. This approach is unfortunately rather sub-
optimal as a long time is spent on placing and re-picking
objects. Finding the pose error while moving the robot
will, however, suppress the need for re-picking. Thus,
time is saved, but additional requirements are put on the
robot motions.

To that end, this article is concerned with motion plan-
ning for two cases of bin-picking, where information is
received on-the-fly. In one scenario an object pose error
is acquired, and in the other, object type information is
received.

Commonly, when doing motion planning for robots,
motions are defined in a tree or graph structure where one
single route from start to goal constitutes a motion in joint
space. When using such motion planners, only the found
path is guaranteed to be safe. If an object is grasped with
a pose error or other information is received, the planned
motion might give unexpected collisions due to wrong in-
formation of how the object is located in the gripper. This
might be solved with large bounding volumes around the
object, but that approach offers no immediate answer to
whether a motion can be adapted when information is re-
ceived.

Fig. 1 Bin-picking scene which are used as basis for
our POMDP model and for carrying out real world tests
along with a picture showing the unsorted objects in the
bin.

When planning a motion where new information is ex-
pected, e.g. pose corrections of a grasped object or ob-
ject identification, it is important to ensure that no col-
lisions occur and a quick and stable replacement motion
is obtainable. The Partially Observable Markov Decision
Process (POMDP) framework [1] offers solutions to both
problems stated above; given a probabilistic start belief it
can find the safest way through a set of states and when
information is gained it can be tunneled into the system.
Problems with POMDPs arise however as they scale ex-
ponentially with dimensions. Reducing problems to keep
them solvable in real-time, can be done with an online
POMDP solver [2]. On top of that, our proposed method
concentrates a given maximum number of states in feasi-
ble places, thereby giving a higher density of states where
needed.

The scene which is modeled as a POMDP (see Fig. 1)

“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

contains a Universal Robots UR5 arm with a CB3 con-
troller, a tool mounted sensor and suction cup gripper
from Scape Technologies A/S, and two bins with ran-
domly placed objects. The robot is doing pick-and-place
operations, picking objects from one or both bins and
placing them accurately for further operations in an in-
dustrial environment. Fig. 1 also shows an example of
the cluttered objects in a bin, which combined with sen-
sor inaccuracies and general grasp errors results in uncer-
tainties of grasped objects. To compensate for those an
in-hand recognition sensor is beneficial, as it can identify
objects and update information about their poses while
the robot is moving. The sensor itself is out of scope for
this article which sole focus is adaptive motion planning
able to receive information while moving.

The remainder of this paper is organized with Section
2 giving an overview of related work, Section 3 describ-
ing formalities of the POMDP framework and Section 4
presenting our proposed method. Sections 5 and 6 de-
scribe the tests carried out and the results while Sections
7 and 8 discuss and conclude the paper.

2. RELATED WORK
Motion planning for articulated robot arms is typically

done with sampling based motion planners, Rapidly-
Exploring Random Tree [3] being a classical approach.
These planners can only guarantee a single path to be
collision free, unless planning for a set of particles rep-
resenting uncertainty in a starting pose [4]. Even though
a number of attempts have been made to speed up path
planning, including both tree structure optimization [5]
and sampling methods [6], [7], it is still expensive to plan
paths for many particles.

A significant amount of work has been put into the
challenge of planning with uncertainties. The classic
POMDP solution [1] is a framework for planning with
imperfect information of a state using sensor inputs and
actions, and has been applied to areas such as robotics,
artificial intelligence, operation research and manipula-
tion of objects [8]. Even though the classical approach
only involves the discrete case, solving a full POMDP
usually is intractable, due to challenges in dimensionality
and history [9]. Point based methods have been shown
to successfully solve approximations of POMDPs by us-
ing only a limited subset of the belief space [10]. Other
approaches tries to sample beliefs only from reachable
spaces by maintaining an upper and lower bound on the
optimal value function to recognize whether a sampled
belief is reachable [11].

