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Abstract 
This paper presents a methodology for extracting road 

edge and lane information for smart and intelligent 
navigation of vehicles. The range information provided 
by a fast laser range-measuring device is processed by 
an extended Kalman filter to extract the road edge or 
curb information. The resultant road edge information is 
used to aid in the extraction of the lane boundary from a 
CCD camera image. Hough Transform (HT) is used to 
extract the candidate lane boundary edges, and the most 
probable lane boundary is determined using an Active 
Line Model based on minimizing an appropriate Energy 
function. Experimental results are presented to 
demonstrate the effectiveness of the combined Laser and 
Vision strategy for road-edge and lane boundary 
detection. 

      

1. Introduction  

 
Automatic road edge and lane boundary detection are 

necessary prerequisites for intelligent autonomous and 
smart vehicle applications. In the application of forward 
collision avoidance road edges and lane boundaries help 
to distinguish potential collision threats in terms of their 
relevance to the intended path of the vehicle. Pavement 
and mid-line of the road can be further used in local 
navigation, obstacle avoidance and localization of 
mobile robots or autonomous guided vehicles (AGV). 
Apart from such applications automatic lane detection 
can provide assistance to human drivers. One such 
application can be in drowsy driver warning systems. 
The knowledge of the lane boundaries relative to the 
vehicle enables a driver assistant system to alert a driver 

as to whether the vehicle is potentially steering off 
course.  

Traditionally lane detection techniques have relied on 
images captured from CCD cameras. The use of intensity 
gradient information of a visual image to detect lanes is 
common as evident from the literature. Many 
gradient-based detection algorithms which are used to 
detect lane and pavement boundaries, apply a threshold 
to the image gradient magnitude [1,2]. The performance 
of such gradient-based edge detection algorithms are 
good if the images have uniform regions with good 
separation between regions. However, real road, lighting 
and weather conditions seldom give rise to such clear 
and contrasting images. Of recent, the use of mm-wave 
Radar images as an alternative to CCD Vision images for 
lane detection has received some interest [3,4,5]. The 
major advantage gained in using mm-wave radar is the 
variety of conditions under which the system can yield 
acceptable performance. The shortcomings of using 
mm-wave radar imagery are the higher costs, complexity 
of the algorithms in the face of backscatter from off-road 
structures, and large power requirements.  

In this paper a methodology is proposed using both 
laser and vision for detection of road edges and lane 
boundaries effectively. A laser range measurement 
system can provide a low cost alternative to depth or 
range measurement under poor lighting, visibility and 
bad weather conditions [6]. Laser range finders have 
found applications in autonomous navigation systems. 
But their uses have been mainly in obstacle detection, 
navigation [7] and in some cases localization [8]. In our 
application, laser is used mainly to detect the road edges, 
and hence subsequently, assist the vision system to detect 
the lane boundaries, especially the middle line of the 
road. In this respect the technique proposed is novel. The 



rest of this paper is organized as follows. In Section 2, 
the detection of road edges is formulated as an Extended 
Kalman Filtering (EKF) problem. In Section 3, The 
Hough Transform (HT) with Active Line Model (ALM) 
approach is used to find the most prominent mid-line or 
the right lane boundary. Experimental results are 
presented and discussed in Section 4. Section 5 
concludes the paper. 

 

2. EKF for road edge detection  

 
The SICK planar two dimensional (2D) laser range 

measurement system (LMS) [6] is mounted on the 
mobile platform looking down on the road at an angle as 
shown in Figure 2. The LMS scans a laser spot beam 
from right to left on a plane inclined at an angle of αL to 
the road surface. It is assumed that the road is flat and 
horizontal. The road edges or curbs are assumed to be the 
vertical surfaces at either side of the road. The 
pavements at a higher elevation and parallel to the road 
are also assumed to be horizontal and flat. Under the 
above assumptions, a single planar sweep of the laser 
spot beam will yield different sets of range data points 
corresponding to the pavement surfaces on either side of 
the road, road edge surfaces, and the road surface. Each 
of the set of points, under ideal and assumed conditions, 
defines a straight-line segment since the intersection of 
two planes (laser scanning plane and the external surface 
plane) give rise to a line. Thus, it may be noted that the 
road edges correspond to points of intersection of the 
line segments or the points at which there are significant 
discontinuity or gradient change of the path trace of the 
laser beam. In practice measurement noise and other 
sources of noise (specula reflections) can corrupt the data 
points thus making it difficult to detect the points of 
discontinuity. The problem of noise filtering and 
simultaneous detection of the points of discontinuity are 
handled by an extended Kalman filter. For a given region 
(e.g. road, edge surface or pavement surface) the 
evolution of the range data, (di), provided by the LMS 
can be described by an appropriate process model. The 
model is so formulated to predict the next range data 
(di+1) given the past two measurements (di-1, di) since the 
points evolve on a straight line. This process model is 
combined with the LMS range data using a Kalman filter 

