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ABSTRACT 

We present a novel deep learning framework for crowd count- 

ing by learning a perspective-embedded deconvolution net- 

work. Perspective is an inherent property of most surveillance 

scenes. Unlike the traditional approaches that exploit the per- 

spective as a separate normalization, we propose to fuse the 

perspective into a deconvolution network, aiming to obtain a 

robust, accurate and consistent crowd density map. Through 

layer-wise fusion, we merge perspective maps at different res- 

olutions into the deconvolution network. With the injection of 

perspective, our network is driven to learn to combine the un- 

derlying scene geometric constraints adaptively, thus enabling 

an accurate interpretation from high-level feature maps to the 

pixel-wise crowd density map. In addition, our network al- 

lows generating density map for arbitrary-sized input in an 

end-to-end fashion. The proposed method achieves competi- 

tive result on the WorldExpo2010 crowd dataset. 

Index Terms— crowd counting, deconvolution network, 

perspective 

 
 

1. INTRODUCTION 

 
Counting pedestrians and measuring crowd density play an 

essential role for crowd monitoring applications including 

physical security, public space management, and retail space 

design [1]. Traditional detection-based methods attempt to 

detect individuals in the crowd via either direct localization 

or trajectory clustering [2, 3]. Detection-based methods of- 

ten suffer from severe occlusions, cluttered backgrounds, and 

drastic illumination changes. As an alternative, regression- 

based counting methods recently gain more attention and re- 

ported state-of-the-art performance [4, 5]. By learning a map- 

ping function from feature representations of crowd segments 

to corresponding counts, regression-based methods empha- 

size the holistic depiction of the crowd, sidestepping the chal- 

lenging task of localizing individuals in complex scenes. 
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Fig. 1. Generation of crowd density map of an image. The 

right-side density map is obtained by the convolution of the 

left-side sample image and the location-aware Gaussian ker- 

nels, whose size are determined by the perspective map. Best 

viewed in color. 

 

 
Perspective distortions need to be compensated in 

regression-based crowd counting methods. Due to perspec- 

tive variations in surveillance scenes, features extracted from 

objects close to the camera will account for a larger portion 

of the scene than that extracted from objects far away [4]. To 

mitigate this issue, perspective normalization is applied be- 

fore local features are fed into the regression function [1, 6, 7]. 

However, when the normalization is imposed as a weight for 

each pixel, the estimation performance becomes very sensi- 

tive to inherent normalization errors. 

Recently, deep learning has shown strong performance in 

various visual understanding tasks [8, 9]. As a consequence, it 

has also been introduced for crowd counting. Still, how to in- 

corporate scene perspective under deep learning frameworks 

is remaining an open question. To this end, Zhang et al. [5] 

make the first attempt by extracting candidate training/test 

patches based on perspective. Each patch is extracted at a 

size proportional to the perspective value at its corresponding 

location and then normalized into a fixed size. In this way, 

scale variations of people are compensated outside the net- 

work. However, this scheme cannot be naturally merged into 

the deep architecture, thus it is laborious not only in the train- 

ing phase but also in the testing stage. It is also inevitable 

that spatial and contextual information will lose after warping 

patch proposals [10]. 

We have also observed that density map based regres- 
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sion, which has been a common framework of crowd count- 

ing methods [7, 11, 5], is closely related to the perspective. 

A crowd density map assigns each pixel a likelihood score of 

being a part of the crowd in the input image. As for the ground 

truth of regression functions, density maps are generated via 

the convolution of correspondingly-sized Gaussian kernels at 

each annotation point of pedestrians with the original image. 

Figure 1 illustrates this process.   To accurately model peo- 
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ple in various sizes, Gaussian kernel parameters are selected 

based on the perspective. Our intuition is that the regression 
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objectives implicitly encode the scene perspective, thus incor- 

porating perspective directly in the inference process of the 
Conv + Relu Fusion Upsampling Pooling 

neural network would provide imperative guidance, boosting 

the density map accuracy. 