As not all problems can be stated as discrete POMDPs,
efforts have been made to solve the continuous case. Us-
ing Gaussian particle filters to represent beliefs [12] try
to overcome the need of discretization, but when the en-
vironment becomes too complex the number of Gaussian
components escalate. Thus instead of using a Gaussian
particle filter, Van den Berg et al. [13] uses an extended

Kalman filter to provide locally optimal solutions in poly-
nomial time. Furthermore continuous POMDPs can be
solved by Monte Carlo Value Iteration-based methods,
which also use particles to represent beliefs and α-vectors
to represent a policy graph [14].

Online planning algorithms omit precomputation en-
tirely, finding only local policies for each step in the ex-
ecution. Actions are chosen based on forward-search of
the action and observation tree rooted at the current belief
state [2][15]. These algorithms can produce solutions for
very large POMDPs but also risk getting stuck at local
minima.

3. POMDP PRELIMINARIES
To gain a better understanding of our proposed

method, we here present a concise description of the gen-
eral POMDP framework.
A POMDP is formally a tuple of {S,A,O, T, Z,R, γ},
where S represents a set of states, A is a set of ac-
tions manipulating the system to move between states
and O is a set of observations. In each time step the
system is in some state s ∈ S and an action is per-
formed, bringing the system in state s′ with conditional
probability T (s, a, s′) = p(s′|s, a). Afterwards an ob-
servation is made to gather information about its actual
state, which is modeled as the conditional probability
Z(s, a, o) = p(o|s, a).

The objective of the system is to gain as high a re-
ward as possible when traversing the states. It receives a
real-valued reward by taking action a in state s, R(s, a).
When a POMDP has infinite horizon, i.e. an infinite
amount of steps can be taken, the discount factor γ ∈
[0, 1) is used to obtain a well-defined problem by having
a finite total reward. To maximize its expected reward the
system has to perform suitable sequences of actions given
a belief b, or probability function over S, of the system.

The solution to a POMDP, a policy π, represents map-
pings from all beliefs to actions. The expected value of
a belief b is present in the value function, which is found
by following a policy π with initial belief b:

Vπ(b) = E

[∞∑
t=0

γtR(st, π(bt))
∣∣∣ b0 = b

]
(1)

One way of solving POMDPs online is to construct
a belief tree with the current belief at the root and per-
form a look-ahead search for a policy π that maximizes
Vπ(b0). In such a tree, each node represents a belief, a
node branches into |A| action edges and further into |O|
observation edges. It is possible to find an optimal pol-
icy for POMDPs by using value iteration [11] or policy
iteration [16], but when dealing with large dimensional
spaces these methods are in the worst case intractable
[9]. The Determinized Sparse Partially Observable Tree
(DESPOT) [2] randomly samples a set of scenarios to be
investigated instead of exploring the whole belief tree.

- States - Waypoints - Waypoint Neighborhood - Obstacle

Fig. 2 Principal 2D example of the proposed method.

Each scenario contains a sequence Φ = {s0, φ1, φ2, ...},
where s0 is a start state sampled from b and φi defines
s′ according to the transition probabilities T (s, a, s′). By
simulating a finite number of steps an approximate value
function is obtained, which can be used to determine the
next action. After performing the action and receiving the
observation a new belief tree is created and the process is
repeated.

4. PROPOSED METHOD
This section describes our proposed method. Note that

distances between states should be measurable and that
the state space should be discretizable by a given stepsize.
In some problems, e.g. decision-making problems, state
spaces might not be discretizable at all, but for problems
concerning robot control, state spaces are usually given
as Cartesian or joint configuration spaces.

When using methods such as DESPOT, a trade-off be-
tween optimality and speed/tractability has to be made.
The more transitions that are possible, the bigger parts of
the belief tree have to be ignored to keep the problem
tractable. Our state adjusting POMDP (SA-DESPOT)
seeks to use prior knowledge of obtained solutions to con-
centrate the search in workspace areas with higher prob-
ability of containing solutions. The aim is to plan shorter
paths which is strongly correlated with the moving time.

