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Abstract—A novel method called alternating convex optimiza-
tion is presented to synthesize unequally spaced linear aays
with minimum element spacing constraint. In this method, tre
problem of synthesizing an unequally spaced array is formwdted

as a sequence of alternating convex optimization problems,

and the excitation vector and auxiliary weighting vector ae
alternately chosen as the optimization variables. The mimhum
spacing constraint for considering the physical element aenna
size can be easily imposed in this alternating optimizatioprocess.
Two examples for synthesizing unequally spaced linear arrgs
with focused and shaped patterns are provided to validate th
effectiveness and advantages of the proposed method.

Index Terms—Unequally spaced linear array, alternating con-
vex optimization, radiation pattern synthesis, minimum sgacing
constraint.

|I. INTRODUCTION

the matrix pencil methods in [14], [15] and the reweighted
£1-norm optimization methods in [16]-[18], are much more
efficient than the stochastic optimization algorithms. ldwer,
these interspacing-unconstrained methods usually arabiet

to control the minimum element spacing, and sometimes the
synthesized arrays cannot be realized in practice.

Recently, some merging techniques have been developed in
which synthesis results from CS or the reweightgdhorm op-
timization methods are double-checked, and then the glosel
spaced elements are merged to meet the prescribed minimum
element spacing constraint [19]-[22]. The merging techag)
improve the availability of interspacing-unconstrainegthods
by utilizing a post-processing to control the minimum elame
spacing. However, the extra merger will result in unrecalsb
pattern deterioration. In this work, we present a novellsgsis
method which formulates the problem of synthesizing an

NEQUALLY spaced antenna arrays have been widelynequally spaced array as a sequence of alternating wdighte
used in sonar, satellite communication and radar systemis;norm optimizations. In this method, the excitation vector

due to the advantages such as suppressing the sidelobe artiweighting vector are alternately chosen as the opttiniza
grating lobe levels as well as reducing the number of elemesriables. The minimum spacing constraint can be easily
required for desired pattern characteristics [1], [2]. Asviell imposed in the alternating optimization process. Consetyje
known, synthesizing an unequally spaced array with optichizthe minimum element spacing can be controllable and the
element positions is a highly nonlinear optimization peshl presence of electrically small element spacings is preent
The stochastic optimization algorithms such as genetio-algn the synthesis result. Since each iteration can be solved
rithm (GA) [3], [4], differential evolution algorithm (DEQ by convex optimization, the proposed method is called the
[5], [6] and particle swarm optimization (PSO) method [7]alternating convex optimization. Two unequally spaceédin

[8], would be appropriate since they can potentially findrray synthesis examples are provided: one is for syntingsiz
the globally optimal solution even with some complicated focused beam and the other is for a shaped pattern, both with
constraints such as power pattern shape control and minimprascribed minimum element spacings. The synthesis sesult
element spacing constraint. However, these methods are ugww the effectiveness and advantages of the proposed dnetho
ally time-consuming especially when both the positions and

complex excitations for a large number of elements need to Il.
be optimized. Some other synthesis techniques includiag
compressive sensing (CS) based synthesis approaches in [9
[10], Bayesian CS based synthesis approaches in [11]—[1?#
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FORMULATION AND ALGORITHM

tR. Problem Description

+he synthesis of unequally spaced linear array can be for-
ulated as finding the best element positions and excition
from a predefined closely spaced linear array. Let us conside
a linear array with N initial element positions which are
assumed to be closely distributed along theaxis, with the
spacing ofd <« A. The array factor can be written as

F(0) =a(0)"w &

where
w = w1, wa, ..., wn]" 2
a(e) — [edeCOSG ejQBdCOSQ ejNBdcosG] (3)



In the above,j = /-1, 8 = 27/X is the wavenumber in optimization problems:

free space, and the superscript denotes the transpose of a . T
min g, |w]

matrix. weeN (6a)
Now, the problem is to find no more thali (K < N) s.t. (F.B.C) or (S.B.C)

ek_ament p_osi_tions from thev _initial positigns with appro- min g7 |w.|

priate excitations, under multiple constraints such asepat geRN

performance requirement and the minimum spacing constrain 0<g=1 (6b)

