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Abstract: We present in this paper a simple, yet valuable improvement to the traditional k-Nearest Neighbor (kNN) 
classifier. It aims at addressing the issue of unbalanced classes by maximizing the class-wise classification 
accuracy. The proposed classifier also gives the option of favoring a particular class through evaluating a 
small set of fuzzy rules. When tested on a number of UCI datasets, the proposed algorithm managed to 
achieve a uniformly good performance. 

1 INTRODUCTION 

k-nearest neighbor (kNN) is a well-known and 
widely used classification algorithm. This is due to 
its simple implementation and relatively low 
computational cost compared to other classification 
methods. To classify an unseen pattern, the 
algorithm uses the labels of its k-nearest neighbors 
and applies a voting criterion (Duda and Hart, 1973). 

It has been shown that when both the number of 
patterns, N, and the number of neighbors, k, 
approach infinity such that k/N � 0, the error rate of 
the kNN classifier approaches the optimal Bayes 
error rate (Cover and Hart, 1967). In addition, (Tan, 
2005, Paredes and Vidal, 2006) have showed that 
the traditional kNN classifier can provide good 
results when dealing with large dataset with evenly 
distributed patterns among the different classes. A 
number of modifications have been proposed to the 
traditional kNN classifier to improve its performance 
(Zeng et al., Tan, 2005, Paredes and Vidal, 2006). 
Most of these modifications lie into two categories: 
modifying the distance measure (Paredes and Vidal, 
2006, Duda and Hart, 1973), or using a specific 
weighting mechanism, where weights are assigned 
to the neighbors, classes, features or a combination 
of them. (Dudani, 1976) has proposed to assign a 
specific weight to each neighbor, instead of equally 
weighing the k neighbors. Hence, a weighed k-
nearest neighbor (wkNN) classifier was introduced. 
It is important to mention that improving the 

classification performance by some of the above 
methods comes with the cost of noticeably 
increasing the computational time, and hence, losing 
one of the main attractions of the kNN classifier. 

An important aspect of many classification 
problems is that patterns are often not equally 
distributed among classes, and the different classes 
may vary in their degrees of importance. For 
instance, in medical diagnosis we may only have a 
small number of patients infected by a certain 
disease compared to the total number of persons that 
are tested. If the classification system merely 
attempts to maximize the overall classification 
accuracy without taking into consideration the 
importance of each class, then such a system would 
not be very beneficial. Many pattern classification 
methods, including kNN and most of its variants, do 
not take the class balance and class importance 
issues into consideration. Thus, in order to overcome 
this drawback, it is important to consider the 
sensitivity and specificity measures, which are 
defined as follows: 

True PositiveSensitivity
True Positive + False neagative

True NegativeSpecificity=
True Negative + False Positive

�

 (1)

In this paper we propose a new weighting 
mechanism in order to maximize the class-wise 
classification accuracy, and hence achieve the right 
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balance between sensitivity and specificity. 
Moreover, as the issue of favoring a particular class 
is application dependent, an extension to the 
algorithm is presented to accommodate this through 
the development of a simple fuzzy inference system. 

The next section describes the traditional kNN 
algorithm and number of its variants, followed by a 
description of the proposed algorithm. The issue of 
favoring a specific class is presented in section four. 
Section five presents the experimental results and a 
conclusion is given in section six. 

2 K-NEAREST NEIGHBOR 
CLASSIFICATION OVERVIEW 

A k-nearest neighbor (kNN) classifier is 
implemented by identifying the k-nearest neighbor 
training patterns to each unknown test pattern. The 
nearest neighbor can be found using a distance 
measure. The most widely used distance measure is 
the Euclidean, which is defined using the following 
formula: 

2
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where x = {x1,…xn} and y = {y1,…yn} are two 
samples of the same dimension. A more general 
distance measure is the Minkowski distance, which 
is defined as:  
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Note that the Euclidean distance is a special case 
of the Minkowski distance (with � = 2). Another 
special case of the Minkowski distance is the 
Manhattan distance, which is obtained by assigning 
� = 1. 

The voting of the k-nearest neighbors can be 
either unweighted or weighted. In unweighted voting 
the class labels are assigned according to the 
majority vote, hence, all neighbors have the same 
weight. In weighted voting the weight assigned to 
each neighbor i, wi, is proportional to its distance 
from the underlying test pattern, x, as follow (Yong 
et al., 2009):  
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where x1 and xk represent the nearest and farthest kth 
neighbor to the test pattern x respectively. It has been 
found that this weighting scheme can produce better 
results for most cases. 

