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Optical trapping is the craft of manipulating objects with light. Decades after its first inception 

in 1970, the technique has become a powerful tool for ultracold-atom physics and 

manipulation of micron-sized particles. Yet, optical trapping of objects at the intermediate—

nanoscale—range is still beyond full grasp. This matters because the nanometric realm is 

where several promising advances, from mastering single-molecule experiments in biology, to 

fabricating hybrid devices for nanoelectronics/photonics, as well as testing fundamental 

quantum phenomena in optomechanics, are anticipated to produce impactful breakthroughs. 

After a comprehensive, theoretical introduction to the phenomenon of optical trapping, this 

review delves into assessing the current state-of-the-art for optical manipulation of objects at 

the nanoscale. Emphasis is put on presenting the challenges that coalesced into driving the 
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field to its current development, as well as discussing the outstanding barriers which might 

lead to future advancements in the field.   

 

1. Introduction 

Light carries linear and angular momentum—it can thus exert radiation pressure and torque 

on physical objects. Yet, the forces from incoherent light are so “minute” that in the first half 

of the 20
th

 century, physicists found themselves admitting that the practical use of light 

radiation pressure was “beyond consideration in terrestrial affairs.”
1
 In 1960, the invention of 

lasers changed that. A decade later, in 1970, Arthur Ashkin showed that radiation pressure 

from intense, coherent lasers could accelerate, decelerate, steer and even trap small, micron-

sized particles.
2
 To some extent serendipitously, Ashkin discovered much more than what his 

initial intuition suggested.
3
 His work set the foundations of optical trapping, a field which 

rapidly developed into two very successful streams of research: on the one hand, laser cooling 

of single atoms
4-7

 and ultracold-atom technologies,
8, 9

 and on the other, optical manipulation 

of micron-sized particles
10-12

 and high-sensitive force transduction techniques.
13

   

 

1.1. The First Trap 

In 1969, a ‘back-of-the-envelope’ calculation inspired Ashkin to conduct a simple experiment 

and determine whether it was feasible to use light radiation pressure to accelerate objects to 

practical speeds. Photons carry momentum hν/c (with h, ν and c being the Planck’s constant, 

the frequency of the photon and the speed of light, respectively). If light from a source with 

power P shines on a mirror, P/hν photons hit the surface every second and transfer a total 

momentum of (2P/hν)(hν/c) = 2P/c onto it. A perfectly reflecting mirror should therefore—

due to conservation—acquire an equal momentum in the same direction light propagates. 
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Based on this crude calculations, Ashkin predicted that a light source of power P = 1 W, 

would produce a force (on an ideally reflecting mirror) of ~10 nN—indeed small in absolute 

terms.
3
 Nevertheless, if a laser beam is used as the light source and is focused on a spot of ~1 

μm
2
 to hit a particle ~1 μm in diameter, the resulting force does become relevant. Assuming 

the particle is perfectly reflective and has a density of 1 g‧cm
–3

, the calculated acceleration is 

~10
9
 cm‧s

–2
, i.e. roughly 10

6
 times the acceleration of gravity. In the experiment Ashkin 

conducted to test his hypotheses,
2
 a cw argon laser (wavelength λ = 514.5 nm, waist radius w0 

= 6.2 μm at the focal point) was employed to accelerate latex spheres (diameter 0.59, 1.31 and 

2.68 μm) which were freely suspended in water, in a glass chamber. With just milliwatts of 

laser power, Ashkin observed that the particles were pushed in the direction of the mildly 

focused Gaussian laser beam, with values for the acceleration consistent with his rough 

predictions. Interestingly, he also observed an unanticipated phenomenon. Particles located in 

the fringes of the beam were drawn towards the beam axis—where the light intensity is the 

highest—before being accelerated and pushed with ~μm‧s
–1

 speeds towards the back of the 

chamber. They would disperse by Brownian motion away from the beam axis once the laser 

was switched off, yet they would be drawn again towards the centre of the beam upon turning 

the laser back on—as the radiation pressure had a transverse component to the force, as well 

as the predicted longitudinal one. 

The origin of both the transversal and longitudinal force is usually understood by considering 

two distinct regimes, depending on the relative size of the particles to the wavelength of the 

laser beam: the geometrical (ray optics) regime and the Rayleigh (dipole approximation) 

regime.            

 

1.2. Geometrical (Ray Optics) Regime 

The geometrical or ray optics regime is valid for particles whose linear size is far greater than 

the wavelength of the laser employed as the source of radiation pressure. Photons carry linear 
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momentum, thus every change in their momentum due to the refraction of light by a 

transparent object produces a reaction force acting on the object itself. Figure 1 illustrates the 

concept. Consider a spherical particle displaced from the beam axis and a pair of light rays, 

‘1’ and ‘2’, striking the particle symmetrically with respect to its centre (Figure 1a). 

Neglecting minor surface reflections, the rays refract through the particle and produce the 

forces F1 and F2. The longitudinal components of F1 and F2 have the same direction and they 

sum to produce the scattering force, Fscatt, in the direction of the beam. Conversely, the 

transversal components of F1 and F2—orthogonal to the beam axis—have opposite direction. 

Owing to the relative position of the rays with respect to the intensity profile of the laser beam, 

the transversal component of F1 is smaller than that of F2. The resulting transversal gradient 

force, Fgrad, points towards the high intensity region of the laser (Fgrad = 0 when the particle 

lies on the beam axis, as the transversal components of F1 and F2 cancel each other out). Note 

that for a low-index particle placed off-axis, the refraction reverses (in effect, the particle 

behaves like a diverging lens rather than a converging one). The force F1 is greater than F2 

and the particle is pushed away from the beam. This has been verified with micron-sized air 

bubbles in a mixture of glycerol and water.
2
  

An exact expression for the scattering and gradient forces Fscatt and Fgrad, can be derived by 

means of the Fresnel equations for reflection and transmission. Consider a single ray of power 

P hitting a particle with an incident angle θ and momentum nmP/c (nm being the refractive 

index of the medium and c the speed of light). The total force on the sphere is the sum of 

contribution for the reflected ray of power PR and the infinite number of refracted rays of 

successively decreasing power PT
2
, PT

2
R, ..., PT

2
R

N
, etc. (Figure 1a, inset, top). The 

quantities R and T are the Fresnel reflection and transmission coefficients of the surface at the 

reflection and transmission angles θR and θT of the incident rays. This analysis produces the 

following expression for Fscatt and Fgrad:
14

 



  

5 

 

 





















N

i Tii

RiTRi

Ri
im

scatt

i

iii

i RR

RT
R

c

Pn
F

)2cos(21

)]2cos()22[cos(
)2cos(1

2

2




        (1) 

 





















N

i Tii

RiTRi

Ri
im

grad

i

iii

i RR

RT
R

c

Pn
F

)2cos(21

)]2cos()22[sin(
)2sin(1

2

2




        (2) 

The formulas sum over all scattered rays. The forces are polarization dependent as R and T are 

different for rays polarized perpendicularly or parallel to the plane of incidence.  