Our method utilizes a set of waypoints W guiding
which subpart of the space has previously contained us-
able states. Each waypoint wi = {Pi, γi} contains a
coordinate Pi, and a neighborhood around that coordi-
nate, γi. When one or more problems have been solved,
W is updated according to surrounding states usefulness
and the POMDP model is updated only incorporating
states within neighborhoods of waypoints, which means
||Pi − Pj ||∞ < γi, where Pi is the position of the i’th
waypoint, Pj is the position of the j’th state and γi is
the neighborhood of the i’th waypoint. A 2D example
is shown in Fig. 2, placing waypoints in state space
and states within waypoint neighborhoods are used, while
states outside are ignored.
After a POMDP solution has successfully been found, the
following steps are taken.

State scores: Each POMDP state is assigned a score,

labeling how useful it has been in previous solution at-
tempts. Usefulness of a state depends on how close it has
been to previous solutions and is defined as;

λj = min
θi∈Γ
||Pj − θi|| (2)

where θi is a state traversed in the found solution Γ.
Scores are normalized to have a value between 0 and 1
for easier scaling later on:

λ̂j =
λj

max(λ0, λ1...λn)
(3)

Waypoint neighborhood: The neighborhood of a
given waypoint is dependent on its surrounding states
scores. If a waypoint is surrounded by states with high
scores, its neighborhood should be smaller, indicating
high probability of feasibility in that area. Thus, the
neighborhood of waypoint wi is given as:

γi = 1−
∑
λ̂j∈Λi

λ̂j
|Λi|

(4)

where Λi is the scores for the set of states within a dis-
tance, di, of wi. The value of di is chosen to balance
between exploration versus exploitation and can be low-
ered as the algorithm advances.

Waypoint movement: Each waypoint is moved to-
wards close states with high state scores:

∆xi =

[
Pi −

(
arg min
s∈Sp

||Pi − s||
)]
· ε (5)

where ∆xi is the displacement of Pi, Sp is the set of
states within distance dp = di and ε is a scaling factor
defining how far to move towards the state with highest
score.

Adding/Removing waypoints: After moving way-
points, all waypoints distances to all other waypoints are
calculated and waypoints are added or removed based on
distances between them. If a waypoint is contained in
another waypoints neighborhood, it is removed. To guar-
antee that there always exists a way from the start belief
to the end state, waypoints are added if the neighborhood
of a waypoint does not reach halfway towards its nearest
waypoint neighbor.

Stepsize alteration: As the computational bottleneck
of POMDP solutions is the number of transitions, a fixed
amount is wanted to ensure that the model is always
tractable. As we do not adjust the number of actions per
state the only variable determining the number of transi-
tions is the number of states. The maximum number of
states given a set of waypoints is bounded by

|Sbound| ≤
∑

{Pi,γi}∈W

(γi
δ

)n
(6)

where δ is the stepsize and n is the dimension of the
state space. Distances between states are altered accord-
ing to the expected amount of states included in waypoint
neighborhoods, as follows:

δ =

∑

{Pi,γi}∈W
(γi)

n

|Sdesired|

1/n

(7)

where |Sdesired| is the desired number of states. Finding
the stepsize according to (7) is based on an estimate of
the number of states in (6) as some states may be counted
twice if they are close enough to more than one waypoint,
though the algorithm is not dependent on having an ex-
act amount of states but rather an upper bound to secure
tractability.

A pseudo-algorithm of the steps taken when updating
waypoints and stepsize can be seen in Algorithm 1. The
algorithm is executed after a number of successfully gen-
erated path and outputs a new set of waypoints with up-
dated neighborhoods and a stepsize for discretizing the
state space.