As described in (Tan, 2005), the traditional kNN 
classifier, its weighted version and many of its 
variants fail to provide good results when dealing 
with unbalanced data, i.e. patterns are not evenly 
distributed among classes. Tan proposed a class-
weighting approach, which assigns a lower weight to 
the class that has large number of patterns. For a 
binary-class problem, the weight for each class i, is 
obtained by: 

� �1/
1

( ) / { ( ) 1,2}x x
i l

wi Num C Min Num C l
��

�
 

(5)

where � > 1, Num(Ci
x) represents the number of 

neighbors that belong to class i when considering the 
testing pattern x. Based on the recall and precision 
measures, this method achieved better results than 
the traditional kNN when applied to unbalanced text 
corpus.  

The next section describes our proposed 
weighting scheme. 

3 THE PROPOSED ALGORITHM 

Let’s consider the case of binary classification with 
two unbalanced classes such that Pr(C1) < Pr(C2), 
i.e., the probabilities of the two classes are different. 
Let L be the set of training patterns of size M, L1 the 
set of training patterns that belong to Class C1, and 
L2 the set of training patterns that belong to Class 
C2. If L1 and L2 consist of M1 and M2 patterns 
respectively, then M1 < M2, M1 + M2 = M. It is 
obvious that patterns of L2 will on average 
contribute more in identifying the k-nearest 
neighbors of the available patterns than those of L1. 
The basic idea of the proposed algorithm is to 
increase the influence of the underrepresented set, 
L1, in the identification of the k-nearest neighbors. 
Below are the implementation steps: 

� Compute the mean distance of the k-nearest 
neighbors from each pattern, xm, in L to the 
training patterns of Lj (denote it by ,j md , where 
j={1,2}, m=1:M). 

� Compute a distance weighting function for each 
class Cj. 
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� Given pattern xm that needs to be classified, the 
k-nearest neighbors are computed by re-
weighting the distances according to the 
distance weighting function. 

� Specifically we multiply all distances from xm to 
the training patterns of Lj by Qj. The resulting 
distances are then sorted and the smallest k 
neighbors are selected to give the new k-nearest 
neighbors. 

According to this procedure, if class C1 is 
underrepresented, then it is expected to have Q1< Q2. 
This will make patterns of L1 more represented in 
the new k-nearest neighbors. Please note that this 
procedure can easily be extended to deal with multi 
classes by simply making j ranges between 1 and the 
number of classes, J (the summation in the 
denominator of (6) would be over all classes). Also, 
we found that it would be better to impose a lower 
limit to the value of Qj in case that one of the classes 
is severely underrepresented. 

4 FAVORING A SPECIFIC CLASS 

The idea of increasing/decreasing the influence of a 
certain set, Lj, is used here to favor/disfavor class Cj. 
This is implemented through developing a simple 
Fuzzy Inference System (FIS), which has two 
inputs: Qj and a favoring factor, Fav, and one output, 
�. The membership functions of these variables are 
shown in Fig. 1. 
Firstly, Qj is calculated, as explained in the previous 
section, while Fav needs to be specified by the user. 
Both Qj and Fav will be used to evaluate the fuzzy 
inference system. If the user would like to favor Cj, 
then Fav needs to be assigned a value greater than 
0.5. A value that is less than 0.5 will disfavor Cj, 
while a value of 0.5 (neutral) means that none of the 
two classes will be favored. The output of the FIS, �, 
will be used to update the value for Qj, as shown in 
Eq. 7. � is allowed to range between �min and �max, 
which are calculated using Eq. 8, where � is a 
constant. This approach will be useful in producing 
Receiver Operating Characteristics curves (ROC), 
which is a graphical plot of the sensitivity vs. 1-
specificity. The ROC curve gives a better indication 
about the performance of different classifiers than 
merely relying on the overall classification accuracy. 
Good curves lie closer to the top left corner and the 

worst case is a diagonal line. Figure 2 shows 
different cases for ROC curves, case 4 represents the 
random guess, while a classifier with an ROC curve 
similar to that of case 1 is considered optimal 
(Westin, 2001). 
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Figure 1: Memberships of the inputs, Qj and Fav, and 
output � of the FIS. 