Ashkin’s unanticipated observation of the transversal component of the laser radiation 

pressure, led to the design of the first 3D particle trap. The trap consisted of two counter-

propagating and mildly diverging Gaussian beams focused at points f1 and f2 (Figure 1a, inset, 

bottom). Any radial displacement of the particle away from the beam axis is opposed by the 

gradient forces of both lasers, directed towards the axis. The longitudinal displacement is null 

as the scattering forces of the two opposite lasers cancel each other out. The particle is thus 

drawn towards the equilibrium point between the two beams.         

Interestingly, even when a single beam is employed a backward net gradient force can arise 

due to the refraction of light (Figure 1b).
14

 This occurs when the laser is tightly focused, for 

instance by means of a high-numerical-aperture (NA) objective. In the case of a single-beam 

trap, the scattering and the gradient forces can still be obtained from Equation 1 and 2—

considered as vector sums of the corresponding components for each individual ray. For very 

high angles of incidence the backward net force can overcome the scattering one, effectively 

keeping the particle trapped at the focus. 

 

1.3. Rayleigh (Dipole Approximation) Regime 

The Rayleigh or dipole approximation regime applies when the diameter of the object is 

decidedly smaller than the wavelength of light. Irrespective of the object being a small 

dielectric particle or a single atom/molecule, a general expression of the optical forces can be 

derived by considering the interaction of the (inhomogeneous) electromagnetic field of the 
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laser beam with the object itself—treated as a point dipole. From the general expression, the 

cases for dielectric particles (classical approach) and for single atoms/molecules (semi-

classical approach) can be analysed separately as they carry their own specificities.  

Consider the general case of a dipole consisting of two opposite charges with masses M1 and 

M2, separated by distance |d| and interacting with arbitrary electric and magnetic fields E


 and 

B


 (Figure 2a). The equations of motion (in the nonrelativistic limit) for the two particles are: 

  ),(),(),( 111111 trUtrBrtrEqrM b


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where the dots indicate differentiation with respect to time. The first two terms account for the 

electric and magnetic force (Lorentz Force) on each point charge; Ub is the binding energy 

between the two particles. The electric field at the position of each particle can be written as 

the Taylor series expansion: 
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Analogous expressions to 5 and 6 can be written for the magnetic field, )( 1rB


 and )( 2rB


. For 

 21 rrd


, with  being the wavelength of the radiation field, the expansions in 5 and 

6 can be truncated at the second term (dipole approximation). Using Equations 3–7 and the 

definition dqp


  for the dipole moment, the formula for the total force rMMF 


)( 21  , 

acting on the system of two particles, yields: 
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where the dependence ),( tr


 has been omitted for clarity, and the parenthesis in Ep


)(   and 

Bp


)(  indicate that the inner product )/,/,/(),,( zyxpppp zyx 


 has to be 

evaluated prior to E


 and B


. Equation 8 shows that the force due to the electromagnetic field 

acting on a dipole consists of three main terms. The first and last terms originate from the 

interaction with an inhomogeneous electric and magnetic field, respectively; the second term 

is instead due to the (magnetic) Lorentz force. The last term is usually much smaller than the 

other two and can be omitted. Note that, whilst quite general, in this derivation the fields E


 

and B


 are, strictly, the exciting fields—i.e. it is assumed that the dipole does not change the 

fields.               

 

1.3.1. Generalized Expression of the Force 

To derive the basic equations for a particle within an optical trap, we consider the case of a 

simple oscillator subject to a classical radiation field. In Equation 8, the second term can be 

written as: 

)()(

)(

Bp
dt

d
Ep

Bp
dt

d
B

dt

d
pBp










            (9) 

where dtBd /
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 is approximated by tB  /


, as the velocity of the centre of mass is assumed 

small compared to the speed of light c, and Maxwell’s equation tBE  /
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Employing Equation 9 and omitting the third, negligible term in 8 the equation for the force 
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Given an electromagnetic wave with angular frequency ω and corresponding fields 

})(Re{),( tierEtrE 


 and })(Re{),( tierBtrB 


, if there is a linear relationship between 

dipole and fields, the dipole oscillates at the same driving frequency ω: }Re{)( tieptp 


. In 

these expressions the underline represents complex amplitudes. Assuming the particle has no 

static dipole moment, to first order, the induced dipole moment is proportional to the electric 

field at the particle position ( 0r


) through its polarizability   (which depends on the angular 

frequency ω): 
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Generally the polarizability   is a tensor of rank two. However for atoms and molecules a 

scalar representation is often sufficient as what matters is the projection of p


 along the 

direction of the electric field. Using Equation 12, Equations 8 and 11 become: 
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Using the linear relationship in 12 and representing the field in the paraxial form—either a 

beam or a plane wave (propagating/evanescent) such that it has a main propagation direction 

k

—the light field can be written as rkierErE
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Equation 15 is the average force due to the radiation light field on the oscillator. The real part 

of the equation accounts for the dipole (or gradient) force, while the imaginary part is 

responsible for the absorption-plus-scattering longitudinal component of the force 

(loss/transfer of momentum from the incident light to the particle). Notice that the last term in 

15 is zero when either 0E


 or   is real. This is the case for a propagating or evanescent plane 
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wave (but not for a beam in general) and for non-absorbing particles, respectively. The 

imaginary part of  is often assumed zero for dielectric, transparent particles—yet the 

approximation may not be valid, in general, for metallic particles,
15

 as it will be discussed 

later. 

 

Classical Approach 

For small particles (Rayleigh regime) in an aqueous medium, the relative complex 

polarizability )(  can be approximated as:
16
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where the time average relations )()(),( 2
1

2

2
12 rIrEtrE


  are used. The last two 

equalities in Equation 17 have been written in the most common form—i.e. in terms of 

refractive indeces rather than permittivities—with m = np/nm being the relative refractive 

index, and np and nm the refractive index of the particle and the medium, respectively. Note 

the dependence of the force with the gradient of the field intensity, which implies that the 

direction of the force for the induced dipole is towards the high-intensity regions of the beam. 
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Integrating Equation 17 highlights the fact that the dipole (gradient) force acts as it derives 

from a potential )()( rUrF gradgrad


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In Equation 18, the integration constant is conventionally chosen to give a zero potential 

outside the light field of the beam.   

 

In the classical framework, the absorption-plus-scattering longitudinal force is obtained by 

substituting the imaginary part of the polarizability )(  from Equation 16 into 15. Under the 

Rayleigh approximation, the absorbing-plus-scattering force can be expressed in terms of the 

absorbing ( abs ) and scattering ( scatt ) cross section as:
17
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where k
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is the wave vector as per the usual convention, and where:
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The first term in Equation 20 leads to the radiation pressure of the wave onto the particle due 

to absorption, whereas the second term leads to the scattering contribution of the force. In 

general, for transparent dielectric particles the absorption is considered negligible (i.e. 