Algorithm 1 Update step of SA-DESPOT
procedure UPDATESTATESPACE(Γ, S, W)
. Set of traversed states in found solution Γ, discrete
state space S, and waypoints W.

for state scores λj ∈ S do
λj = minθi∈Γ ||Pj − θi||

NormalizeStateScores, (Eq. 3)
for waypoint wi = {Pi, γi} ∈W do

γi ← UpdateNeighbourhood, (Eq. 4)
∆xi ←FindDisplacement, (Eq. 5)
Pi = Pi + ∆xi

for waypoint wi = {Pi, γi} ∈W do
for waypoint wj = {Pj , γj} ∈W |j 6= i do

if ‖Pi − Pj‖∞ < γi then
RemoveWaypoint(wj)

di = minwj∈W−wi ‖Pi − Pj‖∞
if γj + γi < di then

AddWaypoint({Pi+Pj

2 , di − γi − γj})
δ ←UpdateStepsize, (Eq. 7)
return W . Return updated waypoints

4.1 Discussion of Proposed Method
As the proposed method relies on adding, removing

and adjusting state positions of a POMDP problem, an
argument that the problem remains solvable and will gen-
erally converge towards a more feasible discretization of
the workspace, is suggested.

The criterion for the problem to remain solvable is that
there always exists a path from the pick place and to the
end positions. When initializing, the path comes from
RRT* and is therefore per definition valid. At a given up-
date step, states will only get more concentrated around
the previous found valid path, which therefore will not
disappear after the update step, keeping the path solvable.

A problem may occur if one of multiple place posi-
tions rarely is chosen. The waypoint at that place position

will remain untouched, but with a large neighborhood re-
sulting in a sparse discretization. In such a scenario, if no
solution can be found of the POMDP, an RRT* path can
be generated and used in the same way as when initializ-
ing.

The local optimality of waypoint updates is inherited.
The updates are done on the basis of previously found
paths, which are locally optimal because of the POMDP
structure always seeking to find the best solution to the
problem. The local optimality of the suggested algorithm
comes from the fact that waypoints are moved towards
these optimal paths, reminiscent of a gradient descent
method, making it locally optimal.

5. TEST SETUP
This section describes how the problem of bin-picking

with grasp uncertainties is transformed into a POMDP
model and how tests are performed. The general frame-
work for defining and solving a POMDP is described in
Section 3.

The problem to be solved, as described in Section
1, contains a pick-and-place scenario with a UR5 robot
receiving information from an in-hand recognition sen-
sor while moving between the pick and place positions.
Though the sensor is out of scope of this article, worth
noting is that information is transmitted once for each
pick-and-place operation and we estimate the approxi-
mate recognition time as 1 second from when an object
is picked up.

Two different bin-picking scenarios are modeled as
POMDPs; one scenario receiving an object pose correc-
tion, and one receiving a discrete identification of the
grasped object. The two scenarios are briefly described
here:

Object Pose Correction (OPC)
When an object is picked in the bin, object pose uncer-
tainties may arise from sensor inaccuracies, grasp errors
or due to the cluttered environment in the bin. Instead of
utilizing re-picking, as done in Fig. 1, the in-hand recog-
nition sensor transmits an object pose correction, result-
ing in a slightly updated state of the system, the task is to
place the picked object in a desired fixed location.

Object Identification (OI)
When an object is picked from the bin, the type of the ob-
ject is not known. There are 4 different object types each
having a unique place position, represented by coordinate
systems in Fig. 4(c). At some point in time, the in-hand
recognition sensor will notify of which object type has
been grasped.

5.1 POMDP Model
Many of the POMDP elements described in the fol-

lowing sections are the same for both scenarios, and
therefore unless stated otherwise, applies to both scenar-
ios.

States: States are object poses defined as full 6D

Cartesian coordinates with an XYZ Euler angle rotation.
For all states, the robots tool center point (TCP) is placed
at the grasp position and checked for inverse kinemat-
ics solutions and collisions before they are added to the
model. To make sure that inverse kinematics solutions
will not result in the robot moving outside the linear path
in Cartesian space between states, the joints of the robot
are limited to make sure only one inverse kinematics so-
lution exists. A state, sf , indicating failure, collision or
in other ways unwanted behavior is also added in the end
of S.