 
Figure 2: ROC curves for different classifiers. 

1) If Fav is Neutral then � is Around 0 
2) If Qj is Med and Fav is Decrement then � is High + 
3) If Qj is Med and Fav is Increment then � is High - 
4) If Qj is Low and Fav is Decrement then � is High + 
5) If Qj is High and Fav is Increment then � is High - 
6) If Qj is High and Fav is Decrement then � is Low + 
7) If Qj is Low and Fav is Increment then � is Low -

Figure 3: Rules of the fuzzy inference system. 

The fuzzy rules are shown in Fig. 3. The first 
rule basically implies that if Fav is neutral then Qj 
should not be changed. Rules 2 and 3 indicate that in 
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order to disfavor/favor Cj, given that Qj is medium, 
then Qj needs to be moved towards �min/�max 
(increased/decreased with a value proportional to 
Fav). The same concept is applied to rules 4 and 5. 
Rules 6 and 7 are introduced to control the amount 
of increment/decrement when Qj is already high/low. 

5 EXPERIMENTAL RESULTS 

We tested the algorithm on a number of real-world 
pattern classification problems. In the first 
experiment, the following kNN variants are 
considered: The traditional k-nearest neighbor 
classifier (kNN), the weighted k-nearest neighbor 
classifier (wkNN), the modified kNN according to 
the proposed distance measure described in section 3 
(mkNN), mkNN with weighted neighbors (wmkNN), 
the Fuzzy kNN (FkNN), adopted from (Keller et al.), 
the Evidential kNN based on the Dempster-Shafer 
theory of evidence (Denoeux, 1995) (DSkNN), the 
neighborhood component analysis (NCA) 
(Goldberger et al.), and Tan’s class weighting kNN 
(CWkNN) described above. 

Table 1: Dataset Description. 

Name # Patterns # Attributes C1/C2 ratio
Pima 768 8 0.54 
Hill 606 100 0.95 
Cmc 844 9 0.65 
Sonar 208 60 0.87 

Mamm 814 5 0.93 
Hearts 270 13 0.80 
Btrans 748 4 0.31 
Heart 267 22 0.26 
Bands 351 30 0.60 
Gcredit 1000 24 0.43 
Teach 151 5 0.48 
Wdbc 569 30 0.59 

Acredit 690 14 0.80 
Haber 306 3 0.36 

Ion 351 34 0.56 

In our experiments, we have used 16 datasets from 
the UCI repository website (Newman, 2007), as 
shown in Table 1. 80% of the patterns were used for 
training and 20% for testing. For each method 
several values of k have been used, k = {3, 5, .., 15}, 
and the one that gave the best performance using a 
cross-validation scheme was chosen. In order to 
evaluate the performance of each method, class-wise 
classification accuracy was used (Acj is the accuracy 
of class Cj). We also calculated the average 
classification accuracy of the two classes Acv= 

(Ac1+Ac2)/2. The Acv results of the eight kNN 
variants are presented in Table 2. The table shows 
that when kNN and wkNN produce different 
performance of the two classes, considerable 
improvement can be achieved using the proposed 
method (mkNN and wmkNN). The mean of Acv over 
all tested datasets show that both mkNN and 
wmkNN can noticeably improve the accuracy of the 
underrepresented class as well as Acv.  

It’s worth mentioning that CWkNN fails when 
applied to certain datasets as it does not takes into 
account the distances between neighbors of different 
classes, i.e. the weights only depend on the number 
of patterns that belong to each class. Additionally, 
this method needs tuning of the exponent �. On the 
other hand, CWkNN performed slightly better than 
the proposed method when applied to datasets that 
have relatively small number of pattern, such as 
Heart and HeartS, where in such case distances 
between neighbors of different classes may not give 
a good estimate of the weights. 