to obtain a filtered estimate of the range measurements. 
However, the filtering is effective and valid provided that 
the model of the process adequately describes the 
evolution of the range data points. This is true for data 
lying on the same region. However, the prediction would 
be very different from the measured data at the boundary 
separating the two regions, as the process models for the 
two regions are different, although of they are of the 
same structure. This prediction error is appropriately 
thresholded to obtain a candidate point of discontinuity 
or edge. 

Consider the three points P1, P2 and P3, lying on a 
line segment L1, at a range of di, di+1, and di+2 
respectively, as shown in Figure 1. Using elementary 
trigonometry it can be shown that their relationship is as 
follows: 
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Figure 1. Three consecutive data points on a road 

surface 
 
Now we setup up the process model by choosing the 

state variable 1 2,x x as follows:  
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where, 1( )x k  and 2( )x k  represents the states at the 

pseudo discrete time index k . Hence from equations (1) 
and (2) we obtain the non-linear process model: 

2 1
1

2 1

2 1

( ) ( )( 1)
2 ( )cos ( )

( 1) ( )

x k x kx k
x k x k

x k x k
γ

+ =
−

+ =
 

 
 

(3) 



 
Further, it can be represented in the vector form as, 

( 1) ( ( ), ( ), ( ))x k F x k u k w k+ =
%% % % %

 (4) 

where, ( )u k
%

 and ( )w k
%

 are input to the plant and 

process noise respectively. The process is assumed 
deterministic and hence the process noise covariance, Q, 
is zero. And also, in this case there is no input. Since the 
process model is non-linear we apply the extended 
Kalman filter algorithm. Now, the nonlinear function 
F(.) in equation (4) can be expanded as a Taylor series 
about the previous prediction, ˆ( / )x k k . 
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A is the Jacobian matrix of partial derivatives of F(.) 
with respect to x, which can be used to form a 
relationship between small perturbations of the state, 
yielding the linearized model: 

( 1) ( )x k A x kδ δ+ ≈
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 matrix is to be re-evaluated at every new time step k. 

The range measurement equation is : 
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where, C is the observation matrix, and v(k) is the 

measurement noise with known variance 2
rσ . Now, the 

Extended Kalman Filter (EKF) algorithm as detailed in 
[9] is used to detect the pavement edges. 
 
1. Filter Initialization: A reasonable initialization error 

covariance, ( / )P k k
%

 can be estimated using two range 

measurements, at time k=1 and k=2. From equation (7), 
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Assuming the individual noise samples are uncorrelated, 
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2. Filter Prediction: Determine the predicted state and 
error covariance matrix. 
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where, ( 1/ )P k k+
%

 is the predicted value of the error 

covariance matrix at time k+1, given all observations up 
to and including time k. 
 
3. Innovation : Determine the difference between the 
observation and the predicted observation. 

ˆ( 1) ( 1) ( 1/ )k z k Cx k kω + = + − +
% %

 (11) 
 
4. Variance of Innovation : Find the variance associated 
with the innovation. 
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rs k k CP k k Cσ+ = + + +

%% %
 (12) 

where 2 ( 1)r kσ +  denotes the range variance at time k+1. 

 
5. Validation gate :  

2 1( 1) ( 1) ( 1)D k k s kω −+ = + +  (13) 
A observation that falls outside of a threshold value for 
D(k+1) is defined as possible edges.  

6. Define ( 1)W k +
%

:: 
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7. State Vector Update : 
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8. Recalculate A : A must be recalculated , based on the 

new prediction ˆ( 1/ 1)x k k+ +
%

 after which, step 2 can be 

executed to continue the cycle. 
 

