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Abstract—Due to dramatically rising energy demand world-
wide power system is often run near the operational and technical
limits, where unexpected trivial disturbances can cause possibly
massive blackouts. Cyber attacks on smart grid communication
networks are one of the impending threats to cause large-scale
cascading outage. In contrast to the traditional cyber attack
protection techniques, this paper presents a recursive systematic
convolutional code based defending technique from the signal
processing perspective. This code introduces redundancy in the
system for protecting the grid information. Furthermore, an
optimal control law is designed to stabilize the power network.
Specifically, the performance index for control is converted
to a convex semidefinite programming problem. The proposed
controller can work well for any initial values. The efficacy of
the developed approach is verified through numerical simulations.
Results show that the proposed strategy has stronger attack
protection performance and the controller can stabilize the grid
in a fairly short time. This approach provides a fundamental
framework for the design of the smart grid energy management
system and reliable communication infrastructure scheme with
renewable integration applications.

Keywords—Cyber attack, Kalman filter, renewable microgrid,
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I. INTRODUCTION

Concerns associated with the growing costs of traditional
energy with limited resources, greenhouse gas emissions, relia-
bility, climate change, and security of the electric power system
have forced toward the development of renewable distributed
energy resources (DERs) all over the world [1]. These DERs
such as solar panels, wind turbine, microturbine, and biomass
are generally considered as environment-friendly, clean, and
safe power sources. A microgrid with multiple DERs is a
local energy network that integrates on-site electricity gener-
ation and storage with local loads. It can operate in parallel
with the power systems or in an island mode. Unfortunately,
the microgrid integration with distribution systems can have
substantial negative impacts on grid operation and protection
due to their intermittent power generation patterns [2]. That
means under fault and unexpected conditions, the smart grid
can experience severe monitoring and stabilization problems
which can lead to blackouts and power quality problems [3].

To alleviate severe instability and monitoring of large-scale
networks, one potential solution is to design a reliable and
secure energy management system (EMS). EMS is highly
dependent on measurements, and it has different signal pro-
cessing modules including state estimation program, control
functionalities, contingency analysis, forecasting, and optimal

power flow [4]. Therefore, cyber attacks that change the system
measurements can intrinsically cause wrong estimations within
these modules which can lead to potential systematic problems
and cascading failures [5]. In order to design an effective EMS,
our first step is to design a suitable communication infras-
tructure incorporating state estimation algorithm and flexible
control system. The state estimation can identify the system
operating conditions and give alarm for utility engineers to take
necessary actions if there is any faults or attacks. Therefore, the
main function of state estimation is to estimate unmeasurable
quantities, remove measurement errors and detect the existence
of attacks. Following that the control algorithm is required to
stabilize the power network.

Recently, the topic of information security is gaining
interests in many research communities such as smart grid,
control, signal processing and communication communities
[6]. Indeed, a variety of state estimation methods has been
proposed for estimating the system states under cyber attack
conditions. Classic weighted least squares (WLS) method is
widely used for bad data detection and state estimation [7],
[8]. This method can estimate the system state accurately when
the variances of the measurement errors are well known [9].
But the cyber-attacks such as false data injection can pass the
bad data detection process, which can lead severe security and
outage problems. The work presented in [10], [11] illustrates
the least trimmed squares technique where the Jacobian matrix
and measurements are attacked. Nowadays, a Bayesian and
Neyman-Pearson based joint cyber attack detection and state
estimation is explored in [12]. After defining the cost function,
an optimal detection and estimation scheme is proposed un-
der the Bayesian formulation. Based on the Neyman-Pearson
theorem, the derived cost function is minimized under certain
hypothesis conditions [13]. Moreover, a joint likelihood ratio
test and maximum likelihood estimator is also widely used
in the literature. Though some fundamental state estimation
frameworks under attack conditions have been proposed but
all the results have ignored a reliable communication and its
corresponding dynamic state estimation algorithm.

It is not feasible for utility engineers to perform trial-
and-error at controller points to find out cyber attacks, so a
joint cyber attack protection and state estimation scheme is
necessary to apply a control algorithm to stabilize the power
network. Taking a scenario for example, an alteration in the
system state information by attackers may deceive the control
center with the fact that overloaded branches have secured
voltage and vice versa (or attacker changes the breaker statuses
of operational lines and marks them as open). Inspired by



the fundamental requirement to design a secure EMS against
attacks, this research considers the problem of estimating the
dynamic system states when a set of sensors is arbitrarily
corrupted by an adversary. The major contributions can be
summarized as follows:

• Renewable microgrid is modelled to obtain state space
equation where sensors are deployed to obtain mea-
surements. For protecting the system information from
attackers, recursive systematic convolutional (RSC)
code defensive scheme is proposed for introducing
redundancy into the system. This type of informa-
tion/communication infrastructure is well suited to the
needs of utilities with respect to cost, utility control,
cyber security, and ability to provide near real-time
two way communication.