In the second experiment, the issue of favoring a 
particular class is considered by applying the FIS 
explained in section 4, we referred to it as FISkNN, 
to selected datasets from Table 1. The value of Fav 
was varied between 0.9 and 0.1, and the obtained 
results are shown in Table 3. We can see that in all 
of the examined datasets, FISkNN managed to adjust 
the value of Qj, such that quite a high classification 
accuracy of the desired class is achieved. This, of 
course, comes with the expense of reducing the 
accuracy of the other class, where the higher the 
accuracy of one class, the lower the accuracy of the 
other. As explained earlier, this represents an 
additional option given to the user in case that he/she 
wants to give more emphasis to a particular class. It 
is worth mentioning that the highest value of the 
mean of Acv is achieved around Fav = 0.5, which is 
basically the wmkNN described in section 3. This is 
also the value that produces the minimum difference 
between the mean of Ac1 and that of Ac2, i.e., the 
best compromise between sensitivity and specificity. 

Fig. 4 shows the ROC curves of the different 
classifiers for the Mamm, Bands and Pima datasets. 
As the traditional kNN and its variants do not give 
the option of favoring a particular class, the curves 
are drawn using three points only, {0,0}, {1,1} and 
the average class-wise accuracy of those classifiers. 
The proposed method on the other hand has the 
ability to construct the full curve and it clearly 
shows the behavior of the classifier. Those curves 
will be quite beneficial if the user would like to 
know the tradeoff of favoring a particular class. The 
graphs also show that the proposed algorithm 
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achieved on average much better result than the rest 
of the classifiers. 

 

 

 
Figure 4: ROC of the different methods. 

6 CONCLUSIONS 

In this paper we proposed a new modification to the 
traditional kNN classifier that is able to maximize 
the class-wise classification accuracy, and hence 
produce good compromise between sensitivity and 
specificity. In addition, a fuzzy inference system has 
been added to the classifier, which enables the user 
to favor a particular class. Results obtained using a 
number of UCI datasets demonstrate the ability of 
the proposed method in achieving better 
performance than the traditional kNN classifier and a 
number of its variants. 
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Table 2: Average class-wise accuracy for a selected UCI dataset using different classification methods. 

Dataset kNN wkNN mkNN wmkNN FkNN DSkNN NCA CWKNN 
Acredit 84.05±0.84 83.61±0.77 84.07±0.81 83.38±0.77 83.32±0.68 83.59±1.03 84.71±0.9 84.21±0.97
Bands 62.9±2.18 65.46±1.9 66.69±2.14 68.68±1.75 65.42±1.95 64.12±1.82 59.73±1.81 66.13±1.76
Btrans 61.84±0.9 61.52±0.84 66.16±1.17 65.06±1.61 53.73±1.07 62.83±0.68 53.24±1.16 64.81±1.06
Cancer 96.54±0.59 96.08±0.61 96.42±0.78 97.00±0.75 64.60±0.62 97.67±0.47 94.72±1.3 97.13±0.6 
Cmc 58.55±1.22 58.10±0.71 60.27±1.32 59.42±1.2 59.21±1.15 58.64±1.17 54.89±1.87 58.90±1.27

Gcredit 59.70±0.69 61.61±0.64 67.46±0.77 67.66±0.7 61.25±0.61 60.90±0.63 64.32±1.54 65.43±0.71
Haber 56.41±1.08 56.03±2.0 63.01±1.58 62.68±1.44 52.67±2.63 57.22±1.51 52.04±1.45 63.52±2.26
Heart 75.97±2.31 73.37±1.94 72.66±2.12 65.90±2.98 55.48±2.15 71.62±2.44 59.17±3.87 75.69±1.87

HeartS 78.39±1.87 79.34±2.01 77.4±1.98 77.63±1.72 79.73±2.05 78.22±1.94 79.26±1.86 79.20±2.03
Hill 55.48±1.25 56.35±1.04 55.52±1.43 57.52±1.05 58.69±1.31 54.27±1.44 52.14±1.27 52.96±1.18
Ion 78.32±1.47 81.9±1.26 93.55±0.53 93.88±1.03 77.78±1.55 85.28±1.01 83.73±2.16 79.80±1.42

Mamm 79.16±0.95 79.80±1.09 78.66±1.07 78.79±0.88 43.41±0.74 79.78±0.92 79.45±1.02 78.62±0.92
Pima 70.44±1.87 70.66±1.61 73.27±1.37 75.24±1.15 71.96±1.87 72.67±1.56 71.17±1.23 72.21±1.35
Sonar 80.89±1.63 83.67±2.26 83.25±1.19 86.52±1.48 81.84±1.6 80.44±1.7 68.57±3.19 80.84±2.16
Teach 63.15±3.41 65.01±3.88 58.51±2.91 64.16±3.06 36.23±2.46 60.21±3.55 60.07±5.64 64.62±4.6 
Wdbc 95.92±0.46 95.86±0.51 95.94±0.66 96.11±0.58 96.26±0.53 96.02±0.50 97.02±0.70 94.85±0.44
Mean 72.36±1.42 73.02±1.44 74.55±1.37 74.98±1.38 65.10±1.44 72.72±1.40 69.64±1.94 73.68±1.54

Table 3: Class-wise classification accuracy for different Fav values. 