0~abs ) and the force in Equation 19 is determined almost solely by the scattering of the 

photons carrying momentum. The scattering force is the result of the difference between the 

momentum of the input beam (in the direction of propagation) and the secondary photons 

scattered by the induced oscillating dipole (in all directions):
18
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where ),( trS P


 is the time-averaged Poynting vector and ẑ  is the unit vector in the beam 

propagation direction. Substituting the second term of Equation 20 in Equation 21 produces 

the following—most familiar—expression of the scattering force for Rayleigh, transparent 

dielectric particles (written again for m = np/nm rather than ε):
18

 

)(
2

1
)(

3

8
ˆ)(

2

2

2
24 rI

m

m
aka

c

n
zrF m

scatt














           (22) 

Note how the scattering force points in the same direction the beam is propagating. It depends 

strongly on the wavelength (~λ
–4

) and the intensity of the beam, as well as the size (~a
6
) of the 

particle. 

 

Gaussian beams. Equation 17 and 22 describe the gradient and scattering forces a small, 

transparent, dielectric particle is subject to due to interaction with the electromagnetic field. In 

both expressions, the actual field plays a central role in determining behaviour and motion of 

the particle in the optical trap. To this end, it is possible to derive the specific equations for 

Fgrad and Fscatt in the case of a particle interacting with a Gaussian laser beam—one of the 

most conventional beam profile employed in optical traps (Figure 2b).
18

 The dielectric sphere 

(radius a, refractive index np, dielectric permittivity εp) is considered suspended in a medium 

(refractive index nm, dielectric permittivity εm, magnetic permeability μm) and illuminated by a 

linearly polarized Gaussian beam at the fundamental mode. The beam, with radius w0 at its 

beam-waist position, is propagating along the z-axis and has its electric field parallel to the x-

axis. Within the zeroth-order approximation in the paraxial Gaussian beam description, the 

electric field vector at the position ),,( zyxr 
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where x̂ is the unit vector in the polarization direction, k = nmω/c is the wave number in the 

medium, and E0 the electric field strength at the beam waist centre. The associated magnetic 

field vector is:
18
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 where cnZ mmm 00 /1/    is the intrinsic impedance of the medium for plane waves, 
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The quantity 4/2

00

2

0 cEnP m  is the beam power, while x~ , y~ and z~ are the normalized 

spatial coordinates given by )/,/,/()~,~,~( 2

000  kzyxzyx  . 

Equation 27 gives a consistent relationship between the complex amplitude of the electric 

field and the intensity for a Gaussian laser beam with the harmonic dependence. However, 

Equations 23–27 are not always fully rigorous: while being quite accurate when w0 >> λ, they 

require higher-order corrections when tightly focused laser beams are considered.
19, 20
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Combining Equation 27 with 17 yields the gradient force in terms of its three rectangular 

components.
18

 Note the restoring action (Fgrad < 0) towards the beam-waist centre for values 

of the relative refractive index m > 1, and the strong proportionality (~a
3
) to the size of the 

particle:  
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As per Equation 17 and 18, it is possible to integrate the dipole components of the force in the 

x- and y-axis (Equation 28 and 29) for a Gaussian beam and define the corresponding 

potential: 
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To achieve stable strapping the depth of this potential well must be larger than the average 

kinetic energy of the particle generated by Brownian motion (~kBT). 

 

Similarly, substituting Equation 27 for the beam intensity into Equation 22 gives the 

expression for the scattering force in terms of the intensity distribution of a Gaussian beam: 
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Semi-classical Approach: Two-level Atoms  

Beyond the classical approach, it is relevant to derive the radiation forces for the light field 

interacting with single atoms from a semi-classical standpoint. The motivation is twofold. The 



  

14 

 

first is practical. Optical trapping for a two-level system is readily understood (Figure 3). 

Under resonance conditions (the energy of the incident photons matches the difference 

between any two electronic levels of the absorber) the force originates from the conservation 

of momentum of the absorbed and emitted photons—this is the radiation force. Out of 

resonance, the electromagnetic field of the laser perturbs the energies of the initial (ground) 

and final (excited) states (ac Stark shift). The field induces short-lived virtual transitions and 

produces a transient change to the internal electronic energy of the material. The relative 

position between the dipole and the local light field thus becomes important and a force 

originates without photon absorption—this is the gradient force. The second motivation is 

historical. Worth the 1997 Physics Nobel Prize (C. Cohen-Tannoudji, W. D. Phillips and S. 

Chu), the investigation of light-atoms interactions led to the development of new fields of 

research ranging from atom cooling and trapping, to high-resolution spectroscopy and 

interferometry of ultracold atoms, as well as the study of Bose-Einstein condensates—worth 

itself the Physics Nobel Prize in 2001 (E. Cornell, C. Wieman and W. Ketterle). 

In the semiclassical framework, the light is considered quasi-resonant with the transition 

between the initial i  and final f  states of the atom, i.e. ω is close to /)(0 if EE  , 

with fE and iE being the energy of the final and initial states, respectively. The atom is 

assumed to be a closed two-level system where the lower state i  is stable (infinite lifetime), 

while the upper level f is unstable and decays with a radiative lifetime Γ
–1

 due to 

spontaneous emission, towards i . Within this approximation, the steady-state polarizability 

for the atom—using the projection of the transition dipole moment along the direction of the 

electromagnetic field Eif np

 —is given by:

21
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15 

 

where 


/)( 0Enp EifR  is the Rabi frequency and E0 the electric field strength. In this 

description, saturation must be taken into account as it can potentially limit the magnitude of 

the induced dipole p

—yet, despite being nonlinear, it does not affect the monochromatic time 

dependence of the induced dipole allowing Equation 12 to be valid even for saturation. 

Substituting Equation 33 into 15 gives the following expression for the cycle-averaged force: 
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where the complex amplitude of the electric field is expressed in term of the real amplitude 

0E  and phase   as E

ri nerErE
 

)(

0 )()(  , with En


 being the unit vector in the direction of the 

polarization. Notice that   can be written in terms of the local k


 vector as rk

 , which 

gives k


 . Introducing the saturation parameter s:
21
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where the intensity I and saturation intensity satI  are: 
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Equation 34 for the cycle-averaged force becomes: 
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Equation 38 was originally derived via a full quantum-mechanical approach;
22

 here quantum 

mechanics is used only in Equation 33 for the atomic polarizability of a two-level atom. 

Equations 35–38 highlight a few interesting aspects about the nature of the forces. From 35, it 

follows that the maximum value of the saturation parameter s occurs for exact resonance, i.e. 
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0  : the expression s/(1+s) approaches from below—and cannot exceed—the value of one, 

which in effect limits the maximum value of the force (saturated conditions).   