For the OI scenario, each state furthermore contains a
number indicating the object type.

Actions: An action is the movement between two
neighboring states, meaning a positive or negative move
along or around one axis, giving 12 actions. Further-
more are actions combined in pairs matching all with
each other once, giving additional actions that can be e.g.
both a rotation and a translation or two translations, re-
sulting in a total 144 actions for each state. However, 12
combinations will result in no effective movement and 12
combinations will result in the same action being com-
bined with itself, which is not desired. Furthermore half
of the combinations are redundant as we do not distin-
guish between the order, giving 72 actions when all un-
desired actions are removed and the 12 basic actions are
included.

Transitions: Transition probability for a given state
and action is

p(si|sj , a) =

0, if @ si ∈ S : si = sj · Ta
0, if collision
1, otherwise

(8)

where collision is true if a collision occurs when doing
a movement from sj to si and Ta is the transformation
representing action a.

Start belief: For the OPC scenario, the start belief is
given by the initial uncertainties present when picking up
an object. These are approximated with Gaussian distri-
butions having a mean corresponding to that perceived of
the sensor system. As states are multidimensional, the
probability of starting in, or belief of, state s is

b(s) =
1√

(2π)n det(Σ)
e(−

1
2 (x−µ)T Σ−1(x−µ)) (9)

where Σ is the covariance matrix, µ is the object pose as
observed by the sensor system and x the state pose.

In the OI scenario, the start belief is uniformly dis-
tributed over the 4 possible object types with a 25 %
chance on each possibility.

Observations: Essentially there exist two kinds of ob-
servations in each step. Either no new information is
available about the system, that is no pose correction or

object identification is obtained, or new information is
available which means the in-hand recognition has hap-
pened. If no new information is acquired, an observation
o0 is received meaning that

b(si|sj , a, o0) = b(sj) (10)

If new information is gained, an observation corre-
sponding to the correct state, si, is received, meaning that

∀jb(si|sj , a, oi) = 1 (11)

Rewards: When performing any action in any state a
reward of rs = −1 is received, with two exceptions; if
an action leads to the end state a reward of rg = 1000 is
given and if the action leads to the fail state a reward of
rf = −1000 is given. It should be noted that the exact
values of these rewards are not important as long as rf �
rs � rg .

5.2 Test Procedure
To solve the adjusted POMDPs DESPOT is used, other

online solvers could also be used, but as DESPOT have
proven useful on a wide range of problems especially
those with a small optimal policy [2] and its asymptotical
optimality, it is chosen. It is initialized with 400 particles,
a search depth of 20 and a discount factor of 0.95, these
values are empirically found to optimize both the state
adjusting and general case. As the algorithm works in
real-time two steps are planned ahead to allow the robot
controller to blend through states, each planning step is
limited to 0.1s, which in the given case is sufficient to en-
sure that the next action is determined before the previous
has finished executing.

The algorithm is tested against plain DESPOT and to
gain a fair comparison 500 paths are executed from the
system shown in Fig. 1. To test whether the algorithm
converges towards consistent results, 10 runs are made
from scratch with different waypoint initializations.

The path needing planning starts in the right bin where
an object has been picked and ends to the left in the back
of the cell for the OPC scenario and in one of the four
place positions for the OI scenario. Object pick positions
vary in both translation and rotation and are in our tests
all contained in the right bin. All other actions, e.g. im-
age acquisition and moving back after placing an object,
are not considered as these do not include any uncertain-
ties. Actions are carried out as linear motions in Cartesian
space and waypoints and states are updated for every 10
solved problems, giving a total of 50 waypoint updates.