  Fav % 
  0.9 0.8 0.7 0.6 0.55 0.5 0.45 0.35 0.2 0.1 

Pima Ac1 97.31 91.79 72.36 67.61 67.05 66.66 65.84 62.48 21.46 5.50 
 Ac2 25.63 47.01 73.98 77.73 78.32 78.42 78.60 80.63 95.00 98.18 
 mean 61.47 69.40 73.17 72.67 72.68 72.54 72.22 71.56 58.23 51.84 

Hill Ac1 83.08 74.18 52.26 48.24 47.76 47.60 47.44 46.42 30.44 20.76 
 Ac2 32.20 43.82 59.95 63.84 64.98 65.34 65.64 66.60 83.47 89.99 
 mean 57.64 59.00 56.10 56.04 56.37 56.47 56.54 56.51 56.96 55.38 

Cmc Ac1 78.83 73.66 62.01 57.79 57.46 57.31 56.85 53.32 32.10 26.25 
 Ac2 31.52 42.71 61.09 63.80 63.98 64.09 64.38 67.01 83.50 87.81 
 mean 55.18 58.18 61.55 60.80 60.72 60.70 60.61 60.16 57.80 57.03 

Sonar Ac1 100.00 100.00 91.75 84.84 84.41 83.95 83.95 80.51 42.91 23.60 
 Ac2 27.28 47.03 76.89 84.07 84.07 84.44 85.95 88.75 100.00 100.00 
 mean 63.64 73.51 84.32 84.46 84.24 84.20 84.95 84.63 71.45 61.80 

Mamm Ac1 89.92 88.27 84.32 83.70 83.70 83.57 83.57 82.80 73.08 68.84 
 Ac2 66.98 68.86 73.23 73.96 73.96 73.96 73.96 74.19 80.08 81.84 
 mean 78.45 78.56 78.78 78.83 78.83 78.76 78.76 78.50 76.58 75.34 

Hearts Ac1 92.96 88.12 82.92 79.98 79.98 79.98 79.98 79.06 61.20 53.83 
 Ac2 55.49 62.42 76.87 78.71 79.48 79.84 79.84 82.23 91.78 93.06 
 mean 74.22 75.27 79.89 79.35 79.73 79.91 79.91 80.64 76.49 73.45 

Btrans Ac1 58.39 55.94 44.53 43.15 43.41 42.88 42.66 40.33 24.30 18.40 
 Ac2 70.55 72.39 81.23 81.93 81.93 82.02 82.02 83.07 91.75 93.59 
 mean 64.47 64.17 62.88 62.54 62.67 62.45 62.34 61.70 58.02 56.00 

Heart Ac1 87.35 78.26 60.38 58.55 58.55 58.55 58.55 57.83 35.87 34.15 
 Ac2 13.79 30.39 64.56 69.87 70.10 70.60 71.04 74.50 93.87 95.22 
 mean 50.57 54.33 62.47 64.21 64.32 64.57 64.79 66.17 64.87 64.69 

Bands Ac1 99.60 95.78 79.07 71.60 69.88 69.47 69.11 63.06 22.46 10.10 
 Ac2 13.38 30.95 64.88 71.04 72.13 72.13 72.98 75.69 95.77 98.42 
 mean 56.49 63.36 71.97 71.32 71.00 70.80 71.05 69.37 59.12 54.26 

mean(Ac1) 87.46 82.84 70.25 67.09 66.77 66.55 66.27 63.98 41.68 32.91 
mean(Ac2) 38.08 49.80 69.49 73.02 73.49 73.71 73.98 76.01 90.18 92.99 
mean(Acv) 62.77 66.32 69.87 70.06 70.13 70.13 70.12 69.99 65.93 62.95 
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