In Equation 38, the first term is responsible for the gradient force, which is of dispersive 

nature (Figure 3a). For angular frequencies 0   (red detuning) the gradient force is 

proportional to 0E . The negative sign indicates that the atom is attracted towards regions 

of high light-field intensity. Conversely, for 0   (blue detuning) the gradient force is 

proportional to 0E and the atom is repelled from the high-intensity region of the beam. The 

force vanishes all together at resonance, 0  . As per the classical case of a dielectric 

particle—Equation 17 and 18—the gradient force can be expressed as )()( rUrF gradgrad


 , 

with: 
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where the dependence on the position for the saturation parameter )(rs


is expressed explicitly, 

and the relations 35 and 37 are used. Note that in 39, as per 18, the integration constant is 

chosen to give zero potential outside the trapping beam. Equation 39 for the specific case of a 

Gaussian beam yields: 
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which is the two-level atomic system potential, analogous to that of Equation 31 for the 

classical case of a small dielectric particle. Equation 39 and 40 highlight that an atom can be 

trapped at the focus of a laser beam if this is negatively detuned ( 0  ); the atom lays in a 

potential well of depth: 

)1ln(
2

)(
max

0 sU grad 





,          (41) 
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where maxs  is the saturation maximum. The trap depth increases for increasing intensities of 

the beam, and atoms are trapped so long as their kinetic energy is less than the depth of the 

well. The potential well has a minimum in the x- and y- directions, as well as in the 

orthogonal direction z the beam propagates in. In x and y, the typical well width is ~w0 while 

in z it is ~  /2

0Rz , zR being the Rayleigh length. For practical purposes, it is rather 

challenging to realize potential wells able to trap atoms with temperatures much above a few 

hundreds of millikelvins, and trapping of atoms occurs in combinations with other methods 

such as Doppler cooling (see below) and magneto-optical trapping.
23

 Optical forces are 

effectively employed to produce so-called optical lattices, where atoms are trapped in a 

periodic, 3D array of microtraps realized via a corresponding dipole potential of multiple 

standing waves.
24, 25

    

 

The last term in Equation 38 is the scattering component of the force (Figure 3b) and far from 

saturation (i.e. satII  ) it can be approximated as: 

4/)(
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sat
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where the relation k


 is used. Equation 42 shows that the scattering force has its 

maximum value at the atomic resonant angular frequency 0  . The resonance is Lorentzian, 

and its width is of the same order of the atomic linewidth Γ—assuming s is not large 

compared to 1. This highlights the fact that for the force to be of significance, a laser beam 

with linewidth less than Γ is needed. 

For reference, it is interesting to determine the conditions under which trapping of a single 

atom is efficient in the case of a non-uniform field such as that of a Gaussian beam. Optical 

trapping occurs when the gradient component of the force is high enough to overcome 

radiation pressure, which usually requires the laser’s intensity to vary significantly over short 
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length scales (i.e.   is of the order of k


). In this case,   0// gradscatt FF


. This means 

that for low detuning ( 0 ) the radiation component of the force dominates, whereas 

for high detuning ( 0 ) the gradient component does. However, if the detuning is 

too large the dipole (gradient) force becomes weak as it is too far off-resonance. As a result, 

the optimal trapping conditions are obtained for detuning )4/()2/()( 22

0  R . Note 

that whilst the gradient force is conservative, the scattering force is dissipative, which means 

that is the latter to be normally exploited to cool (or, in principle, heat) the motion of the atom 

within the gradient force potential.    

 

Atom cooling. The scattering force can be harnessed to cool atoms down to extremely low 

temperatures or, in other words, to bring them almost to rest. First proposed by Hänsch and 

Schawlow
26

 in 1975 and demonstrated by Chu and collaborators
27

 in 1985, atom cooling is an 

application of the Doppler effect. 

Consider a closed two-level atom with non-zero velocity v and irradiated by counter 

propagating laser waves 1k


and 2k


 (such that 12 kk


 ) both of angular frequency 0  , i.e. 

slightly below resonance (Figure 4a). In this configuration, the opposed scattering forces do 

not directly cancel out. In fact for a moving atom, the changes in light intensity are so fast that 

the internal state never reaches steady-state equilibrium, hence the radiative force derives 

from the atom’s instantaneous internal state and its motion. The radiation pressure iF


(with i = 

1, 2) exerted by the waves is:
21
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In Equation 44, 0   is the resonance detuning (which is negative under the working 

hypothesis), ii kk


 , zv  is the component of the velocity in the z direction the wave is 

propagating to, and the plus (minus) sign at the denominator is for 1k


( 2k


). The sum of 

1F


and 2F


 produces the resulting force along the z-axis: 
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which is always opposite in sign to the velocity (in the z-direction) of the atom. 

The interpretation of Equation 45 is that—in the reference frame of the atom—the Doppler 

effect brings the wave opposed to the motion of the particle closer to resonance, resulting in 

the radiation pressure it exerts to dominate over that of the counter-propagating one. In a 

different—yet equivalent—picture, if the atom is travelling against the propagation direction 

of one of the laser beams, the frequency—in the atom’s system of reference—is shifted 

towards higher values (blue shift). Conversely, an atom moving in the same direction of the 

beam experiences a shift towards lower frequencies (red shift). If the laser frequency is tuned 

slightly below the atom resonance transition, the atom predominantly absorbs a photon when 

moving towards the beam. This absorption process slows the atom down, owing to 

conservation of momentum. From the excited state, the atom then reemits its excitation 

energy with the spontaneous emission of a photon—which does not favour any particular 

direction. Thus, averaged over many absorption and emission cycles, the Doppler shift leads 

to an incremental force opposing the motion which results in the atom losing its velocity and 

effectively cooling down (Figure 4b). 

A force opposing the velocity, and proportional to it, is a friction-type force. A linear 

expansion of Equation 45 near 0zv  produces: 

zz vMF  ,             (46) 

where:
21
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is the friction coefficient ( 0  for negative detuning, i.e. 0 ), and M  is the mass of the 

atom. Equation 46 leads to a differential equation whose solution is a damped exponential 

with time constant  . Therefore by using three pairs of counter-propagating laser beams 

arranged along three orthogonal axes, the atom can be slowed down in all spatial directions 

(Figure 4c). The three components of its velocity are damped, i.e. vdtvd


/ . The friction 

coefficient is maximum for 2/ , for which: 

satI

I

M

k 2

max


             (48)  

For instance, for alkali atoms Mk /2  ~10
4
 s

–1
, and for values of satII /  ~10

–1
 the damping 

time max/1   for the velocities is below one millisecond. It is as if the atom was moving into an 

extremely viscous medium, which brought to refer to this configuration as optical molasses.
27

 

The frictional force is negligible if kv / , called capture velocity (which is usually in the 

range 1–10 m‧s
–1

). Thus, if an atom moves into an optical molasses with a residual velocity of 

up to a few metres per second, such velocity is quickly damped (over a few ms) and the atom 

is cooled.    

 

1.3.2. Additional Forces (for Dielectric Particles) 

The gradient force is the key component of an optical trap. It acts over the range of several 

hundreds of nm and provides the restoring action—linear with the displacement—which pulls 

the particle towards the centre of the optical trap. The Hookean nature of the gradient force 

and the fact that the particle has mass and is suspended in liquid lead to an equation of motion 

which is governed by elastic, inertial and viscous forces, and is given by the Langevin 

equation: 
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)(2 tDxxxM                       (49) 

In equation 49, which is written for compactness for a single axis (x), the first term is the 

inertial force component for a particle of mass M. The second term is the velocity-dependent 

viscous damping force. The quantity  a6  is the Stokes drag constant for a particle of 

radius a  moving in a fluid of viscosity  ;   needs to be corrected according to Faxen’s law, 

if the particle is in proximity to a surface.
28

 The third term is the optical restoring force with 

  being the so-called trap stiffness. The right-hand side of the equation represents the 

fluctuating force due to Brownian motion, where /TkD B  is the Stokes-Einstein diffusion 

coefficient. The quantity )(t  is a stochastic Gaussian noise representing the effect of the 

collisions with the molecules of the fluid; it satisfies 0)( t  and )'()'()( tttt   , 

where the brackets indicate average with respect to the distribution of realizations and the δ-

function indicates that the force at time t is assumed uncorrelated with that at any other time. 

