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Abstract—A novel method called alternating convex optimiza-
tion is presented to synthesize unequally spaced linear arrays
with minimum element spacing constraint. In this method, the
problem of synthesizing an unequally spaced array is formulated
as a sequence of alternating convex optimization problems,
and the excitation vector and auxiliary weighting vector are
alternately chosen as the optimization variables. The minimum
spacing constraint for considering the physical element antenna
size can be easily imposed in this alternating optimizationprocess.
Two examples for synthesizing unequally spaced linear arrays
with focused and shaped patterns are provided to validate the
effectiveness and advantages of the proposed method.

Index Terms—Unequally spaced linear array, alternating con-
vex optimization, radiation pattern synthesis, minimum spacing
constraint.

I. I NTRODUCTION

UNEQUALLY spaced antenna arrays have been widely
used in sonar, satellite communication and radar systems,

due to the advantages such as suppressing the sidelobe and
grating lobe levels as well as reducing the number of element
required for desired pattern characteristics [1], [2]. As is well
known, synthesizing an unequally spaced array with optimized
element positions is a highly nonlinear optimization problem.
The stochastic optimization algorithms such as genetic algo-
rithm (GA) [3], [4], differential evolution algorithm (DEA)
[5], [6] and particle swarm optimization (PSO) method [7],
[8], would be appropriate since they can potentially find
the globally optimal solution even with some complicated
constraints such as power pattern shape control and minimum
element spacing constraint. However, these methods are usu-
ally time-consuming especially when both the positions and
complex excitations for a large number of elements need to
be optimized. Some other synthesis techniques including the
compressive sensing (CS) based synthesis approaches in [9],
[10], Bayesian CS based synthesis approaches in [11]-[13],
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the matrix pencil methods in [14], [15] and the reweighted
ℓ1-norm optimization methods in [16]-[18], are much more
efficient than the stochastic optimization algorithms. However,
these interspacing-unconstrained methods usually are notable
to control the minimum element spacing, and sometimes the
synthesized arrays cannot be realized in practice.

Recently, some merging techniques have been developed in
which synthesis results from CS or the reweightedℓ1-norm op-
timization methods are double-checked, and then the closely-
spaced elements are merged to meet the prescribed minimum
element spacing constraint [19]-[22]. The merging techniques
improve the availability of interspacing-unconstrained methods
by utilizing a post-processing to control the minimum element
spacing. However, the extra merger will result in unrecoverable
pattern deterioration. In this work, we present a novel synthesis
method which formulates the problem of synthesizing an
unequally spaced array as a sequence of alternating weighted
ℓ1-norm optimizations. In this method, the excitation vector
and weighting vector are alternately chosen as the optimization
variables. The minimum spacing constraint can be easily
imposed in the alternating optimization process. Consequently,
the minimum element spacing can be controllable and the
presence of electrically small element spacings is prevented
in the synthesis result. Since each iteration can be solved
by convex optimization, the proposed method is called the
alternating convex optimization. Two unequally spaced linear
array synthesis examples are provided: one is for synthesizing
a focused beam and the other is for a shaped pattern, both with
prescribed minimum element spacings. The synthesis results
show the effectiveness and advantages of the proposed method.

II. FORMULATION AND ALGORITHM

A. Problem Description

The synthesis of unequally spaced linear array can be for-
mulated as finding the best element positions and excitations
from a predefined closely spaced linear array. Let us consider
a linear array withN initial element positions which are
assumed to be closely distributed along theZ-axis, with the
spacing ofd ≪ λ. The array factor can be written as

f(θ) = a(θ)T w (1)

where
w = [w1, w2, ..., wN ]T (2)

a(θ) = [ejβd cos θ
, e

j2βd cos θ
, ..., e

jNβd cos θ] (3)
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In the above,j =
√
−1, β = 2π/λ is the wavenumber in

free space, and the superscript ’T ’ denotes the transpose of a
matrix.

Now, the problem is to find no more thanK (K < N )
element positions from theN initial positions with appro-
priate excitations, under multiple constraints such as pattern
performance requirement and the minimum spacing constraint.
Mathematically, that is,

find w

s.t.
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‖w‖0 ≤ K
dmin ≥ Qd

(F.B.C)

{

f(θ0) = 1
|f(θ)| ≤ USL(θ), ∀θ ∈ ΩSL

or

(S.B.C)

{

|f(θ)−fd(θ)|
|fd(θ)|

≤ ǫ, ∀θ ∈ ΩML

|f(θ)| ≤ USL(θ), ∀θ ∈ ΩSL

(4)

where‖w‖0 denotes the number of non-zero components ofw
(i.e., the number of selected elements),dmin is the minimum
spacing between the selected elements andQ is a positive
integer. The constraints (F.B.C) and (S.B.C) are used to control
the radiation characteristics on the focused beam and the
shaped pattern, respectively.θ0 denotes the look direction,
USL(θ) is a given upper bound over the sidelobe regionΩSL,
fd(θ) is the desired field pattern in the mainlobe regionΩML

, andǫ is the degree of accuracy.