3.  HT for Middle lane detection 

 

The laser scanner and CCD camera are arranged in such 



a way that the laser-road intersection points are within 
the field of view of the camera (see Figure 2). The 
detected pavement edge points are then mapped to the 
image plane. 
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Figure 2 Laser camera arrangement of the 
mobile robot 

 
Row (r) and column (c) coordinates of the detected 
pavement edge points in the image plane are, 
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where, ( , )d θ  are the laser coordinates, Hc is the camera 
height, L is the horizontal distance between the laser and 
the camera, rf is the height of a pixel on the focal plane 
divided by focal length, cf is the width of a pixel on the 
focal plane divided by the focal length. It is assumed that 
the road has a middle line. Then using the pavement 
edge information, the position of the middle line can be 
determined. A search area width is estimated based on 
heuristics. Hough Transform (HT) is then performed to 
find possible lines within that search area (window ‘1’ of 
Figure 3). This will drastically reduce the high 
computational requirements required by the HT. Again a 
second search area (window ‘2’ of Figure 3) is estimated 
based on space continuity of lane structure. Then HT is 
performed within that search area. This procedure is 
repeated until a predefined window boundary on the 
image is exceeded.  
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Figure 3 Middle line detection using search areas 
 
After performing HT for each search area, the candidate 
lines of each search area are extracted. Among all the 
candidate lines extracted, the most prominent line is 
determined by the Active Line Model (ALM), which 
minimizes the following energy:  
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where, α  and β  are weighting factors, superscripts, e 

and s, denote start and end of a line, L, isr denotes start 

of the row coordinate of the ith line, iec  denotes the end 

of the column coordinate of the ith line, and so on. Please 
note that ith line is from ith window and so on. 
 

4.  Experimental Results 
 

  Experiments were carried out on the mobile robot 
test-bed, designed and developed by Nanyang 
Technological University, Singapore (see Figure 4). 
 
4.1. Road Edge Detection 
 
  The SICK laser scanner [6] used provides range 2D 
range data over 180o span at 1o intervals. A typical data 
set resulting from a single sweep or scan is shown in 
Figure 5. It can be noted that the range data can be 
highly scattered depending on the environment.  
  Figure 6 shows the actual data and predicted data by 
EKF in d-θ domain (only interested part of the data are 
shown in order to make the graph clear). The EKF starts 
at the mid point of the data set and proceed towards both 



ends. “x” denotes the actual data while “*” denote the 
predicted data by the EKF. 

 
Figure 4 Experimental test-bed AGV 

 
Using a threshold for the validation gate, D(k+1), the 
edges can be detected (see ‘star marks’ in Figure 7). 
However, it is possible to detect false edges due to the 
spurious data that result from specula reflections. Using 
the gradient information of predicted data can eliminate 
such points. There is a positive to negative gradient 
change in the road to pavement transition point (see the 
predicted point corresponding to  “Detected Left edge” 
in Figure 6) while on the other side the gradient change 
is negative to positive (see the predicted point 
corresponding to  “Detected Right edge” in Figure 6). 
As stated the EKF algorithm starts at 90oθ =  and 
proceed towards both sides. Figure 8 shows the actual 
and predicted data on the ground plane (only interested 
part of the data are shown). 
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Figure 5  A typical d θ− data set on a road 

 
The laser data with edge information can then be mapped 
on to the image plane. The mapped data is as shown in 
the Figure 9 and is indicated as ‘x’ points. It is to be 
noted that such points provide the depth information of 

the corresponding image points.  

40 50 60 70 80 90 100 110 120
5

6

7

8

9

10

11

12

13

14

Theta (degrees)

R
an

ge
 (

m
)

Detected
"Left edge"Detected

"Right edge"

Figure 6 d θ−  plot for actual (x) and predicted 
(*) data. 
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Figure 8 Actual (x) and predicted (*) data 
projected on to the ground plane. 

 
4.2. Mid- lane or lane boundary detection 
 
Once the search area for mid line is determined, HT is 
used to find possible edges. Then a second search area 
width is estimated based on the space continuity of lane 
structure. HT is used to find possible lines within that 



search area. The same procedure is repeated until it 
reaches a predefined window. The lines detected using 
HT in different search areas are shown in Figure 10. 
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Figure 9 Projected laser data on the image plane 
 

Figure 10 Detected lines in three search areas 
 

Figure 11 Detected mid-line using HT and ALM 
Then the most prominent line is determined by applying 
the ALM, which is given in section 3. The result is 
shown in Figure 11. The mid line so detected and the 
range data of the road edges can be effectively used for 
navigation and localization.  

5. Conclusions 
Road edge information can be effectively extracted using 
range information provided by a 2D laser scanner. The 
Kalman filter approach enables the detection of the road 
edges whilst filtering the noisy range data. Such edge 
information can be incorporated within an image from a 
CCD camera to determine the lane boundary in a 

computationally efficient manner. The technique not just 
provides for faster detection of edges and lane 
boundaries, but also doing the same under poor visibility 
conditions. The experiments on actual roads show the 
robustness of the algorithm. Our future intention is to 
generalize the camera and laser fusion methodology to 
detect all possible road edge and lane boundary shapes 
that can arise in all types of road configurations.  
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