As described earlier the in-hand recognition sensor is
not available to us yet, thus we simulate corrections at a
random time for testing purposes. The time of correction
is determined by a normal distribution with µt = 1s and
σt = 0.05, the pose correction in the OPC scenario is es-
timated with a normal distribution µp = 0 and σp = 0.01
in translation and σr = 0.15 in Euler XYZ angles, where

µ and σ are respectively the mean and standard devia-
tion and translation is measured in meters and rotation is
in radians. The object identification in the OI scenario,
is chosen randomly with a uniform distribution over the
four object types.
|Sdesired| is found empirically to 10000 being the

maximum limit of tractable states with 60 actions, giv-
ing a total of 6 · 105 transitions, ε is set to 0.1 and
di = dp = 2 · δ. Tests are carried out on an Intel Core
i7 CPU 4600U with 8 GB RAM running Ubuntu 16.04
and a Universal Robots UR5 robotic arm with the CB3
controller.

6. RESULTS
This section detail results obtained when carrying out

the tests described in Section 5..
Fig. 3 shows the mean moving time of the robot

for plain and SA-DESPOT. The state adjusting approach
learns for approximately the first 20 to 25 waypoint up-
dates in the two scenarios after which no significant
change in moving times are observed. Plain DESPOTs
moving time stays the same throughout the entire experi-
ment.

DESPOT SA-DESPOT Lower bound

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Waypoint Updates

T
im
e
[s
]

(a)OPC

0 10 20 30 40 50
0

1

2

3

4

Waypoint Updates

T
im
e
[s
]

(b)OI

Fig. 3 Moving time on the two scenarios, for DESPOT,
SA-DESPOT and the estimated lower bound.

Table 1 shows mean moving times on the two scenar-
ios for times after SA-DESPOTs initial learning, repre-
sented by the vertical black lines in Fig. 3, which is ap-
proximated to be after 25 and 21 waypoint updates.

The difference between the two approaches is notable.
SA-DESPOT improves the moving times by 20.58% and

Table 1 Moving times for DESPOT and SA-DESPOT
on the two scenes. Results are shown as mean ± 95%
confidence interval along with the improvement.

OPC OI
Plain DESPOT 2.77±0.03 3.98±0.05
SA-DESPOT 2.2±0.02 2.83±0.05
Execution time reduction 20.58% 28.89%

28.89% on the two scenarios respectively, because paths
are shorter due to the higher state density in critical areas.
For comparison an estimated lower bound for each of the
motion problems is made, also seen in Fig. 3. The bound
is made by running the asymptotically optimal planner
RRT* from scratch for 500 seconds for each task and ex-
ecuting the path on the robot. The bound is not neces-
sarily the correct minimum execution time obtainable by
POMDP, but it is a fair estimation. As 4 different goal
positions are used in the OI scenario, the lower bound is
varying as each position is not placed equally far away
from the pick box.

Table 2 shows results from running SA-DESPOT from
scratch with 10 different initializations on the two sce-
narios. The Initialization column shows the number of
waypoints at initialization along with the length of RRT*
paths and mean moving times of DESPOT. The After
Learning column shows the number of waypoints after
the initial learning period of SA-DESPOT along with the
mean moving times after the learning period. As 4 ini-
tialization paths are made in the OI scenario, both path
lengths and the number of waypoints are higher than in
the OPC scenario. Variations are seen in both the num-
ber of waypoints and length of the found RRT* paths in
both scenarios, demonstrating diversity in the different
initializations. Noteworthy is the decrease of waypoints
and standard deviation of these in both scenarios, indicat-
ing that different initializations of SA-DESPOT manage
to converge towards similar results. The small deviations
in moving times of SA-DESPOT come from paths being
different in each iteration, as the information received is
randomly distributed. A more qualitative result is shown
in Fig. 4 where states and waypoints are shown before
and after 50 waypoint updates. In Fig. 4(a) and 4(c)
states are spread out in most of the workspace whereas
states are concentrated in a band in Fig. 4(b) and 4(d).
Noteworthy in Fig. 4(b) is that waypoint neighborhoods
get smaller when moving towards the goal position, seen
by the smaller area occupied by states because different
starting positions are used but all of them are going to the
same goal position. In Fig. 4(d) states are concentrated in
a band going out of the pick box and spreading out when
coming closer to the four place positions.