B. Alternating Convex Optimization (ACO) Synthesis

1) Basic ACO synthesis: Obviously, the above problem
is non-convex due to theℓ0-norm constraint as well as the
minimum spacing constraint. As is well known, the reweighted
ℓ1-norm optimization is a convex problem but leads to a
sparse solution. This technique has been successfully used
to synthesize both the focused beam and shaped pattern
problems in [16]-[18]. However, the disadvantage with the
reweightedℓ1-norm optimization is that the minimum spacing
constraint cannot be easily incorporated in this technique. To
overcome this problem, we will develop an alternating convex
optimization-based synthesis method in which the minimum
spacing constraint can be easily incorporated into the synthesis
procedure.

At first, we consider the following optimization problem

min
w∈CN , g∈RN

g
T |w|

s.t.

{

(F.B.C) or (S.B.C)
0 � g � 1

1Tg = N −K

(5)

where|w| represents theN -dimensional excitation amplitude
vector, andg is a weighting vector. Since both|w| andg are
optimization variables, thus the above problem is called the
biconvex optimization problem [23]. Obviously, for a fixedg,
the objective function is convex with respect to the variable
w, and vice versa. Hence, one practical method is applying
an alternating convex optimization strategy to solve (5) [23].
That is to solve a sequence of alternating weightedℓ1-norm

optimization problems:
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min
w∈CN

g
T
∗ |w|

s.t. (F.B.C) or (S.B.C)
(6a)

min
g∈RN

g
T |w∗|

s.t.

{

0 � g � 1

1Tg = N −K

(6b)

In Problem (6a),w is the optimization variable under a
given g∗ that is obtained by solving Problem (6b) in the
previous step, and in Problem (6b),g is the optimization
variable under a givenw∗, the solution to Problem (6a). In
the first iteration,g∗ should be initialized. For example, we
can chooseg∗ = 1. Clearly, both Problem (6a) and (6b)
are weightedℓ1-norm minimization problems. They can be
solved by convex optimization. The whole procedure can be
called the alternating convex optimization (ACO) method. In
this method, the weighting vectorg∗ can be dynamically
updated by successively solving the constrained optimization
problem of (6b). In this way, the minimum spacing constraint
can be easily incorporated in the whole iteration process by
appropriately modifying the problem of (6b), which will be
described in the next subsection. This is much different from
the conventional reweightedℓ1-norm method in which the
weighting factor is usually simply set as the inverse of the
amplitude of excitation plus a small positive number [16]-[18],
and the minimum spacing constraint is hard to be dealt with.

2) ACO with minimum spacing constraint: These are obvi-
ous in the ACO method:g obtained from Problem (6b) will
have ’1’ for N −K entries and ’0’ for others, provided that
there are no two identical excitation amplitudes inw∗. In each
iteration, the entries of ’1’ in g∗ will maximally penalize the
corresponding excitation amplitudes in|w| for Problem (6a),
and the excitations corresponding to the ’0’ entries ofg∗ will
be retained. In this situation, we can control the distribution
of ’1’ entries in theg∗ to determine which elements will be
discarded.

Now, we consider how to add a constraint to control the
minimum spacing between the selected elements. Assume that
there exists an excitation distribution which has the minimum
spacing ofQd. That is, there are at least(Q − 1) unselected
elements between any two neighboring selected elements. In
particular, for any ofQ-length segment ofw∗, we have at most
one selected element and at least(Q − 1) unselected ones.
For Problem (6b), such an excitation distribution requiresg

satisfying the following constraint:

1
T
g(m : m+Q− 1) ≥ Q− 1

(for m = 1, ..., N −Q+ 1)
(7)

This constraint can be easily incorporated into Problem (6b),
and the resulting whole ACO method can control the minimum
spacing constraint on the synthesized excitations.