• After estimating the system states together with the
proposed reliable communication network, we design
an optimal feedback control law to regulate the sys-
tem. Particularly, the performance index for control is
achieved by solving a convex semidefinite program-
ming problem.

• The efficacy of the develop approach is verified
through numerical simulations and it shows the pro-
posed method can accurately estimate the system
states after protecting impairments. Results also reveal
that the controller needs only 0.03 seconds to stabilize
the power network. By combing these approaches, a
novel framework is constructed in the green energy
and control engineering community which will shed
the light to design a reliable communication and smart
energy management system in future.

II. MICROGRID MODELLING AND CYBER ATTACKS

A microgrid is a subset of the smart grid extending from the
substation to smart buildings and individual clients. The mi-
crogrid is interfaced to the infinite bus power network through
inverters. Typically, there are N DERs connected to the main
grid. For the sake of simplicity, we assume that N = 4 solar
panels are connected through the IEEE-4 bus system as shown
in Fig. 1 [1], [20]. Here vp = (vp1 vp2 vp3 vp4)T denotes input
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Fig. 1: Solar panels are connected to the power network [20]
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voltages where vpi is the i-th DER input voltage. The four solar
panels are connected to the point common Couplings (PCCs)
whose voltages are denoted by vs = (v1 v2 v3 v4)T , where vi
is the i-th PCC voltage. Now the nodal voltage equation can

be written as follows:

Y(s)vs(s) =
1

s
L−1
c vp(s), (1)

where the coupling inductor Lc = diag(Lc1 , Lc2 , Lc3 , Lc4)
and Y(s) is the admittance matrix of the entire power net-
work incorporating four mico-sources. Based on the typical
specifications of the IEEE 4-bus distribution feeder [20], the
admittance matrix is given in (2). The discrete-time linear state
space system can be derived as follows:

x(k + 1) = Adx(k) + Bdu(k) + nd(k), (3)

where x(k) = vs − vref is the PCC state voltage deviation,
vref is the PCC reference voltage, u(k) = vp − vpref is the
DER control input deviation, vpref is the reference control
effort, nd(k) is the zero mean process noise and covariance
matrix is Qn, the state matrix Ad = I + A∆t and input matrix
Bd = B∆t with

A =

 175.9 176.8 511 103.6
−350 0 0 0
−544.2 −474.8 −408.8 −828.8
−119.7 −554.6 −968.8 −1077.5

 , (4)

B =

 0.8 334.2 525.1 −103.6
−350 0 0 0
−69.3 −66.1 −420.1 −828.8
−434.9 −414.2 −108.7 −1077.5

 , (5)

and ∆t is the discretization parameter.

In order to monitor microgrids, the utility company has de-
ployed a set of sensors around them. Thus, a linear relationship
between the measurement and state variable can be obtained
as follows:

z(k) = Cx(k) + w(k), (6)

where z(k) is the measurements, C is the measurement matrix,
and w(t) is the measurement noise with zero mean and the
covariance matrix Rw.

Generally speaking, in smart grids the communication
infrastructure is used to send information from sensors to EMS.
However, vulnerabilities of the infrastructure make modern
smart grids prone to cyber attacks. Typically, the aim of the
attacker is to insert false data into the measurements as follows:

y(k) = Cx(k) + w(k) + a(k), (7)

where y(k) is the measurements considering cyber attacks, and
a(k) is the false data inserted by the attacker [21], [22], [23].
It assumes that attackers have complete accesses to the system
information so that attackers can hijack, record and manipulate
data according to their best interest [6]. Interestingly, our target
is to secure the grid information from attackers so that the
power system can operate properly.

III. PROPOSED CYBER ATTACKS PROTECTION AND
COMMUNICATION SYSTEMS

Normally, the smart grid is likely to combine communi-
cation infrastructure, control and computation to improve the
efficiency, security and reliability [11]. Even though the com-
munication infrastructure for supporting the monitoring and
control of smart grid is secured, but it still can be vulnerable to
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the intended attacks. To design a reliable communication, the
uniform quantizer performs quantization to obtain bit sequence
b(k) from measurements. Then the RSC code is proposed to
add parity bits in the bit sequence. Generally speaking, the
RSC code is characterized by three parameters: the codeword
length n, the message length l, and the constraint length m
i.e., (n, l,m). The quantity l/n refers to the code rate which
indicates the amount of parity bits added to the data stream.
The constraint length specifies m-1 memory elements which
represents the number of bits in the encoder memory that
affects the RSC generation output bits. If the constraint length
m increases, the encoding process intrinsically needs longer
time to execute the logical operations. Other advantages of the
RSC code compared with the convolutional and turbo encoder
include its reduced computation complexity, systematic output
features and no error floor [24]. From this point of view, this
paper considers the (2, 1, 4) RSC code and (1 1 0 1, 1 1
1 1) code generator polynomial in the feedback process. The
first generator polynomial is the lower row in the Fig. 2, while
the second polynomial is the upper row in the diagram. So,
the code rate is 1/2 and there are three memories in the RSC
process where the logical operations are performed. At the end,