In the absence of damping (e.g. in vacuum), Equation 49 becomes that of an ideal oscillator 

with a resonant frequency )/()2/1( Mf res  . When damping is taken into account, 

Equation 49 gives rise to a response—in frequency—equivalent to that of a single-pole, low-

pass filter with a corner frequency  2/cf . 

In typical applications (e.g. in biology) the stiffness   of the tweezers is of the order of 5×10
–

5
 N‧m

–1
 while the mass of a 1-μm diameter particle is ~5×10

–16
 kg. Hence the resonant 

frequency of an undamped optical trap is resf  ~50 kHz. For the same particle in water,   = 

10
–8

 N‧s‧m
–1

, which corresponds to a corner frequency cf  ~1 kHz. The fact that cf  is 

significantly lower than resf  indicates that the oscillations of a particle in an optical trap in 

liquid are in the overdamped regime. Note also that—beyond damping—the surrounding fluid 

provides cooling against the heating effects of the trapping laser beam(s). At room 

temperature, the damping fluid is also a source of thermal input given by the product 
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TkB between the temperature T  and the Boltzmann’s constant Bk . The random incidence of 

the liquid molecules onto the trapped particle results in a fluctuating thermal force which—

according to the theory of equipartition of energy—produces a mean-squared deviation in 

position along one axis x such that:
29
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1 2              (50)             

For typical values of temperature (300 K) and trap stiffness (5×10
–5

 N‧m
–1

), the root mean 

square deviation value in position is of the order of 10 nm. This is non-negligible in the 

interest of measuring molecular scale events, yet if compared to the relatively large trapping 

range of standard optical tweezers (~300 nm), it reveals that it is unlikely for a trapped 

particle to spontaneously diffuse away from the trap centre. In the harmonic potential 

approximation, the overdamped oscillations of a particle in the optical trap can be described 

analytically. From the equation of motion 49 the expected value of the density of the position 

of the trapped bead is given by a Lorentzian:
30
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where )( fP  is the power density at frequency f  and  2/cf  is the corner frequency 

determined from the best fit to the power spectrum.         

 

1.4. Optical Torque 

Light can also produce optical torque owing to three different mechanisms.
31

 Light carrying 

spin and angular momentum can cause an object to either spin on its axis or orbit around a 

central point, respectively.
32

 There is also a gradient-force type of torque which acts on non-

spherical objects and tends to align them along the beam in preferential directions. 

 

1.4.1. Gradient-Force Torque 
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The torque due to the gradient force acts on objects for which the associated polarizability 

tensor matrix (embodying the relative, directional shift in electron distribution and thus the 

associated dipole moment) is non-symmetrical with respect to the three spatial components. A 

typical case is that of a cylindrical particle in which the diagonal of the polarizability matrix 

has different values || and  for the longitudinal (axial) and transversal (orthogonal) 

direction, respectively. Such an object—for instance with || >  —would experience a 

torque in response to a linearly-polarised radiation field and align with its long axis parallel to 

the polarization plane, at right angles to the direction of propagation of the beam. Note 

however, that a cylindrical object larger than the beam waist would align with its axis parallel 

to the propagation direction to maximize the interaction with the high-intensity region of the 

laser. The expression for the nanoscale torque is:
31

 

zxy EyExE )~~)(( ||               (52) 

where Ex, Ey and Ez are the electric field components directed in the x-, y- and z-directions, 

while x~ and y~ are the normalized x- and y-unit vectors. 

 

1.4.2. Spin-Angular- and Orbital-Angular-Momentum Torque 

Optical Torque can arise from the transfer of orbital angular momentum (OAM) and spin 

angular momentum (SAM) from the trapping beam to the particle—analogously to the 

relationship between linear momentum and radiation force. For electromagnetic fields, the 

linear and angular momentum flux densities J


and 


are such that: 




 rJ ,             (53) 

where r


is the position vector. The momentum flux density


is: 

cHEcSP //


             (54)   
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where PS


 is the Poynting vector and c is the speed of light. In 54 the coupled electric and 

magnetic field are a spin-1 system and, generally, the total angular momentum flux J


 has a 

spin ( S


) and an orbital component ( L


) associated with the polarization and the spatial 

structure of the field, respectively: 

SLJ


              (55) 

SAM is strongly related to the polarisation state of light and can thus only arise for beams that 

are either fully or partially circularly polarized ( 


S per photon for circularly polarized 

light, where the sign is given by the chirality) with the induced torque being reduced in case 

of beam scattering and reflection. This type of torque was first demonstrated experimentally
33

 

in 1936 and has more recently been shown to produce rotations of particles around their axis 

with extremely high rates.
34

  

OAM is related to a tilt of the wavefront as per the case of a screw wavefront dislocation with 

ile azimuthal phase dependence (this is often referred to as an optical vortex with the pitch of 

the screw defining the topological charge l). The orbital angular momentum is given by 




lL  per photon.
35-37

 Note that whilst the spin angular momentum is such that its value does 

not depend on the choice of axis, the orbital angular momentum does.
38

 An important 

difference between spin and orbital angular momentum is the fact that SAM is given by the 

polarization of light (which is a local quantity), while OAM is caused by a helically wound 

phase front (which is a global quantity). This means that small particles such as atoms or 

small molecules do not feel OAM as they only respond locally with a small region of the field, 

unaffected by the global phase profile of the phase front.
39

 Hence, orbital angular momentum 

cannot be transferred to single cold atoms, but rather to extended systems—e.g. Bose-Einstein 

condensates and microparticles. 
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The spin and orbital components cannot usually be separated in a trivial manner: they 

decouple in the paraxial approximation,
40, 41

 while they transfer to one another in strongly 

focused beams.
42

 It is however possible to write expressions for the spin and orbital 

components. The Cartesian components of the time-averaged spin angular momentum flux 

density s


 are:
42
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Where Ex, Ey and Ez are the Cartesian components of E


. The analogous orbital components 

are:
42
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The set of Equations 56 and 57 can be used to calculate the torque exerted on an object by 

paraxial beams.
43

 Low-order Laguerre Gaussian (LG) beams are the most easily realised light 

fields with orbital angular momentum.
35

 For optical trapping, torus-shaped LG beams are of 

particular interest as particles are confined within the torus by transverse gradient forces and 

experience the torque due to OAM—thus moving continuously around the torus.         