C. The Proposed ACO Synthesis Procedure

The proposed ACO procedure for synthesizing unequally
spaced linear arrays with minimum spacing constraint is listed
in Algorithm 1 .
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Algorithm 1 The Alternating Convex Optimization Procedure
1: Set the parametersN , d, K andQ (the minimum element spacing

is no less thanQd).
2: Sample the angle space withθm = m∆θ (m = 1, 2, ...M), and

then set the mainlobe region and sidelobe region respectively.
3: Setp = 0, and setg(0)

∗ = 1.
4: Countp = p+ 1.
5: Solve the convex optimization problem (6a), and setw

(p)
∗ = w.

6: Solve the convex optimization problem (6b) with the additional
constraint (7), and then setg(p)

∗ = g.
7: If ‖g

(p)
∗ − g

(p−1)
∗ ‖∞ < 10−3, and then re-initializeg(p)

∗ . That
is, set theK smallest entries in the originalg(p)

∗ to be uniformly
distributed random numbers within[0, α] whereα > 1, and keep
other entries ofg(p)

∗ unchanged.
8: Repeat Step 4 to 7 until the synthesis result meets both the pattern

requirement and the minimum spacing constraint, orp reaches a
prescribed maximum number of iterations.

9: return w∗.

III. NUMERICAL EXAMPLE

A. Scannable Focused Beam Synthesis

In the first example, we consider a full-space scannable
focused beam pattern which has the maximum sidelobe level
(SLL) of −30.3dB for 0.125 ≤ cos θ − cos θ0 ≤ 2 and
−21.3 dB for −2 ≤ cos θ − cos θ0 ≤ −0.125. Such a
pattern was synthesized in [18] by using sequential convex
optimization (the reweightedℓ1-norm optimization), as shown
in Fig. 1(a). The obtained array has 22 unequally spaced
elements occupying an aperture ofD = 9.66λ. The min-
imum spacing obtained in [18] is0.34λ. In [2], a similar
22-element unequally spaced array with the same minimum
spacing is obtained by using the fast iterative soft-thresholding
algorithm. For the proposed ACO method, we setN = 967,
d = 0.01λ, and K = 22. Set Q = 35, 36, ..., 46 for
checking the robustness of the proposed method with different
minimum spacings (i.e.,0.35λ, 0.36λ, ..., 0.46λ, respectively).
With these constraints, the proposed method can always give
a satisfied pattern meeting the prescribed SLL bounds except
for the case ofQ = 46 where the minimum spacing of
0.46λ is actually the average spacing (D/(K − 1) = 0.46λ).
For further comparison, we also apply the merging technique
presented in [20] where some closely-spaced elements ob-
tained from CS synthesis are merged and then the obtained
element positions are successively perturbed to compensate
for the pattern deterioration caused by the merging operation.
The same set of minimum spacings are used. However, the
merging technique can give a satisfied pattern result only
when the minimum spacing is no larger than0.42λ. For a
larger minimum spacing requirement, this technique fails due
to unrecoverable pattern deterioration in the merging process.
Fig. 1(a) shows the synthesized patterns by all these methods
and the proposed method (among all, the proposed method
used the largest minimum spacing,0.45λ). Fig. 1(b) shows
the beam pattern dependence with respect to the scan angle
(cos θ0 = −1,−0.9, ..., 1) of the synthesized array at the
largest minimum spacing obtained by the proposed method. It
is more intuitive to show the ability of the synthesized result to
scan the full-space. Table I shows the synthesized excitations
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Fig. 1. (a) The full-space scannable focused beam patterns synthesized
by the sequential convex optimization (SCO) in [18], the fast iterative soft-
thresholding algorithm (FISTA) in [2], the merging technique in [20] and
the proposed ACO method withQ = 45. The obtained arrays all have 22
unequally spaced elements occupying an aperture of9.66λ, and the obtained
minimum spacing is0.34λ, 0.34λ, 0.42λ and 0.45λ, respectively. (b) The
beam pattern dependence with respect to the scan angle of thesynthesized
array obtained by the proposed ACO method withQ = 45.

TABLE I
THE SYNTHESIZED ELEMENT POSITIONS AND EXCITATIONS BY THE

PROPOSEDACO METHOD FOR THE ARRAY PATTERN SHOWN INFIG. 1

i Position (λ) Excit. Ampl. Excit. Phase (◦)
1 0 0.3292 -28.19
2 0.45 0.3209 -23.35
3 0.90 0.4208 -17.32
4 1.35 0.5311 -11.29
5 1.80 0.6162 -5.07
6 2.27 0.6976 -6.21
7 2.73 0.7784 -3.39
8 3.20 0.8455 -4.13
9 3.67 0.9229 -4.65
10 4.13 0.9735 -1.39
11 4.60 1 -1.66
12 5.06 1 1.66
13 5.53 0.9735 1.39
14 5.99 0.9229 4.65
15 6.46 0.8455 4.13
16 6.93 0.7784 3.39
17 7.39 0.6976 6.21
18 7.86 0.6162 5.07
19 8.31 0.5311 11.29
20 8.76 0.4208 17.32
21 9.21 0.3209 23.35
22 9.66 0.3292 28.19

and the selected element positions for the proposed method
with Q = 45.