7. DISCUSSION
Results in Section 6 show that the proposed SA-

DESPOT algorithm learns for the first 20 to 25 updates
in the modeled application, and afterward flattens with

(a)OPC (b)OPC

(c)OI (d)OI
Fig. 4 States and waypoints when the two systems are initialized and after 50 updates. Black dots are waypoints while red
markers each represent states/object poses with translation and rotation. The green lines are added for easier visualization.

an obtained improvement of 20.58% and 28.89% com-
pared to plain DESPOT. While this is a fairly good result
further improvement may be achievable.

Since linear motions in Cartesian space are used, the
maximum speed limit is somewhat lower than that sug-
gested, as de- and accelerations occur more frequently
when performing the different actions compared to linear
movements in joint space.

The distance measure to determine whether a state
should be included or excluded is currently calculated at
the center of each waypoint, resulting in states surround-
ing waypoints instead of the path they are spanning. A
more proper approach is to find the distance to lines con-
necting waypoints, giving a more uniform distribution of
states.

Another side-effect of the before mentioned distance
measure is seen in Fig. 4. When initialized the neigh-
borhoods of each waypoint are quite high because explo-
ration of the workspace is wanted and avoiding getting
stuck in local minima. As the precision of Eq. (6) de-
pends on overlapping neighborhoods in waypoints, the
initial guess with large neighborhoods raise the number
of states being counted twice. When neighborhoods de-
crease, so does the number of overlapping states. Thus,
Fig. 4(a) shows fewer states than Fig. 4(b). When adding

and removing waypoints, the proposed method might re-
move a waypoint and afterward add another one close to
or equal to the removed one. While this is not critical
for the algorithm, it might be avoided, by only removing
a waypoint if it is inside two other waypoint neighbor-
hoods, instead of just one. Eq. (9) uses a multivariate
Gaussian distribution for all dimensions to determine the
starting probability of each state, while this is an appro-
priate approach for the translational dimensions, it is not
optimal for rotational dimensions and a more appropriate
probability function, e.g. von Mises-Fisher [17] would be
preferred.

8. CONCLUSION
This paper has presented a state adjusting POMDP

modeling approach (SA-DESPOT) for motion planning
with incomplete information, represented as object pose
and type uncertainties when doing pick-and-place opera-
tions. The method relies on a set of waypoints, which are
updated online based on past problems and used to in-
and exclude states of a POMDP model. Hereby the algo-
rithm ensures that a modeled POMDP problem remains
tractable, by limiting the number of states and actions to
a given maximum.

The online solving algorithm DESPOT is used to solve

Table 2 Results of running SA-DESPOT with different initializations 10 times on the two scenes. WPs represent how
many waypoints was created at initialization, RRT* is the Euclidean length of the found paths used for initialization and
DESPOT and SA-DESPOT are the mean moving times for the two algorithms after SA-DESPOT has stopped learning.

OPC OI
Initialization After Learning Initialization After Learning

Run No. WPs RRT DESPOT WPs SA-DESPOT WPs RRT DESPOT WPs SA-DESPOT
1 6 3.64752 2.7990 5 2.1806 12 15.2983 3.9555 8 2.9024
2 7 3.75111 2.7574 5 2.1665 14 13.4688 3.9510 8 2.8601
3 5 3.43324 2.8025 5 2.2087 9 18.0224 3.9440 8 2.7502
4 5 3.69016 2.7235 5 2.1678 15 15.8694 3.9772 8 2.8357
5 4 3.25115 2.8200 5 2.2087 11 14.641 3.8983 8 2.9121
6 5 4.07882 2.8183 5 2.2347 12 15.9135 4.0350 9 2.8203
7 5 4.29201 2.7950 6 2.2103 12 14.7931 4.0394 9 2.8586
8 6 4.84673 2.7768 5 2.1718 11 17.9372 4.0442 8 2.8602
9 7 3.08367 2.7301 5 2.2365 18 16.1606 3.9661 8 2.7372
10 3 3.1682 2.7429 5 2.2335 15 15.4278 4.0559 8 2.8435

5.3±1.25 3.72±0.55 2.77±0.03 5.1 ±0.31 2.2±0.02 12.9±2.61 15.75±1.406 3.98±0.05 8.2±0.42 2.83±0.05

the modeled POMDP in real time for a bin-picking sce-
nario. Moving times on the robot are compared to a plain
POMDP solved with DESPOT and shows a noteworthy
improvement.