b(k) Bit 

sequence 

D DD+

+ +

+

Output 

2

Output 

1

1 1 0 1

1 1 1 1

R
S

C
 o

u
tp

u
t 

c
o

d
e
w

o
rd

N
o

is
y
 c

h
a
n
n

e
l 

D: Register

M
o
d
u

la
ti
o
n

s(k) 

SOVA 
decoding

Demodulation
and 

Dequantization
y d (k) r (k) 

y rd (k) 

Proposed state 
estimation and 
optimal control 

methods

+e(k) 

 

Fig. 2: RSC encoding process to protect the cyber attack.

the codeword is obtained from the RSC process which goes to
the modulation for transmission. The modulated signal s(k) is
passed through a noisy channel.

At the EMS, the received signal is:

r(k) = s(k) + e(k), (8)

where e(k) is the additive white Gaussian noise. The r(k) is
followed by the soft output Viterbi algorithm (SOVA) decoding
process. The SOVA algorithm computes a maximum likelihood
estimate on the code sequence from the received signals. This
algorithm traverses the entire trellis and traces back along the
maximum likelihood path with noting all path metrics [25],
[26]. The decoded output yd(k) is sent to the demodulation
and de-quantization module and then finally used for the state
estimation purpose.

IV. PROPOSED ESTIMATION AND CONTROL FRAMEWORK

Smart grid state estimation plays a key role in controlling
the performance of power networks. Typically, the predicted
system state estimate for the system (3) and (6) is expressed
as follows [27]:

x̂−(k) = Adx̂(k − 1) + Bdu(k − 1), (9)

where x̂(k−1) is the estimated state of the previous step. Then
the forecasted error covariance matrix is given by:

P−(k) = AdP(k − 1)AT
d + Qn(k − 1), (10)

where P(k − 1) is the estimated error covariance matrix of
the previous step. The observation innovation residual d(k) is
given by:

d(k) = yrd(k) − Cx̂−(k), (11)

where yrd(k) is the dequantized and demodulated output
sequence. The Kalman gain matrix can be written as:

K(k) = P−(k)CT [CP−(k)CT + Rw(k)]−1. (12)

The updated state estimation is given by:

x̂(k) = x̂−(k) + K(k)d(k). (13)

Finally, the updated estimate error covariance matrix P(k) is
expressed as follows:

P(k) = P−(k) − K(k)CP−(k). (14)

After estimating the system state, the proposed control strategy
is applied for regulating the system states.

The simulation result in the next section shows that the
proposed estimation technique is able to accurately estimate
the system state. Thus, according to the separation principle
[28, p. 427], we can implement the control law u(k) = Fx̂(k)
[29], where F can be obtained from solving the following state
feedback problem [29], [30], [31]:

u(k) = Fx(k), (15)

by minimizing the following objective function:

J =

∞∑
k=0

[x′(k)Qzx(k) + u′(k)Rzu(k)]. (16)

Here F is the state feedback gain matrix, Qz and Rz are
positive-definite state weighting matrix and control weighting



matrix. By using (15) and the standard trace operator, (16) can
be expressed as:

J =

∞∑
k=0

tr[Qzx(k)x′(k) + F′RzFx(k)x′(k)]

=

∞∑
k=0

tr[Qz + F′RzF]x(k)x′(k)

=tr[Qz + F′RzF]P, (17)

where P =
∑∞

k=0[x(k)x′(k)] and it can be written as follows:

P =

∞∑
k=0

[x(k)x′(k)]

=

∞∑
k=0

x(k + 1)x′(k + 1) + x(0)x′(0)

=

∞∑
k=0

(Ad + BdF)x(k)x′(k)(Ad + BdF)′ + x(0)x′(0).