Mathematically, that is, st { 1"g=N-K

In Problem (6a),w is the optimization variable under a

given g, that is obtained by solving Problem (6b) in the
previous step, and in Problem (6hg3, is the optimization
F(60) = 1 variable under a givenv,, the solution to Problem (6a). In

(F-BC){ [£(0)] < UsL(6), V0 € sy, (4) the first iteration,g, should be initialized. For example, we

can chooseg. = 1. Clearly, both Problem (6a) and (6b)

find w

wllo < K
dmin 2 Qd

s.t.
or ) o N
OO < ¢ Vo e Qurr are weighted/;-norm minimization problems. They can be

(5.50) { If(g)dlwé)‘ UsL(6), V8 € Qs solved by convex optimization. The whole procedure can be
called the alternating convex optimization (ACO) methad. |

where||w||, denotes the number of non-zero components of this method, the weighting vectag, can be dynamically
(i.e., the number of selected elements),, is the minimum Uupdated by successively solving the constrained optifoizat
spacing between the selected elements @nis a positive Problem of (6b). In this way, the minimum spacing constraint
integer. The constraints (F.B.C) and (S.B.C) are used ttrabn can be easily incorporated in the whole iteration process by
the radiation characteristics on the focused beam and @fgPropriately modifying the problem of (6b), which will be
Shaped pattern, respecti\/e@/G denotes the look direction, described in the next subsection. This is much differennfro
UsL() is a given upper bound over the sidelobe redits., the conventional reweighted;-norm method in which the
fa(6) is the desired field pattern in the mainlobe regfog 1 weighting factor is usually simply set as the inverse of the

, ande is the degree of accuracy. amplitude of excitation plus a small positive number [168]]
and the minimum spacing constraint is hard to be dealt with.

2) ACO with minimum spacing constraint: These are obvi-
ous in the ACO methodg obtained from Problem (6b) will
have 1’ for N — K entries and 0’ for others, provided that

1) Basic ACO synthesis. Obviously, the above pr0b|emthere are no two identical excitation amplitudessin. In each
is non-convex due to thé,-norm constraint as well as theiteration, the entries ofl” in g, will maximally penalize the
minimum spacing constraint. As is well known, the reweightecorresponding excitation amplitudes [iw| for Problem (6a),
¢,-norm optimization is a convex problem but leads to @nd the excitations corresponding to tiééntries ofg, will
sparse solution. This technique has been successfully ub&dretained. In this situation, we can control the distitout
to synthesize both the focused beam and shaped pattefnl’ entries in theg. to determine which elements will be
problems in [16]-[18]. However, the disadvantage with theiscarded.
reweighted?;-norm optimization is that the minimum spacing Now, we consider how to add a constraint to control the
constraint cannot be easny incorporated in this techniq'oe minimum Spacing between the selected elements. Assume that
overcome this problem, we will develop an alternating canvdhere exists an excitation distribution which has the mumm
optimization-based synthesis method in which the minimufipacing ofQd. That is, there are at leagf) — 1) unselected

spacing constraint can be easily incorporated into thehegis  €lements between any two neighboring selected elements. In
procedure. particular, for any of)-length segment o& .., we have at most

one selected element and at le&t — 1) unselected ones.
For Problem (6b), such an excitation distribution requiges

B. Alternating Convex Optimization (ACO) Synthesis

At first, we consider the following optimization problem

min g”|w]| satisfying the following constraint:
weCN, geRN \T . . .
(F.B.C) or (S.B.C) ) gm:m+Q-1)>Q - @
st 0<g=<1 (form=1,...N—-Q+1)
g=N-K This constraint can be easily incorporated into Problen),(6b

. . o ] and the resulting whole ACO method can control the minimum
where|w| represents theV-dimensional excitation amplitude spacing constraint on the synthesized excitations.
vector, andg is a weighting vector. Since bofkw| andg are
optimization variables, thus the above problem is callesl th
biconvex optimization problem [23]. Obviously, for a fixgd C. The Proposed ACO Synthesis Procedure
the objective function is convex with respect to the vaeabl h f hesizi I
w, and vice versa. Hence, one practical method is applying' "€ Proposed ACO procedure for synthesizing unequally
an alternating convex optimization strategy to solve (%][2 sPaced linear arrays with minimum spacing constraint tedis
That is to solve a sequence of alternating weightethorm in Algorithm 1.



