
The Backwash Effect on SQL Skills Grading

Julia Coleman Prior
University of Technology, Sydney, Australia

+61 2 9514 4480

julia@it.uts.edu.au

Raymond Lister
University of Technology, Sydney, Australia

+61 2 9514 1850

raymond@it.uts.edu.au

ABSTRACT
This paper examines the effect of grading approaches for SQL
query formulation on students’ learning strategies. The way that
students are graded in a subject has a significant impact on their
learning approach, and it is crucial that graded tasks are carefully
designed and implemented to inculcate a deep learning
experience. An online examination system is described and
evaluated.

Categories and Subject Descriptors

H. INFORMATION SYSTEMS

H.2. DATABASE MANAGEMENT

H.2.3 Languages

Subject descriptor: Query languages

General Terms
Management, Measurement, Performance, Design, Reliability,
Experimentation, Security, Human Factors.

Keywords
online examination, databases, SQL, SQL query formulation,
learning approaches.

1. INTRODUCTION
Constructing database queries in Structured Query Language
(SQL) is a pivotal skill required by many software developers.
This paper reviews the effect that grading strategies have on the
way that students learn and develop SQL query formulation skills,
and how to design the grading in such a way that it encourages the
students to engage deeply with the subject and to truly master
these skills.

The next section looks at what we should aim to achieve when
designing a database subject that includes SQL querying, and then
the grading approaches most commonly used in universities are
reviewed.

Section 3 reviews traditional, manual methods for testing
students, and their limitations. Section 4 introduces an online
system used for this grading in our department, and discusses how
it works. Section 5 discusses the evaluation of this approach, and
the conclusion summarises how the aims raised in Section 2 have
been achieved. Further development and use of this online tool is
also discussed in that section.

2. TEACHING, LEARNING AND
GRADING SQL QUERY FORMULATION
SKILLS
In our department’s introductory database subject, one of the
major learning outcomes is that a student is able to construct
useful SQL queries.

Biggs’ concept of alignment [1] suggests that to foster a deep
learning approach by students, grading practices need to be
integrated with teaching and learning activities and the learning
outcomes. Biggs describes the impact that the grading method
has on the student’s learning approach as the ‘backwash effect’
[1]. The grading method should encourage students to take a
deep learning approach, not enforce a surface one.

Together with Ramsden’s suggestion [11] that the type of grading
‘shapes the curriculum’ and strongly influences the student’s
learning approach, it would seem that grading a student’s SQL
skills online, and in a manner similar to how they will use SQL as
software professionals, would encourage them to adopt the same
tactic in their learning approach.

Also, Toohey [13] states that giving students practical,
professional tasks to perform for grading has ‘clear relevance’ to
professional education. Ramsden [11] quotes Newble and Clarke
who established the principle that problem-based learning
simulates the type of problems met in professional life and is
‘more likely to encourage students to adopt a deep learning
approach’.

In the light of the above, we defined the following three-fold
objectives for teaching SQL query formulation skills:

a) to grade students using an approach that accurately
determines their individual SQL query formulation skills;

b) to grade students in a manner that closely replicates the way
that they will use their SQL skills in real-world software
development, as described; and

c) to encourage students to practice and develop their SQL
skills online.

While designing the grading with Biggs’ backwash effect in mind,
we also considered Toohey’s factors for selecting a grading
method [13]:

i) validity of the grading, which is how accurately it reflects the
learning objectives for the subject;

ii) reliability of the grading, where a highly reliable method is
one where work submitted for grading on different occasions
should return similar results;

iii) how well the grading leads to and enables real learning: as
previously mentioned by other authors [1], [11] i.e. the way
that work is graded has an enormous influence on the
approach that a student takes to learning in a subject.

Usually only one SQL statement is necessary to get a useful result,
and these statements are very short (relative to the complete
computer program that would be necessary to fulfil a similar
purpose using a conventional programming language). Thus,
there is the perception that it must be relatively simple to learn to
write SQL queries. In fact, it is a challenging skill and ‘students
have many difficulties learning it’ [9]. Mapping from a problem
statement describing what information is required from the
database into an appropriate SQL statement is not easy, as when
an SQL statement is executed the database software performs
numerous operations that are imperceptible to the programmer. It
is particularly difficult if one cannot see the result set that would
be returned from the database when the query is executed.

Yet this is how students are often expected to construct SQL
queries when they are being graded in this skill. The way that a
professional software developer usually creates SQL is similar to
Schön’s ‘talkback’ [12], where a practitioner makes a design
decision, tries it out and then modifies the solution according to
the result of their interaction with the design situation.
Professionals verify the results of this preliminary query once it
has been executed online, and if it does not accurately return the
required information, they refine the SQL query and re-execute it,
repeating the verification and refinement steps until they are
satisfied that the query is returning the desired results.