 

2. Optical Trapping at the Nanoscale 

The nature and specificities of the optical forces acting upon single atoms and 

(sub)micrometre-sized dielectric objects highlights an important aspect of optical trapping: 

light manipulation of nanoparticles in the size range ~1–100 nm is inefficient. On the one 

hand, laser cooling of single atoms rely on the near-resonant, narrow-line excitation of 

specific atomic transitions—which is in general incompatible with nanoparticles. On the other 
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hand, optical manipulation of micrometre-sized objects is dependent on the light-particle 

dipole interaction energy. This scales down with the volume of the object, becoming 

remarkably weak for particles in the nanoscale range. Moreover, the thermal motion of the 

object increases as the size of the nanoparticle decreases owing to a reduction in the 

viscous drag, thereby favouring escape from the trap. Attempts to either scale up trapping 

techniques optimized for single atoms or scale down those designed for microparticles have 

shown intrinsic limitations. Yet in recent years, several new methods for optical trapping of 

nanoscale objects have been developed, for this size regime is of great interest for many 

emerging nanotechnologies. Here, I review these methods highlighting their advantages and 

limitations, and discuss potential, future advancements in the field. 

 

2.1. Plasmon-Based Forces 

The idea of employing plasmonic excitations to enhance optical trapping follows two separate 

approaches. The first—direct enhancement—harnesses plasmons supported in trapped metal 

nanoparticles (MNPs) to increase their interaction with the field. The second—indirect 

enhancement—exploits instead plasmons in external nanostructures, e.g. nanoantennas, 

nanoholes, nanopillars, etc., to generate enhanced fields for the trapping of nanoobjects. 

 

2.1.1. Direct Plasmon Enhancement 

In the Rayleigh limit, the optical forces are determined by the dipolar polarizability of the 

particle (Equations 16–22 and 28–32). The dependence on the trapping wavelength, as well as 

the spatial distribution of the optical field are critical in determining whether a 

(sub)micrometre particle can be held, stably, in the optical trap—namely the gradient force 

has to overcome the competing absorption-plus-scattering force and Brownian motion. 

Standard optical tweezers can trap micrometre-sized dielectric beads with powers below ~1 
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mW, but tens of mW and up to W of laser powers are required to hold spheres in the 100-nm 

and 10-nm size range, respectively.
10

 

In this respect, metal nanoparticles can offer several advantages owing to their plasmonic 

nature.
44

 Far from plasmon resonances, the optical response of small MNPs is mainly the 

optical response of the free-electron plasma, which generally leads to the particles having 

large polarizabilities in the near-infrared. As a result at certain wavelengths, MNPs show 

trapping efficiencies which are manyfold higher than those of dielectric nanospheres. For 

instance, in their pioneering work on trapping of MNPs, Svoboda and Block demonstrated 

that—with a 1,064-nm laser—gold nanospheres were trapped seven times more efficiently 

than polystyrene spheres of the same size, owing to their seven-time higher polarizability at 

that wavelength.
45

  

Trapping of MNPs can also benefit from strong localized surface plasmon (LSP) resonances. 

These are surface eigenmodes associated to collective excitations of conduction electrons 

induced by an incident electromagnetic field, and confined in volumes with linear dimensions 

much smaller than the incident wavelength (and typically with very high saturation 

intensities).
46

 When the trapping laser is resonant with the LSPs of the metal nanoparticle, 

various optical cross-sections increase dramatically and the electromagnetic field near the 

particle’s surface is enhanced. Specifically (Equation 15 and 16), at resonance the imaginary 

part of the polarizability dominates over the real part and the scattering force overcomes the 

gradient force, making stable trapping of MNPs unlikely. Similarly, if the wavelength of the 

trapping laser is shorter than the LSP resonant wavelength, the real part of the polarizability is 

negative and trapping is impossible. However, the gradient force increases significantly when 

the trap wavelength is longer than the plasmon resonance—in this case, stable trapping is 

achievable.
15

 In fact, near-resonant laser excitation of MNPs plasmon resonances has allowed 

stable optical trapping of particles only tens of nm in size.
47-50
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In addition, the frequency of the plasmon resonances depends on shape and size, as well as 

material of the nanoparticles, which means that ad-hoc tuneability is feasible.
51, 52

 For instance, 

metallic nanorods display a strong longitudinal-plasmon resonance along the main axis which 

is tuneable from the visible to the near-infrared spectral range via tailoring the aspect ratio and 

composition of the rods.
52-55

 The non-sphericity of rod-like MNPs also confers the additional 

degree of control associated with optical torque,
48, 56-58

 which allows for the rotation and 

alignment of the metal nanoobjects in the trap.  

Stable trapping of metal nanoparticles has however a few limitations. It is, in general, hard to 

control. It is the result of a critical balance between wavelength and power of the trapping 

laser as well as geometry, material and size of the particle, which leads to the scaling of the 

trapping efficiency and the switching between the stable and unstable conditions to be non-

trivial.
47, 53, 59

 Arguably though, the main limitation associated to optical trapping of MNPs is 

heating (~hundreds of 
o
C‧W

-1
) of both the particle and the surrounding environment due to 

strong light absorption under resonant illumination.
60

 While this has led to the employment of 

optically-trapped MNPs as highly-localized, nanoscale heat transducers,
61-63

 it strongly limits 

their use in biological applications where opticution—the optical damage of biological 

samples beyond viability—is inadmissible.
64-67

  

 

2.1.2. Indirect Plasmon Enhancement 

The trapping volume of conventional far-field optical tweezers is limited by diffraction: the 

trapping potential is ultimately bound to the focal spot size of the laser and the associated 

confinement of the light field. Since the 1990s inspired by the progress of near-field 

microscopy,
68-70

 several methods exploiting near-fields have emerged with the goal of 

achieving manipulation of atoms and nanoparticles beyond the diffraction limit—and 

potentially with lower laser intensities. These include plasmonic optical tweezers (POTs), 

which make use of surface plasmon resonances supported by metallic nanostructures (Figure 
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5). These structures are engineered to efficiently couple to propagating light and concentrate it 

into highly localized (to size smaller than the optical wavelengths), intense optical fields 

known as hot spots
71
—where the confinement and depth of the trapping potential is 

dramatically increased (Figure 5a, b). 

Note that there exist two types of surface plasmons depending on the geometry of the metal 

structure. Surface plasmon polaritons (SPPs) are propagating electromagnetic surface 

modes associated to collective oscillations of the free electrons in the metal, driven by the 

electromagnetic field. They are sustained at a flat metal-dielectric interface and are 

evanescent modes decaying exponentially away from the interface. They cannot be directly 

coupled to propagating light, requiring a way to compensate for the momentum 

mismatch—for instance by illuminating the metal film under total internal reflection 

through a glass prism of higher refractive index than the dielectric (Figure 5a, b). The 

efficient coupling to an SPP mode concentrates the light at the metal surface into an intense 

and confined surface wave with a much larger intensity density than the incident one. 

Conversely, localised surface plasmons (LSPs) are associated with bound electron plasmas 

in nanoareas or nanoobjects with dimensions much smaller than the incident wavelength. 