B. Flat-top Pattern Synthesis

In this example, we consider a shaped pattern that has a flat-
top mainlobe with40◦ beamwidth and±0.22275 dB response
ripple, as shown in Fig. 2(a). Its sidelobe level is less than
−30 dB in the two side regions of[0◦, 65◦] and [115◦, 180◦].
This pattern was synthesized in [24] by the semi-definite
programming (SDP) with a prefixed element positions where
the minimum spacing is only0.25λ. In [16], the reweighted
ℓ1-norm optimization with a conjugate-symmetric excitation
assumption was applied to reduce the number of elements
from this array, and 31 elements were finally selected. The
minimum spacing is not shown in [16]. Here, we apply the
method in [16] to reproduce the synthesis result, and the
obtained minimum spacing remains0.25λ. By taking the
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Fig. 2. (a) The flat-top patterns synthesized by the semi-definite programming
(SDP) in [24] with a prefixed 41 element positions, the methodin [16] with 31
elements, and the proposed ACO method with only 17 elements,respectively.
The obtained minimum spacing is0.25λ, 0.25λ and0.64λ, respectively. (b)
The real array patterns including mutual coupling by using HFSS simulation
for the dipole array using the element excitations and positions synthesized
by the method in [16] and the proposed ACO method.

same mainlobe pattern obtained by the method in [16] as
the reference, we can apply the proposed ACO method to
produce a new sparse array. A minimum constraint of0.6λ
(Q = 60 and d = 0.01λ) is added. The obtained array has
only 17 elements with the realized minimum spacing equal
to 0.64λ (the obtained minimum spacing may be larger than
the prescribed criterion according to the constraint of (7)).
Fig. 2(a) shows the comparison of the patterns obtained by
[24], [16] and the proposed method. Further, we also give
a comparison to check the real pattern of the dipole array
using the element excitations and positions obtained by the
method in [16] and the dipole array pattern using the synthesis
results obtained by the proposed ACO method, respectively.
The dipole works at the frequency of1GHz. The real array
patterns are simulated by using High Frequency Structure
Simulator (HFSS) software. The comparison results are plotted
in Fig. 2(b). It is seen that although the real patterns for
the both dipole arrays have increased sidelobe levels due to
mutual coupling, the dipole array synthesized by the method
in [16] with 0.25λ minimum spacing has nearly11.9 dB SLL
degradation while the dipole array obtained by the proposed
ACO method with0.64λ minimum spacing has about4.7 dB
SLL degradation. Table II shows the synthesized excitations
and the selected element positions by the proposed method.

IV. CONCLUSION

In this paper, a new method called alternating convex
optimization has been proposed to synthesize the unequally
spaced array with focused or shaped pattern. In this method,
we express the unequally spaced array synthesis problem as
performing a sequence of two alternating convex problems.
The minimum spacing constraint can be easily incorporated in
the array synthesis process rather than used as post-processing
in some element-merging techniques. This can overcome the
possible performance degradation in the element-merging op-
eration. Synthesis results for two unequally spaced array with
focused and shaped patterns show that the proposed method
can obtain satisfactory pattern results with the controllable
minimum element spacings, avoiding the presence of small
minimum element spacings in synthesis results obtained by
some interspacing-unconstrained methods. This would be very

TABLE II
THE SYNTHESIZED ELEMENT POSITIONS AND EXCITATIONS BY THE

PROPOSEDACO METHOD FOR THE ARRAY PATTERN SHOWN INFIG. 2

i Position (λ) Excit. Ampl. Excit. Phase (◦)
1 0 0.0224 180
2 1.30 0.0233 0
3 2.55 0.0325 180
4 3.79 0.0482 0
5 5.14 0.0759 180
6 6.47 0.1219 0
7 7.81 0.2198 180
8 9.09 0.6594 0
9 9.74 1 0
10 10.38 0.6357 0
11 11.68 0.2177 180
12 12.99 0.1263 0
13 14.32 0.0822 180
14 15.62 0.0539 0
15 16.91 0.0342 180
16 18.15 0.0239 0
17 19.47 0.0229 180

essential for practical antenna array design. It should be
noted that the proposed method can be extended to synthesize
the planar and conformal unequally spaced arrays with the
minimum spacing constraint.
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