Ideally, then, in both learning and grading, it would be beneficial
to students to be able to verify their solution for each question by
executing the SQL statement and comparing their answer with the
required results (data set). This immediate feedback on the
validity of their solution would guide them to what amendments
they need to make to their query design.

3. CONVENTIONAL SQL SKILLS
GRADING
One grading approach is to give students a set of problems
(descriptions of information that needs to be retrieved from the
database) and to ask the students to construct SQL queries as the
solutions. This may be in the form of a paper-based assignment to
be submitted or as a supervised, written test. This is the grading
route taken by numerous universities in their introductory
database subjects [4], [7], [10] and [14].

The problem that we found in our department using this approach
is that students were passing the subject, but they did not
necessarily have the requisite SQL skills. As the assignment or
test is submitted as a written document, it is not a motivation for

students to practice their query construction skills online, and
verifying them against a database, which is how they will use
these skills professionally.

Constructing SQL queries is a practical skill, and cannot be
gained without significant effort and repeated online practice.
Most students do not put in this effort; after all, they are not
graded in this way. As we have discussed, the type of grading that
they will experience significantly influences students’ learning
strategies for a particular subject [1], [11]. Even students who
have conscientiously practiced writing out queries will not
develop their skills in a useful, long-term manner. One of the
difficulties for a student is conceptualising and visualising the
result of an executed SQL statement. Constructing queries online,
executing them, visually verifying the result and, if necessary,
modifying the query until it gives the correct result internalises the
query formulation skill. It incorporates the idea of learning from
one’s mistakes. Immediate feedback is an important component
in the learning loop; Mehta and Schelicht [8] describe this as one
of the advantages of their computerised grading in large classes.

4. AN ONLINE ENVIRONMENT: AsseSQL
In our department we have introduced an online test to grade
students’ SQL skills in the introductory database subjects, using
software that has been developed in-house specifically to address
the issues raised in section 2. There appear to be several systems
available that automate submission and testing of students’
programs for grading, for example, BOSS [6] but the authors have
not been able to find software for effectively grading SQL query
formulation skills.

There are also numerous software packages designed specifically
for teaching SQL query formulation skills, for example, WinRDBI
[3] and SQL-Tutor [9], as well as several web sites (e.g.
www.sqlator.com, www.sqlcourse.com) that enable students to
practice formulating and executing queries and giving them
immediate, individual feedback. These do not provide summative
grading, however, and students need a convincing reason to
motivate them to make use of such tools, or even database
management system software, directly.

A description of the online test software, AsseSQL, follows. All
the data about each test to be taken are stored in a database, for
example, test date, duration, total number of marks, number of
questions and type of SQL query to be tested in each question; in
other words, the design of the test. Also stored in this database is
a query pool – a selection of SQL problems and model answers
(i.e. queries) that test different types of SQL statements. The
structure of each test is such that although all the students in a
class will do Test1, for instance, each student will be given their
own unique version of Test1 when they actually take the test, as
questions for each student are chosen at random from the pool.
Assume that we design Test1 so that there are 5 questions in total:
• question 1 is a SELECT on one table with one WHERE clause
• question 2 is a SELECT on one table with more than one
WHERE clause, joined by logical operators
• question 3 is a SELECT on one table with a GROUP BY and a
HAVING clause
• question 4 is a SELECT on two tables with a natural join