SPPs have a continuous dispersion relation and thus exist over a wide range of frequencies, 

whilst LSPs exist only over a limited frequency range due to the constraints imposed by 

their finite dimensions. Their resonance frequencies are determined by the size and shape 

of the particle, as well as the dielectric functions of both the metal and the surrounding 

media. LSPs can be directly coupled to propagating light. 

Following various theoretical proposals advanced in the late 1990s,
72-74

 a decade later, the 

first experimental demonstrations of plasmonic tweezers started to appear.
75-79

 In 2008, 

Grigorenko et al. first showed that, by using conventional optical tweezers to scan a 200-nm 

polystyrene nanosphere across coupled pairs of gold nanodots, the resulting trapping 

efficiency was increased by almost an order of magnitude (Figure 5c).
80

 Their approach 
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advanced POTs development via establishing two key aspects. The chosen geometry with 

arrays of nanodots allowed for precise control of the localized plasmon resonance frequencies 

(excited by light at normal incidence). It also resulted in the first subwavelength, three-

dimensional plasmonic trap—which was an advancement compared to previous realizations 

limited to one dimension.
75-77

 In 2009, Righini et al. proposed a new gap-antenna geometry of 

POTs (consisting of two 500-nm long gold wires separated by a 30-nm gap) and reported the 

trapping of living Escherichia coli bacteria.
81

 This was promptly followed by the 

demonstration of trapping of 10-nm metal particles by means of analogous plasmonic dipole 

antennas.
82

 

Almost at the same time, an alternative approach was proposed to further enhance POTs 

efficiencies: self-induced back-action (SIBA) plasmonic optical trapping (Figure 5d).
83

 In this 

case, the (dielectric) particle itself alters the plasmonic resonance of the metallic structure 

which results in an enhanced trapping force. Juan et al. showed efficient trapping of 100-nm 

and 50-nm polystyrene spheres, with incident powers of just 0.7 mW and 1.9 mW, 

respectively. This is a substantial decrease in relative intensity for the trapping laser and it 

translates in a corresponding significant reduction (~one order of magnitude) in the local 

field intensity within the trap. 

The typical setup for POTs is based on the Kretschmann configuration shown in Figure 5a. 

This basic layout can be adapted to realize a wide range of geometries and variants of 

plasmonic optical tweezers based on metal nanostructures, including: nanopillars,
84

 pads,
78, 79

 

antennas,
80, 81

 nanopyramids,
85

 nanoholes,
83

 nanoapertures
86

 and even fractal structures.
87

 

Recently, there have been a few new advancements in plasmonic-based trapping methods
88
—

namely POTs on chiral plasmonic nanostructures,
89-91

 POTs with femtosecond-pulsed lasers
92-

96
 and resonant

97-99
 POTs of polystyrene,

100
 Au,

48, 51, 60
 Ag

101
 and CuCl

102
 nanoparticles, as 

well as fluorophore-labeled antibodies.
103
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Note that beyond the i) desirable sub-diffraction trapping volume, and ii) significantly 

reduced laser trapping intensities (to achieve stable trapping, compared to conventional OTs), 

POTs are also extremely attractive owing to iii) their potential ability to be integrated with 

other conventional plasmonic-based applications, such as plasmon-enhanced 

photochemistry
104

 and high-resolution biosensing of proteins.
105

 Nevertheless, the main 

limitation of POTs—as per the case of direct plasmon enhancement discussed in the previous 

section—is heating of the plasmonic nanostructures. Designs based on integrating ad-hoc heat 

sinks with the optical nanostructures have been recently realised to mitigate the issue.
84

      

 

2.2. Optical Binding Forces 

Optical binding is the force which originates between dielectric objects when subject, 

simultaneously, to intense optical fields.
106

 In 1989, Burns et al.
107

 showed experimentally 

that optical binding could be used to create bound states between polystyrene spheres, and 

later proposed an extension of the basic mechanism to realize ordered, complex condensed-

matter systems (e.g. of particles and molecules).
108

 The derivation of the force for two objects 

can be obtained with a simple model. Similarly to the description used in section 1.3, the 

objects are treated as harmonic oscillators, responding resonantly to an incident field. Each 

oscillator reacts to the Lorentz forces independently and gives rise to scattered fields, which, 

in turn, produce mutual forces between the oscillators themselves (Figure 6a). These mutual 

forces are of two origins. The first one spurs from the induced dipole moment of one 

oscillator responding to the gradient of the scattered electric field of the other. The second 

force is magnetic and results from the Lorentz-force term involving the cross product of the 

time derivative of the oscillator's dipole moment and the scattered magnetic-flux density from 

the nearby oscillator. Both forces act on a range longer than standard van der Waals-type 

forces as, for both, the induced dipole moment stays constant for increasing distance. The 

static (time-averaged) part of the force leads to optical binding, where the relative phase shift 
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associated to the retardation between the oscillators determines the sign of the force—as 

different distances produce different possible phase shifts. 

Following the formalism from Burns et al., the interaction energy between the oscillators can 

be approximated as:
107

 

rkrkEW /)cos(
2

1 222            (58)          

Where r


 is the distance between the oscillators; E is the amplitude of the electric field for a 

plane wave of wave vector k


and angular frequency ω, incident on the pair of oscillators at an 

angle between k


and r


assumed small in the approximation of Equation 58. The quantity 

)(/ 22

0

2   Me is the polarizability of the oscillators, which are considered light particles 

of mass M and charge e, harmonically bound with resonant angular frequency 0  to a heavy 

mass of opposite charge. From Equation 58, bound states occur at separations near multiple 

wavelengths and with depths in the potential well falling off inversely with the distance 

between oscillators. For the binding force to occur at temperature T, the interaction energy 

must be TkW B  (at the first equilibrium point, 2kr ), requiring the polarizability to be 

32/4 kETkB  . 

Due to the relative phase shifts, particles in the appropriate experimental conditions arrange 

themselves at discrete separations, corresponding to minima of the binding potential. Stable 

spatial configurations between objects can be realised even with a simple (e.g. plane-wave 

illumination) homogeneous beam (along the beam axis) owing to the light momentum 

redistribution in the incident beam by the objects, mediated by the reciprocal interaction 

between objects due to the scattered light. 