Motivated by the above observation that the ground truth 

regression objective (crowd density map) is generated based 

on the perspective, and also to fully exploit perspective 

within deep learning framework, we propose a perspective- 

embedded deconvolution network for crowd counting. In- 

stead of imposing perspective correction and feature learning 

process separately, we employ perspective conjuncted with 

the deconvolution network jointly. This allows more accu- 

rate interpretation from high-level feature maps to the crowd 

density map. Our network is built on top of convolution lay- 

ers. We construct a three-layer perspective pyramid and in- 

corporate each of them into the deconvolution network by in- 

serting multiple fusion layers. Unlike previous deep learn- 

ing based methods that produce downsamples output and use 

hard-coded interpolations, our network generates output that 

has the same size as the input, in an end-to-end fashion. This 

in-network guided upsampling can also be viewed as a gener- 

alization of existing methods. 

In the next section, we give an overview of the related 

work on density map based crowd counting, and recent ap- 

proaches for object counting using convnets. Then, we intro- 

duce our architecture with perspective-embedded deconvolu- 

tion network, and describe our experimental settings. Finally, 

we present experiment results on the WorldExpo2010 dataset. 

 

2. RELATED WORK 

 

Counting by regression Many significant methods have been 

proposed for object counting.  These methods can be mainly 

classified into three groups: counting by detection, counting 

by trajectory clustering and counting by regression. Howev- 

er, counting by detection or trajectory clustering [3, 2] meth- 

ods are fragile in crowded scenes with severe occlusion and 

clutter background. As an alternative, counting by regression 

methods [7, 4] learn a regression function from image fea- 

tures to the corresponding count number and avoid the hard 

task of localization of individuals. One remarkable work is 

counting through density estimation [1]. The key idea is to 

learn a continuously-valued density for each pixel, denoting 

its probability of being as part of the object.  This strategy 

Fig. 2. Structure of the proposed network. Layer type is de- 

noted by different colors. The fusion layer is implemented 

by concatenation, which is shown in the dashed box. Best 

viewed in color. 

 

 

avoid the foreground segmentation task in traditional count- 

ing by regression methods [4] , which is very challenging with 

the clutter background. Based on this innovation, Fiaschi et 

al. [11] pose density estimation as a structure learning prob- 

lem using random forest. In [12] an interactive system is pro- 

posed based on the simple ridge regression model instead of 

the costly regression model used in [1]. 

Counting by deep learning Deep learning has demon- 

strated powerful ability in many visual understanding tasks [8, 

13] and has also been introduced into counting. Zhang et al. 

[5] first propose to learn the density map based on convolu- 

tion neural network. However, their network incorporates the 

fully connected layer and is subject to fix-sized inputs, which 

is not very sufficient. Following this work, a multi-column C- 

NN is proposed in [14] by stacking the feature maps generat- 

ed by several convolution networks with different filter sizes. 

Similar network-stacking fashion is employed in [15], howev- 

er with different input sizes additionally. These two methods 

both use the fully convolution network (FCN) to facilitate the 

end-to-end training process. However, due to the existence of 

pooling layers, the output density map has a down-sampled 

resolution and needs additional post-processing steps (e.g. in- 

terpolation). 

Deconvolution network Recently, deconvolution net- 

work, which learns to upsample coarse feature maps for de- 

tailed information recovery, has gained much more attention 

on visual tasks with dense outputs. Long et al. [13] incor- 

porate one deconvolution layer into the fully convolution net- 

work, to bilinearly upsample the coarse outputs to pixel-dense 

outputs. Noh et al. [16] dig deeper and stack more deconvolu- 

tion layers on top of a vgg-16-layer net. Through layer-wise 

upsampling, detailed structures of objects can be identified 

more accurately. As far as we know, deconvolution network 

has not been explored for crowd counting yet, which similarly 

desires a dense output (i.e. crowd density map). It is expected 

the in-network upsampling with the deconvolution network 
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will not only benefit the regression accuracy, also will facili- 

tate the directly full-resolution output despite the existence of 

max pooling layers in the network. We will show the benefit- 

s gained by the introducing of deconvlotuion network in our 

experiment in section 5. 

 
 

3. CROWD COUNTING MODEL 

 

Our objective is to solve the crowd counting problem giv- 

en the RGB images and the perspective maps for different 

surveillance scenes. In this context, perspective value of each 

deconvolution network, in which feature maps are interpret- 

ed to the full-image resolution density map in a learning-to- 

upsampling fashion. Furthermore, We consider to fuse per- 

spective maps at different resolutions into the deconvolution 

network, driving the network to adaptively learn to combine 

the underlying scene constraints for more consistent estima- 

tion. 