Algorithm 1 The Alternating Convex Optimization Procedure 7° ——-Fg im0
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2: Sample the angle space with, = mAy (m=1,2,..M),and £
then set the mainlobe region and sidelobe region respéctive gfzs-\’ A
3: Setp =0, and setg!” = 1. &3] ) "\\’ ‘“‘
. _ HMALA AL
4 Countp=p+1. : S "’ﬁ”?“"lf | i 'w ‘ M‘
5: Solve the convex optimization problem (6a), and &t = w. 10 ,40 M ' M\“ | \ 1l
6: Solve the convex optimization problem (6b) with the additb NM A I VL ‘i
ConStralnt (7), ?nd then Sgtp) - g _592 -15 -1 =05 0 0.5 1 1.5 2 _591 870.670.4 -0.2 0 0.2 0.4 .6 0.8
7 1f g — g% V| < 1072, and then re-initializez” . That cos—cost, coso

is, set theK smallest entries in the origin@ip) to be uniformly @ ®

dlstrlbuteq rando(r;; numbers withjf, o] wherea > 1, and keep Fig. 1. (@) The full-space scannable focused beam pattgmthesized

other entries of.” unchanged. by the sequential convex optimization (SCO) in [18], thet fterative soft-
8: Repeat Step 4 to 7 until the synthesis result meets both th&rpa thresholding algorithm (FISTA) in [2], the merging techuég in [20] and

requirement and the minimum spacing constrainty oeaches a the proposed ACO method wit) = 45. The obtained arrays all have 22

prescribed maximum number of iterations. unequally spaced elements occupying an apertuge6sf\, and the obtained
9: return w.. minimum spacing i9.34), 0.34X, 0.42\ and 0.45), respectively. (b) The
beam pattern dependence with respect to the scan angle afytitleesized
array obtained by the proposed ACO method with= 45.

[1l. NUMERICAL EXAMPLE TABLE |
THE SYNTHESIZED ELEMENT POSITIONS AND EXCITATIONS BY THE
A, Scannable FOCUS&j Beam Q/nthess PROPOSEDACO METHOD FOR THE ARRAY PATTERN SHOWN INFIG. 1
In the first example, we consider a full-space scannable '1 Positign &) Exgité;g";p'- Excit-zzhf;e%
focused beam pattern which has the maximum sidelobe level > 045 03209 3 3E
(SLL) of —30.3dB for 0.125 < cosf — cosfy < 2 and 3 0.90 0.4208 1732
—21.3 dB for —2 < cosf — cosfy < —0.125. Such a 4 135 0.5311 -11.29
pattern was synthesized in [18] by using sequential convex > 250 s =
optimization (the reweightedi -norm optimization), as shown 7 573 07784 339
in Fig. 1(a). The obtained array has 22 unequally spaced 8 3.20 0.8455 -4.13
elements occupying an aperture Bf = 9.66\. The min- 9 3.67 0.9229 465
. . L . . . 10 4.13 0.9735 -1.39
imum spacing obtained in [18] i8.34\. In [2], a similar 11 260 1 166
22-element unequally spaced array with the same minimum 12 5.06 1 1.66
spacing is obtained by using the fast iterative soft-thotihg 3 2-23 g-g;gg 41122
algorithm. For the proposed ACO method, we 3ét= 967, 5 646 08455 113
d = 001\, and K = 22. Set@Q = 35,36,...,46 for 16 6.93 0.7784 3.39
checking the robustness of the proposed method with differe 17 7.39 0.6976 6.21
minimum spacings (i.0.35, 0.36.\, ..., 0.46, respectively). e oo 07
With these constraints, the proposed method can always give 20 8.76 0.4208 17.32
a satisfied pattern meeting the prescribed SLL bounds except 21 9.21 0.3209 23.35
for the case ofQ = 46 where the minimum spacing of 22 9.66 0.3292 28.19

0.46) is actually the average spacin®@((K — 1) = 0.46)).