• question 5 is a SELECT with a sub-query containing a simple
SELECT
In the query pool, there are a number of problems that could be
used for question 1. When a particular student logs on to do the
test, the program chooses one of these queries for this student’s
question 1, and similarly for each of the other questions in the
test.
A second, ‘scenario’ database contains the tables against which
both the model solutions (queries) and the students’ attempts for
each test question are executed. For example, there might be an
Order Entry database containing Customer, Product and Order
tables for Test1. The questions for a test would require queries to
be constructed for querying data stored in this scenario database.
The students take the test in the faculty’s computer laboratories
under supervision. This is to ensure that it is the students
themselves who take the test. The test software is web-based,
residing on the faculty’s intranet. Two levels of security need to
be passed before a student can begin to take their test. The
student must first login to the intranet and in order for them to
actually start taking the test, a supervisor userid and password
must also be entered. This userid and password are different for
every test session, and are only valid for that test session. The
student is thus only given these details in the laboratory, once
every student is logged on and ready to begin the test, and no
student may leave the test venue until the end of the test session.
The test duration is fixed and is the same for every student, but
each student’s starting time is only recorded once they are through
both authorisation stages, and their test will be available to them
for the test duration (e.g. 60 minutes) from their individual
starting time. When the student’s time is up, their test is locked
and the student is not able to submit any more answers.
Once the student’s test is started, the first form presented to the
student lists their particular set of questions for their test. The
student may answer the questions in any order that they wish.
Furthermore, students may attempt each question as many times
as they wish, until it is marked correct, or their test time is up.
From this first form, the student clicks on the question that they
wish to answer and are shown the answer form. This displays the
question again, as well as the result set (of data) that should
appear when a correct answer (query) is executed. Displaying the
correct answer eliminates much of the potential for ambiguity in
the question, and is particularly useful for those students for
whom English is a second language. The students type their
solution (i.e. an entire SELECT statement) into a textbox. They
submit their answer and the SQL statement will be executed
against the scenario database e.g. the Order Entry database.
If the submitted answer is syntactically incorrect, an error message
is displayed. If the statement is executable, the data grid
containing the result of the student’s executed answer is displayed
beneath the answer text box. If these results are not the same as
the model solution’s, a message stating this is shown and the
student can compare their data result with the required one. The
student can amend their SELECT statement and re-submit.
Alternatively, they can elect to go back to the first form that lists
all their test questions and choose to answer another question.

The program marks the student’s answer by comparing the data
set produced by the execution of the model answer to the data set
that results from the execution of the student’s answer. If the data
sets are exactly the same, the student’s answer is flagged as
correct; otherwise it is flagged as an unsuccessful attempt.
If the student’s answer is correct, they will be taken back to the
first form again automatically. Any correctly answered questions
will now have messages next to them stating this. Questions that
have been attempted but are not yet correctly answered also have
a relevant message next to them. The student can then click on
the next question that they wish to answer.
The student may logout of the test at any time, but will be able to
login again and attempt any incomplete or incorrect answers until
their individual test time limit is up. In the same way, if their test
window is closed accidentally, they will be able to login again and
continue from where they left off, providing that their test time is
not up.
The students are able to practice using the SQL test software.
Ramsden [11] emphasises that a grading task should not be
threatening and states that the lecturer should do everything
possible to ‘lessen the anxiety’ raised by grading. A mock test is
set up and the students are able to try this out as often as they
wish, in a non-test atmosphere, for several weeks before the actual
test near the end of the semester. The student may take the mock
test as often as they wish. Thus, students who use the opportunity
to practice with the online test software are quite comfortable with
the approach at the actual test time, and are able to focus on
constructing the queries to be graded, without having to be
concerned about how the software works and how to interact with
it. The mock test also gives the students further opportunity to
practice their query formulation skills online. They are given a
data model and description for the actual test’s scenario database
to study a week before the test date, so that they do not have to
consider what the tables and relationships represent during the
limited test time.

5. EVALUATION – STUDENTS
Housego and Freeman [5] point out that technology-supported
teaching is effective only when based on teaching practices which
motivate students to adopt a deep learning approach, not because
information technology is used simply for its own sake. To verify
that AsseSQL is effective, we have evaluated it using structured
questionnaires, focus groups and an online discussion forum.
Also, the manual remarking of a percentage of the submitted tests
is undertaken each semester to verify that the marking was done
fairly and as expected by the software.

A structured questionnaire is given to all students who take the
online test. The students are asked to agree or disagree with each
of the statements shown below in Table 1. In the most recent
semester in which the test was run, 92% of the students who took
the test completed the questionnaire. These results are indicated
in Table 1, where the percentages of ‘Agreed’ responses for each
statement are given.

Table 1. Percentage of ‘Agreed’ Responses to Statements in
the Online Test Evaluation Questionnaire

 Statement
%
Agreed

Q1
I was more motivated to practice SQL because of the
online test than with a written assignment. 85

Q2
I was more motivated to practice SQL because of the
online test than with a written test. 85

Q3
Practicing SQL queries interactively and online helped me
to improve my SQL query skills. 92

Q4
I preferred taking the online SQL test to taking a written
SQL test. 88

Q5
I preferred taking the online SQL test to submitting a
written SQL Assignment. 84

Q6
I have an accurate idea of my ability to construct SQL
queries after taking the online test. 78

Q7 The time given for the test was reasonable. 67

Q8 The marking was consistent and fair. 87

In the formal questionnaires, the focus group discussions and
informal, open-ended feedback, a significant majority of students
concurred that anticipating the online test influenced the way that
they went about learning and developing SQL query skills. One
student in a focus group commented that AsseSQL ‘forced’ him to
develop SQL skills in a way that a written test would not
necessarily do, partly because of the practice software but also
because it was a more realistic approach and therefore more
interesting. Other remarks included ‘the online test pushed me to
practice online as often as possible’ and ‘it [the online test] is
really a good way to motivate students to learn SQL’. Clearly,
this grading approach fulfils our third aim of encouraging students
to practice and develop their SQL skills online, as well as
Toohey’s third factor referring to the grading’s impact on real
learning.