L2 loss between the estimated and ground truth density 

maps is used to train our netowrk: 

1  
N

 2 

     gt (3) 
pixel denote the number of pixels in each location correspond- 
ing to 1m in practice. To this end, we aim to learn a regres- 

Ldensity (Θ) = 
N

 
i=1 

 F (Xi; Θ) − Di   

 
 

sion function which maps the input RGB-P images to a dense At inference, the loss layer is removed and the output of 

crowd density map [1]. Denote Xi(Xi  ∈ RH×W ×D , where 
H, W  and D denote the height, width and channels of the last 1 × 1 convolution layer of the network is the estimated 

input image) as the i-th input image, the density estimation 

problem can be formulated as: 

 

i = F (Xi; Θ) (1) 

where Θ is the learned parameter set by the proposed net- 

work. Given the positions of annotation dots for each object, 

the ground truth density map is defined as a summation of all 

the Gaussian kernels centering at each center of the objects. 

Due to the varying sizes of pedestrians caused by perspec- 

tive distortion, it is necessary to incorporate specific scene 

geometric information to cover the size variations. Location- 

aware Gaussian functions with different kernel parameters are 

applied to each annotation dot respectively[1]. For each pixel 

p the ground truth density is defined as: 

density map. 

 
4.2. Baseline model: the counting FCN 

We first deploy an effective fully convolution architecture [13] 

as a baseline model (CFCN). Shown in Figure 2, the CFCN 

network constitutes layers from conv1 to conv4, with filter 

sizes of 32 7 × 7 × 3, 32 7 × 7 × 32, 64 5 × 5 × 32 for the first 
three layers. We replace the three fully connected layers in [5] 

with a 1 × 1 convolution layer (i.e. conv4) in our network for 
feature aggregation. All the previous conv layers are followed 

by rectified linear units (RELU). Max pooling layers with a 

2 × 2 kernel are followed after Conv1 and Conv2. All the 
convolution layers are accordingly padded to keep the spatial 

resolution. 

 
4.3. Deconvolution network 

Di (p) =  
 

 

i ∈Ai 

N(p; Ai, σt), with σt = αM (p) (2)  

On top of CFCN, we add two deconvolution layers and build 

the deconvolution network (CFCN-DCN). conv5 with filter 

where At denotes the annotation information of the t-th 

object in the annotation set Ai, for the i-th image. The Gaus- 

sian kernels are parameterized with σt, which is a scaling of 

the perspective value M (p).   In our experiment α is set to 

0.15. Note the summation of the density value over all the 

pixels should be equal to the total number of the annotation 

dots Cgt 
in the image. Visualizations of location-aware Gaus- 

sian kernels and the density map are shown in Figure 1. 
 
 

4. PERSPECTIVE-EMBEDDED DECONVOLUTION 

NETWORK 

 
4.1.  Overview 

 

An overview of the proposed perspective-embedded decon- 

volution network for counting tasks is shown in Figure 2. 

The network first comes with the convolution part extracting 

crowd features. On top of the convolution layers, we add the 

size 5 × 5 and conv6 with filter size 7 × 7 are learnable ker- 
nels for precisely dense output.  The employment of the two 

deconvolution layers is mainly based on two considerations: 

1) Instead of directly upsampling the feature maps by a factor 

of 4, this hierarchical fashion aggregates information at differ- 

ent levels and enables smooth estimation. 2) Introducing the 

deconvolution network will benefit learning of the underlying 

structural information between pixels, thus enabling more ac- 

curate density estimation. With CFCN-DCN, a full-resolution 

output map is directly accessible for arbitrary-sized inputs. 

Experimental results in Section 5 of CFCN-DCN demonstrate 

the effectiveness. 

 
4.4.  Perspective fusion 

Unlike the traditional approaches that utilize the perspective 

as a separate normalizer, we consider to fuse the perspective 

into the network, driving the network to learn to compensate 

the distortions brought by the perspective.  The perspective 
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fusion is a key ingredients of our proposed network. To this 

end, the most intuitive way is to directly stack the perspective 

map with the RGB image as an additional data channel. In 

this way, modification is only occurred to the first convolu- 

tion layer by changing the filter depth from 3 to 4. Although 

simply to implement, it does not provide significant improve- 

ment in our experiments, possibly due to the reason that the 

perspective information inserted at the very initial place tend 

to disperse during the propagation through several layers. 