(18)

Now (18) can be written as follows:

P = (Ad + BdF)P(Ad + BdF)′ + x(0)x′(0), (19)

whose feasibility is equivalent to

(Ad + BdF)P(Ad + BdF)′ − P + x(0)x′(0) ≤ 0,
(Ad + BdF)PP−1P(Ad + BdF)′ − P + x(0)x′(0) ≤ 0. (20)

By introducing a new variable H = FP, (20) can be rewritten
as follows:

(AdP + BdH)P−1(AdP + BdH)′ − P + x(0)x′(0) ≤ 0. (21)

Now according to the Schur’s complement, (21) can be trans-
formed into the following form:[

x(0)x′(0) − P AdP + BdH
(AdP + BdH)′ −P

]
≤ 0. (22)

In order to avoid repeating the optimization procedure for
every x(0), in the following, we attempt to find a mild
condition which ensures the validity of (22) for any initial
condition x(0).

Suppose x(0)x′(0) ≤ αI, where α is a positive scalar
number. Thus, (22) is sufficed if

(Ad + BdF)P(Ad + BdF)′ − P + αI ≤ 0. (23)

For (23), if γ > 0 we have:

(Ad + BdF)γP(Ad + BdF)′ − γP + γαI ≤ 0. (24)

By defining P̃ = γP and γ = 1/α, we have:

(Ad + BdF)P̃(Ad + BdF)′ − P̃ + I ≤ 0. (25)

Note that F will not be affected by the scaling parameter γ,
thus independent of any initial value x(0). So, for any initial
value, (22) can be sufficed by solving the following linear
matrix inequality:[

−P̃ + I AdP̃ + BdH̃
(AdP̃ + BdH̃)′ −P̃

]
≤ 0, (26)

where H̃ = FP̃. From (17), F and P̃ can be found by
minimising the following:

minimize
P̃,F

tr[Qz + F′RzF]P̃

subject to (26).
(27)

Based on H̃ = FP̃, (27) can be transformed as follows:

minimise
P̃,S,H̃

tr[QzP̃] + tr[S] (28)

subject to S > R1/2
z H̃P̃

−1
H̃
′
R1/2

z (29)
Hold (26).

According to the Schur’s complement, we can rewrite (29) as
follows: [

S R1/2
z H̃

H̃
′
R1/2

z P̃

]
> 0. (30)

Finally, the proposed optimization problem can be formulated
as follows:

minimise
P̃,S,H̃

tr[QzP̃] + tr[S]

subject to Hold (26) and (30).
(31)

So, the proposed feedback gain matrix is calculated as follows:

F = H̃P̃
−1
. (32)

V. RESULTS AND DISCUSSION

The system parameters are given in Table I. Moreover, the
considered cyber attack pattern is similar to the model in [6],
[21], [22].

TABLE I: System parameters for smart grid information
security problem.

Parameters Values Parameters Values

Qz diag(10−2, 10−2, 101, 10−3) Rz 0.01 ∗ I4
Codes generator (13/15)octal ∆t 0.0001

Quantization Uniform 16 bits Decoding SOVA
Code rate 1/2 Channel AWGN

Qn 0.0001 ∗ I4 Rw 0.001 ∗ I4

The performance is compared based on the mean squared
error (MSE) between the true and estimated states. First of
all, MSE versus signal-to-noise ratio (SNR) is depicted in Fig.
3. It can be seen that the proposed estimator provides better
performance in contrast with the existing approach in [21].
This is due to the fact that the RSC code is able to protect
impairments. Moreover, SOVA can also eliminate noises from
the received signal. Secondly, the system state versus time step
results are shown in Figs. 4–7. It can be seen that the estimator
provides satisfactory performance. It can also be seen that
attacks can worsen the accuracy of the system state estimation.
The inaccuracy of estimated system states by existing method
can directly deceive the utility engineer for taking suitable
corrective control actions and dispatch decisions, which can
lead to series of outages. In other words, the proposed commu-
nication infrastructure and estimation algorithm is well suited
to provide real-time two-way communication and defend cyber
attacks. Thirdly, the design control law is applied to the
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Fig. 3: MSE versus SNR comparison between proposed and
existing method.
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microgrid as its states dramatically increase over time. The
outcome is illustrated in Fig. 8. It is observed that the controller
needs about 0.03 seconds (k×∆t = 300∗0.0001) to stabilize
the system. Technically, it means that the developed approach
requires much less time compared with the standard time 1−5
seconds [32].

VI. CONCLUSION AND FUTURE RESEARCH

We have presented a centralized secure real-time mon-
itoring infrastructure and control method that achieves the
accurate state estimation and desired control performance. The
numerical simulation results have shown that the proposed
algorithm obtains better performance in contrast with the
traditional method. In other words, adding redundancy in the
system can mitigate the cyber attacks. Finally, the convex
controller design is able to stabilize the system within only
0.03 seconds. Therefore, this framework will assist to design
a green monitoring cyber physical system under the umbrella
of smart grid communication systems. Developing an efficient
and distributed state estimation to solve the cyber attack
problem will be an interesting topic for the future smart grid
research.
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