The evaluation process indicated that students consider the
grading closely replicates the way that they will use their SQL
skills in real-world software development, fulfilling our second
aim. Some of the students were concurrently completing a
semester of industrial practice with software development
companies, which is a required part of their degree program.
Significantly, this group of students were extremely positive about
the use of AsseSQL for SQL skills grading, particularly in the
context of this second aim.

In the focus group discussions, most students agreed that the first
of Toohey’s factors above - that the grading accurately reflects the
learning outcomes - was fulfilled by the online test. Aligning the
grading task with the learning outcomes for the SQL part of the
subject was one of the major motivations for introducing the
online test.

One of the advantages of using a computer to perform tasks is that
it is consistent, and ideally suited to doing the same tasks over and
over without the repetition adversely affecting its performance as
it does with humans. When manually marking hundreds of
students’ answers it is extremely difficult, and in fact very
unlikely, that an academic staff member will be able to mark
students’ answers completely consistently and fairly. With
AsseSQL, answers producing the same results will always be
marked reliably and accurately and it thus complies with the

second of Toohey’s factors, reliability. The students support this
view (see Q8 in Table 1).

6. EVALUATION – TEACHERS
Among several advantages of using AsseSQL, perhaps the one
most appreciated by teachers is the reduction in marking. With
1000 students enrolled in the last 3 semesters, the marking load
would have been immense without AsseSQL. It is especially
difficult and time-consuming to establish that a non-trivial SQL
query is wrong without actually executing it.

Academic staff appreciate the re-use of some of the queries for
different tests, thus saving test-setting time. After every test the
testing space grows – more queries are added for each test,
occasionally new databases are added as well, and this increases
the ‘randomness’ of future customised tests.

AssesSQL automatically produces electronic records of every
student’s individual tests – all questions, all their answer attempts
and their final marks, the latter saving the mundane task of marks
entry.

Teachers can retrieve statistics on several aspects of the tests. For
example, one statistic extracted is the number of attempts made by
students for each question, an indication of which type of queries
students struggle with. Ramsden [11] emphasises that one of the
functions of grading should be that we use it as feedback to
improve our teaching approaches.

Whilst limiting plagiarism is not the prime aim of the test, it is an
added bonus. It would be extremely difficult for any student to
share questions and/or answers with another student. Each
student takes their own customised test, so it is very difficult for
any student to help another one. The latter is also unlikely in a
situation where each student will probably be more focussed on
trying to get the answers correctly constructed online in a limited
time.

Possibly the area that requires the most attention and care in
AsseSQL is the setting of the test questions. It is crucial that the
problem statements are precise and unambiguous, so that students
are certain which information should be retrieved from the
database. Although the displayed ‘model answer’ results help
clarify this, it is nonetheless important to have several staff
members work through and try to answer the questions without
seeing the model answer to check for any imprecision or
ambiguity. Whilst this may not reflect the real development world,
where a client’s ambiguous requirements can be clarified and
verified, in a test situation students do not have the same
opportunities to check that their interpretations are valid.

One concern that was raised by teaching staff was that students
can design a contrived solution for a particular question that is
only valid for specific results (i.e. those shown in the sample
output). For example, where the student is required to code a
reasonably complicated query that returns only a few rows and
columns, one of which has the values ‘1, 5, 7, 9’, the student
could instead simply write:

SELECT <appropriate columns> FROM <table>

 WHERE <column> IN (1,5,7,9);

In the current version of AsseSQL, these attempts to effectively
cheat are detected by a quick manual scan through an

automatically generated report. This scan is not terribly onerous
(and considerably easier than conventional marking), as the report
only shows student answers that differ significantly from the
model answer queries. However, the next version of AsseSQL
will make it very difficult to cheat in this manner: the model
answer query and each student’s answer will be run against a
second scenario database, not visible to the student. This second
database has the same model answer as the first database, but it
has slightly different data. To be marked correct, a student answer
will need to give the same answer as the model solution for that
second database. The type of modifications to the data would be,
for instance, different minimum and maximum values for groups
of rows, and changes to the number of rows in a table.