We propose to incorporate the perspective information 

during the upsampling process of the deconvolution net- 

work, to final obtain the perspective-embedded deconvolu- 

tion network (PE-CFCN-DCN). A perspective map pyramid 

is constructed at different resolutions according to the net- 

work. Then fusion layer is implemented by direct concate- 

nation of the feature maps from the RGB input and the 

correspondingly-sized  perspective  map.  Each  fusion  lay- 

er  is  inserted  before  each  deconvolution  block  for  guid- 

ed interpolation. A 1 × 1 convolution layer with depth 2 
(i.e.   conv7 in Figure 2), is attached at the final end to re- 

turn the single-depth density map Dpred 
for the input im- 

age. With the perspective-embedded deconvolution archi- 

tecture, perspective errors are naturally compensated during 

in the feature propagation process. The proposed network 

can be viewed as a generalization of the traditional ‘feature 

extraction-perspective normalization-regression’ pipeline un- 

der the framework of deep learning. Experiment results 

demonstrate the effectiveness of perspective fusion and the 

competitive results obtained by the proposed architecture. 

5.2.  System settings 

Training For each 576 × 720 training image, we random- 

ly crop 10 256 × 256 patches for data augmentation. Each 
patch is normalized by subtracting the mean value. The den- 

sity maps are also correspondingly cropped from the ground 

truth density map of each training image. We also multiply 

the density map labels by a factor of 100 since pixel values 

represented by Gaussian kernels are too small for effective 

regression. 

Training the deconvolution network with perspective em- 

bedding from scratch is difficult due to the fusion layers ex- 

isting in the network, hence the stage-wise training strategy is 

utilized [13]. First we pretrain the CFCN network with down- 

sampled 64 × 64 ground truth density map. In the second 
stage, we fix the parameters of CFCN, add and train the de- 

convolution part of the CFCN-DCN architecture. At last, with 

inserted perspective fusion layer, we tune the whole network 

(PE-CFCN-DCN) end-to-end. During the training process, 

the batch size is set to 64, and the learning rate starts from 

10−5 and is divided by 10 after every 20 epochs. Mini-batch 

gradient descent and back-propagation is used to minimize 

the loss function. After the whole network is converged, we 

input the full-resolution image instead of the extracted patch- 

es to smooth the parameters. 

Test During inference an arbitrary-sized image and the 

correspondingly perspective map can be directly input the 

network and obtain a full-resolution density map.  Given the 
predicted total number Cpred  

and the annotated ground truth 
gt

 i 

count Ci   for the i-th image in the test data set, the Mean Ab- 
solute Error (MAE) is employed to evaluate the performance. 

 
 

 
 

5.1.  Dataset 

5. EXPERIMENT 5.3. Quantitative Results 

We experiment several components of the proposed architec- 

tures to demonstrate the effectiveness: the simple fully con- 

volution network CFCN that contains the first 4 convolution 
We  evaluate  the  proposed  network  through  extensive  ex- 

periments on the publicly available WorldExpo’10 crowd 

dataset [5]. The dataset is composed of 1132 annotated video 

sequences captured by 108 surveillances, all from Shanghai 

2010 WorldExpo. The severe occlusions of crowd and large 

layout variations between different scenes make crowd count- 

ing on this dataset a challenging task. 

The training set is composed of 3380 576 × 720 RGB 
images sampled from 103 scenes, and the test set contains 600 

images from another 5 scenes, with 120 images sampled from 

each scene respectively. Note the 5 test scenes are disjoint 

with the training scenes, which desires high robustness of the 

counting models. All the training and test images have been 

annotated with the total number and the exact position of each 

people in the image. For each scene, a region of interest (ROI) 

mask is provided and the evaluation will only involves this 

region. Also the labeled perspective map for each scene is 

also incorporated. 

layers, the deconvolution network CFCN-DCN with added 

deconvolution part, and the proposed perspective-embedded 

deconvolution network PE-CFCN-DCN with perspective fu- 

sion. Results of the extensive experiments are reported in Ta- 

ble 1. 