E?ers]:l;r:izzr izor[r;%?rﬁﬁg,ré/vz 06::18; (?I?)zglﬁsepzr;:zrgIZ?etrigr:rt]slqueg the selected element positions for the proposed method
tained from CS synthesis are merged and then the obtair\]%'g] Q = 45.

element positions are successively perturbed to compensat _

for the pattern deterioration caused by the merging opmrati B- Flat-top Pattern Synthesis

The same set of minimum spacings are used. However, thén this example, we consider a shaped pattern that has a flat-
merging technique can give a satisfied pattern result orfyp mainlobe with40° beamwidth andt0.22275 dB response
when the minimum spacing is no larger than2). For a ripple, as shown in Fig. 2(a). Its sidelobe level is less than
larger minimum spacing requirement, this technique faile d —30 dB in the two side regions db°, 65°] and[115°, 180°].

to unrecoverable pattern deterioration in the merginggssc This pattern was synthesized in [24] by the semi-definite
Fig. 1(a) shows the synthesized patterns by all these mgethpdogramming (SDP) with a prefixed element positions where
and the proposed method (among all, the proposed mettibd minimum spacing is onl§.25\. In [16], the reweighted
used the largest minimum spacin@g45). Fig. 1(b) shows ¢;-norm optimization with a conjugate-symmetric excitation
the beam pattern dependence with respect to the scan amgeumption was applied to reduce the number of elements
(cosby = —1,-0.9,...,1) of the synthesized array at thefrom this array, and 31 elements were finally selected. The
largest minimum spacing obtained by the proposed methodmitnimum spacing is not shown in [16]. Here, we apply the
is more intuitive to show the ability of the synthesized tesu  method in [16] to reproduce the synthesis result, and the
scan the full-space. Table | shows the synthesized examitsti obtained minimum spacing remairs25\. By taking the



TABLE Il
- —rennbd] o O /18 ~—Methodin(i6]  THE SYNTHESIZED ELEMENT POSITIONS AND EXCITATIONS BY THE
S5 ffc%z%‘it'ﬂééﬂ BLy| Uit oo™ | PROPOSEDACO METHOD FOR THE ARRAY PATTERN SHOWN INFIG. 2
S-15 —— Boudary S-1s
i_j‘; g:;‘s’ AV i | Position &) | Excit. Ampl. | Excit. Phase )
5-30 , . 5-30 AXRNASNG 1 0 0.0224 180
&-sP\ P i It A 2 35 [ 2 1.30 0.0233 0
a-—aop Mt B Y v 3 2.5 0.0325 180
Tl ' L o 4 379 0.0482 0
0 20 40 60 809(0'\)00 120 140 160 180 0 20 40 60 809((])00 120 140 160 180 5 5.14 0.0759 180
(@) (b) 6 6.47 0.1219 0
7 7.81 0.2198 180
Fig. 2. (a) The flat-top patterns synthesized by the sempitieforogramming 8 9.09 0.6594 0
(SDP) in [24] with a prefixed 41 element positions, the metimod 6] with 31 9 9.74 1 0
elements, and the proposed ACO method with only 17 elemeegpectively. 10 10.38 0.6357 0
The obtained minimum spacing (525, 0.25X and0.64), respectively. (b) 1 11.68 0.2177 180
The real array patterns including mutual coupling by usirfgSi8 simulation 12 12.99 0.1263 0
for the dipole array using the element excitations and fewsitsynthesized 13 14.32 0.0822 180
by the method in [16] and the proposed ACO method. 14 15.62 0.0539 0
15 16.91 0.0342 180
16 18.15 0.0239 0
17 19.47 0.0229 180

same mainlobe pattern obtained by the method in [16] as
the reference, we can apply the proposed ACO method to
produce a new sparse array. A minimum constraint 6f\

essential for practical antenna array design. It should be

(@ = 60 andd = 0.012) is added. The obtained array hag,,teq that the proposed method can be extended to synthesize

only 17 elements with the realized minimum spacing equg
to 0.64\ (the obtained minimum spacing may be larger thaf: i\um spacing constraint.

the prescribed criterion according to the constraint 0f.(7)
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