The system uses binary marking – a student’s answer is marked
either ‘correct’ or ‘incorrect’, no partial marks are given. A
concern has been expressed that a poor answer that is far from
correct and an answer that only has a minor error will receive the
same result (i.e. incorrect), and that this is unfair on the student
with the ‘better’, almost correct answer. Firstly, as far as the
computer is concerned, it does not accept partially correct
instructions, a query (or any programming statement) is either
right or wrong, and novice developers have to deal with that.
Partial mark allocation tends to reward effort rather than
correctness. Secondly, a student is given a reasonable indication
of what is wrong with their query, and where the problem is in
their query, by the system’s error message given immediately after
they have submitted their answer, and a student who has practised
regularly and mastered the requisite skills will be able to identify
and fix the problem timeously. As indicated by the student
evaluation, most students are comfortable with the binary marking
approach.

Finally, it has been suggested that encouraging students to take a
‘hands-on’ approach to developing their SQL query skills may
have the undesirable side-effect of inculcating a ‘trial-and-error’
approach to query formulation without doing any prior design.
We teach a defined, step-by-step process to designing any SQL
query, reinforced in tutorials and laboratory classes. If a student
has not mastered this type of design process by implementing it
regularly in conjunction with online practice, they will not be able
to formulate queries correctly, especially within a limited time as
with the online test. This message is conveyed repeatedly to the
students during the semester.

7. CONCLUSION
An online examination system for SQL queries was introduced
and the results of its evaluation have been described. Our goal
was to provide a system that aligned the grading strategy with the
way students will use SQL after graduation, to encourage deep
learning. The results of the students’ evaluation indicate that our
system achieves that goal. Future work will extend the tool for use
in courses teaching material other than SQL queries.

8. REFERENCES
[1] Biggs, J. Teaching for quality learning at University.

Buckingham, Open University Press,1999.
[2] Culwin, F. Web hosted assessment – possibilities and

policy. In proceedings of ITiCSE’98 Dublin, (Ireland, 1998),
p55-58.

[3] Dietrich, S.W., Eckert, E. & Piscator, K. WinRDBI: a
windows-based relational database educational tool. In
proceedings of SIGCSE’97, (1997), p126-130.

[4] Grundy, F. Module description for COMP-207 : Databases,
Department of Computer Science, Keele University, United
Kingdom, 2001. Available online at:
http://www.keele.ac.uk/depts/cs/modules/0102/level2/comp207.html
[accessed 27/09/02].

[5] Housego, S. and Freeman, M. Case studies: integrating the
use of web-based learning systems into student learning.
Australian Journal of Educational Technology, 16(3),
(2000), p258-282.

[6] Joy, M. and Luck, M. Effective electronic marking for on-
line assessment. In ITiCSE’98 (Dublin, 1998), p134-138.

[7] Maciaszek, L. Study guide for INFO603 Database Systems,
School of Business and Informatics, Australian Catholic
University, Sydney, Australia, 2001. Available online at:
http://www.comp.mq.edu.au/~leszek/uni_courses/603_01StudyGuid
e.pdf [accessed 27/09/02].

[8] Mehta, S.I. and Schlecht, N.W. Computerized assessment
technique for large classes. Journal of Engineering
Education, (April 1998), p167-172.

[9] Mitrovic, A. Learning SQL with a computerized tutor. In
proceedings of SIGCSE’98,(1998), p307-311.

[10] Paradis, F. and Barbour, R. Course outline for 0657.219B
Database Practice and Experience. Department of Computer
Science, University of Waikato, Hamilton, New Zealand,
2002. Available online at
http://www.cs.waikato.ac.nz/Teaching/0657.219A/course_outline.ht
ml [accessed 27/09/02].

[11] Ramsden, P. Learning to teach in higher education.
London, Routledge, 1992.

[12] Schön, D. A. Educating the reflective practitioner: toward a
new design for teaching and learning in the professions. San
Francisco, Jossey-Bass, 1987.

[13] Toohey, S. Designing courses for Higher Education.
Buckingham, Open University Press, 1999.

[14] Webster, M. Course outline for ZXX-4506 Introduction to
Databases with Oracle and SQL, Dept of Information
Services, University of Bangor, Wales, 2002. Available online
at: http://www.bangor.ac.uk/is/teaching/postgrad/postgrad.shtml
[accessed 27/09/02].

	1. INTRODUCTION
	2. TEACHING, LEARNING AND GRADING SQL QUERY FORMULATION SKILLS
	3. CONVENTIONAL SQL SKILLS GRADING
	4. AN ONLINE ENVIRONMENT: AsseSQL
	5. EVALUATION – STUDENTS
	6. EVALUATION – TEACHERS
	7. CONCLUSION
	8. REFERENCES