We compare our results to three methods: one that based 

on the traditional regression method [17], and another two 

based on the deep learning frame work [5, 14]. It can be ob- 

served that the proposed PE-CFCN-DCN architecture obtains 

the lowest average MAE on the 5 test scenes. It is notable that 

during the testing process of [5], training images that share 

similarity on perspectives and crowd distributions with test 

images are specially selected out and are used to further fine 

tune the model, which is denoted as the Fine-tuned Crowd 

CNN model in the table. However, we don’t use such ma- 

chinery for the test scenes. The most close result to us is the 

method in [14].  They stack multiple columns of CNNs with 

different filter sizes together to cover the object sizes in the 
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Table 1. Mean absolute errors of the WorldExpo’10 crowd dataset 
Models Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Average 

Chen et al. [17] 2.1 55.9 9.6 11.3 3.4 16.5 
Fine-tuned Crowd CNN [5] 9.8 14.1 14.3 22.2 3.7 12.9 

MCNN [14] 3.4 20.6 12.9 13.0 8.1 11.6 

CFCN 6.9 22.7 16.2 14.2 7.7 13.5 
CFCN-DCN 4.6 18.8 17.2 13.5 4.8 11.8 

PE-CFCN-DCN 4.0 16.6 17.3 13.9 4.1 11.2 
 
 

images, which can also be viewed as an implicit compensa- 

tion of the perspective distortions. 

We also demonstrate the improvement brought by each 

component through ablation experiment. Several conclusion- 

s can be drawn by analyzing the quantitative results. Firstly, 

the introducing the deconvolution network is beneficial for 

density estimation. The average MAE of the baseline model 

CFCN is significantly improved when the deconvolution part 

is added on top. Secondly, with perspective map fusion of 

the model PE-CFCN-DCN, the average MAE further dropped 

down and the best performance is achieved across all the mod- 

els. This indicates that the injection of perspective is able to 

drive the network to learn to incorporate the underlying scene 

constraints and tune the weights accordingly, thus enabling 

more consistent density estimation result. 

 

5.4. Qualitative Results 

The density estimation results are shown in Figure 3.  The 

counting results for each single image in the 5 test scenes are 

plotted together with the ground truth counts for direct com- 

parison. The derived density map for the sample image of 

each scene are also shown. Without foreground segmenta- 

tion, the proposed network is still able to distinguish between 

the crowd and clutter background, and derive accurate counts 

for most of images. It seems that results of scene 3 is a lit- 

tle inferior compared with other scenes, and the errors oc- 

curred mainly due to the underestimation of crowd under the 

awnings. It can be observed that the illumination is this area 

is very dim and also the crowd is in severe occlusions and ex- 

tremely small sizes, which increase the difficulty for the con- 

volution network to accurately extract desired features.  As 

a consequence, the density interpretation process of the de- 

convolution network is influenced. With increased depth of 

the convolution network and more robust feature abstraction 

ability, this problem could be alleviated. 

 

6. CONLCUSION 

 
In this paper we propose a perspective-embedded deconvolu- 

tion network for crowd counting problem. The proposed net- 

work specially exploits and combines the powerful ability of 

feature learning of convolution network, and the guidance in- 

 

 

 

 

 
 

 
 

 
 

Fig. 3. Density estimation and counting results on the World- 

Expo’10 dataset. The first column shows result curve for each 

of the 5 test scenes. The second column respectively shows 

one sample image masked by the estimated density map for 

each scene. The last column lists the estimated and ground 

truth count of the sample image. 
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formation provided by in-network perspective normalization 

with the deconvolution network. With extensive experiments, 

we show that the introducing of deconvolution network is 

beneficial to perform adaptive up-sampling. Furthermore, by 

fusing the scene constraints information underlying in the per- 

spective map with the deconvolution network, more accurate 

location-aware densities and counts could be obtained. 
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wards perspective-free object counting with deep learn- 

ing,” in European Conference on Computer Vision. 

Springer, 2016, pp. 615–629. 

 

[16] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han, 

“Learning deconvolution network for semantic segmen- 

tation,” in Proceedings of the IEEE International Con- 

ference on Computer Vision, 2015, pp. 1520–1528. 

 

[17] Ke Chen, Chen Change Loy, Shaogang Gong, and Tony 

Xiang,  “Feature mining for localized crowd counting,” 

in BMVC, 2012, vol. 1, p. 3. 