REFERENCES
[1] R. D. Smallwood and E. J. Sondik, “The optimal

control of partially observable markov processes
over a finite horizon,” Operations Research, vol. 21,
no. 5, pp. 1071–1088, 1973.

[2] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot:
Online pomdp planning with regularization,” in Ad-
vances in neural information processing systems,
2013, pp. 1772–1780.

[3] S. M. LaValle, “Rapidly-exploring random trees a
new tool for path planning,” Iowa State Univ., Comp
Sci. Dept, Tech. Rep., 1998.

[4] Y. Huang and K. Gupta, “Collision-probability con-
strained prm for a manipulator with base pose un-
certainty,” in 2009 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. IEEE,
2009, pp. 1426–1432.

[5] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An
efficient approach to single-query path planning,”
in Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995–1001.

[6] T. F. Iversen and L.-P. Ellekilde, “Kernel density es-
timation based self-learning sampling strategy for
motion planning of repetitive tasks,” in Intelligent
Robots and Systems (IROS), 2016 IEEE/RSJ Intl.
Conf. on. IEEE, 2016, pp. 1380–1387.

[7] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive
workspace biasing for sampling-based planners,” in
Robotics and Automation, 2008. ICRA 2008. IEEE
Int. Conf. on. IEEE, 2008, pp. 3757–3762.

[8] A. R. Cassandra, “A survey of pomdp applications,”

in Working notes of AAAI 1998 fall symposium on
planning with partially observable Markov decision
processes, vol. 1724, 1998.

[9] O. Madani, S. Hanks, and A. Condon, “On the un-
decidability of probabilistic planning and infinite-
horizon partially observable markov decision prob-
lems,” in AAAI/IAAI, 1999, pp. 541–548.

[10] D. Hsu, W. S. Lee, and N. Rong, “A point-based
pomdp planner for target tracking,” in Robotics and
Automation, 2008. ICRA 2008. IEEE International
Conf. on. IEEE, 2008, pp. 2644–2650.

[11] J. Pineau, G. Gordon, S. Thrun et al., “Point-based
value iteration: An anytime algorithm for pomdps,”
in IJCAI, vol. 3, 2003, pp. 1025–1032.

[12] A. Brooks, A. Makarenko, S. Williams, and
H. Durrant-Whyte, “Parametric pomdps for plan-
ning in continuous state spaces,” Robotics and Au-
tonomous Systems, vol. 54, no. 11, pp. 887–897,
2006.

[13] J. Van den Berg, S. Patil, and R. Alterovitz, “Mo-
tion planning under uncertainty using differential
dynamic programming in belief space,” in Intl Sym-
posium on Robotics Research, 2011.

[14] S. Thrun, “Monte carlo pomdps.” in Advances in
Neural Information Processing Systems, vol. 12,
1999, pp. 1064–1070.

[15] H. Kurniawati and V. Yadav, “An online pomdp
solver for uncertainty planning in dynamic environ-
ment,” in Robotics Research. Springer, 2016, pp.
611–629.

[16] E. J. Sondik, “The optimal control of partially ob-
servable markov decision processes.” PhD thesis,
Stanford University, 1971.

[17] R. Fisher, “Dispersion on a sphere,” in Proceedings
of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, vol. 217, no.
1130. The Royal Society, 1953, pp. 295–305.

	Introduction
	Related Work
	POMDP Preliminaries
	Proposed Method
	Discussion of Proposed Method

	Test Setup
	POMDP Model
	Test Procedure

	Results
	Discussion
	Conclusion