In 2002-2003 two groups
109, 110

 demonstrated, independently, longitudinal optical binding of 

microbeads in water (Figure 6b). The trap consisted of two counterpropagating, weakly 

focused beams with displaced foci. The design was such that the gradient component of the 



  

33 

 

force would pull and hold the particles along the beam axis, while the opposing scattering 

forces (from radiation pressure) would push the particles to accumulate in the central region 

of the trap between the displaced foci of the two beams. Interestingly, instead of coagulating 

as one would intuitively expect, the microspheres self-organized themselves in precise 

equilibrium positions with spacing equal to several times the diameter of the particles (Figure 

6c). Following these pioneering demonstrations, more complex assembly of nanoparticles in 

two
111, 112

 and three
112, 113

 dimensions have been recently realised (Figure 6d–f), validating the 

use of definitions such as new ordered states of matter and optical crystals. In recent years, 

traps based on optical binding have been developed to exploit size, shape and chirality of the 

nanoobjects,
114, 115

 to realize a wide range of non-trivial mesostructures
116-118

 (Figure 6e), 

often in combination with other approaches such as plasmonic structures
119

 (Figure 6f) or 

light-assisted templated self-assembly.
120

         

 

2.3. Other Forces 

To overcome some of the limitations of optical manipulation at the nanoscale, in 2017 Juan et 

al.
121

 proposed a new approach for optical trapping of dielectric nanoparticles containing 

elevated densities of extrinsic atom-like impurities. Rather than relying on the standard 

trapping mechanism for dielectric microbeads (cf. Equation 17)—which is inefficient for 

nanoscale particles due to the scaling with the volume—a relative low-power laser beam 

resonant to the dipole transitions of the hosted atom-like impurities is employed. In essence, 

the near-resonant forces (atom-trapping regime) acting on the large ensemble of atom-like 

impurities would allow for the manipulation of the whole host nanoparticle (potentially ~tens 

of nm in size and with laser powers below the biological damage threshold of ~10 mW/μm
2
). 

Their proof-of-principle experiment showed that optical trapping (in a standard OT) of 

diamond nanoparticles (~150-nm in size) containing many (~10
3
/particle) nitrogen-vacancy 

(NV) centres, displayed a change in efficiency (~10% after normalization) in the presence of a 
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second laser near-resonant with the zero phonon line (ZPL) of the emitters. Despite the 

modest effect, the study advances a few new key concepts. It potentially opens a new field as 

the method can be generalised to other systems and materials. As a matter of fact, NV centres 

in nanodiamonds are possibly not the best candidate due to the relatively low density of 

defects achievable per nanoparticle, as well as the low transition dipole moment, compared—

for instance—to other diamond colour centres such as the silicon-vacancy (SiV)
122

 and the 

germanium-vacancy (GeV)
123

 centres. More interestingly, the resulting force is dispersive in 

nature (cf. Equation 38 and 39). This means that tuning the trapping laser below or above 

resonance would change the sign of the force—from repulsive for blue detuning to attractive 

for red detuning—allowing for an additional degree of freedom in the context of nanoscale 

optical manipulation. The experiment also led to some fundamental results. It showed that the 

new trapping mechanism worked owing to the phenomenon of superradiance acting amongst 

the atom-like emitters,
124

 which is associated to a nonlinear increase of the total transition 

dipole moment—thus to an enhanced trapping efficiency. Superradiance was shown to take 

place amongst NV centres in nanodiamonds, at room temperature in a follow-up paper.
125

      

 

 

3. Optical Tweezers Designs 

In this section, I review the main existing designs of optical tweezers. I highlight advantages 

and limitations of each solution and present some of their most relevant applications. 

 

3.1. Conventional Optical Tweezers 

The first three-dimensional optical trap is the two-beam trap proposed and realized by Ashkin 

in 1970,
4
 introduced in section 1.2 (Figure 1, inset, bottom). Probably the most common 



  

35 

 

design of conventional optical tweezers consists of a single beam tightly focused by a high 

numerical aperture objective, which serves the dual purpose of focusing the trapping laser and 

imaging the trapped object (Figure 7a).
3, 29

 The sample—usually a suspension of particles in 

water—is contained in a microfluidic chamber and placed onto a stage. Depending on the 

configuration, the sample and/or the trapping beam can be moved relatively to one another by 

means of a piezo-driven stage or a steerable mirror, respectively. When a steering mirror is 

used, a lens relay system is employed to produce a collimated laser beam always centred at 

the back aperture of the objective for minimum loss of light.
126, 127

  

 

3.1.1. Tracking Systems 

Depending on their size, particles can be visualised with a camera either directly (particles’ 

size ~μm) or using scattered light in dark-field microscopy (particles’ size ~tens of nm). 

Accurate tracking of the particles within the trap is however achieved using devices such as a 

quadrant photodiode or a balance photodetector (Figure 7a).
128

 With reference to section 1.3.2, 

a trapped particle in a focused Gaussian beam behaves—in first approximation—as an 

overdamped harmonic oscillator occupying the position of minimum energy at the centre of 

the trap (Equation 49). If perturbed, the object experiences a linear restoring force 

proportional, through the so-called trap stiffness  , to the displacement. The trap stiffness is 

one of the key parameters of an optical trap and is determined using two main methods (other 

approaches are possible):
29

 either by monitoring the mean-squared deviation in position of the 

particle within the trap (Equation 50), or by measuring the frequency response of the 

particle’s motion (Equation 51). Irrespective of the method, the particle’s behaviour is 

determined via back focal plane interference, i.e. via the interference between light diffracted 

by the particle and the undiffracted beam.
126

 The interference pattern is imaged onto a 

quadrant photodiode using relay optics. The quadrant photodiode measures the lateral (X, Y) 
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position of the particle with respect to the normalized output voltage signals from the four 

quadrants (note that the axial (Z) position can be measured from the total intensity of the four 

quadrants): 
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           (59) 

The differential voltage signals between quadrants, generated from the interference pattern of 

the sphere, are roughly proportional to the particle’s displacement. This information is then 

used to determine the trap stiffness   via estimating either the mean-squared deviation in 

position (based on Equation 50), or the value for the corner frequency  2/cf  

(  a6  is the Stokes drag constant for a particle of radius a  moving in a fluid of viscosity 

 ), extracted from the power spectrum of the dynamics, which shows Lorentzian distribution 

(as per Equation 51).
29, 30, 129

 

 

3.1.2. Force Clamping and Wrenching 

Force or position clamps are a type of OT configuration in which position and stiffness of the 

trapped object are controlled dynamically. Specifically, feedback logic is employed to keep 

the position of the object in the trap constant, by measuring and varying the force acting upon 

it.
130-136

 Force clamps exists in different geometries: single-, two-bead- and three-bead 

configuration.
137

 They are commonly used for displacement measurements, often in 

combination with piezo-driven stages to facilitate the trap-to-sample relative positioning.
138-

140
 They have extensively been used in biology, to measure the forces involved in stretching

130
 

and unfolding of proteins,
141, 142

 and in DNA/RNA polymerase action,
133, 134, 139, 140

 as well as 

to characterize the motion of certain molecular motors
143, 144

 such as myosin
145

 and kinesin 
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(Figure 7b).
132, 146

 Optical torque wrenches
147

 are the rotational analogous of force clamps; 

they can be used to apply torque to trapped objects, for instance via controlling the 

polarization of the incident light.   

 

3.1.3. Multiple-Particle Trapping 

Certain applications require simultaneous trapping of multiple particles via a single beam. 

This can be achieved utilizing different approaches. One method is to deflect the beam very 

rapidly—for instance by means of an acousto-optic deflector
131
—between different trap 

positions.
127, 148, 149

 The time between consecutive scans of the beam on the same spot has to 

be less than the time it takes for the particle to drift off. Albeit difficult this is possible as the 

viscous drag can keep the particle in place while the beam is servicing another trap spot. The 

diffusion coefficient of an object in liquid is given by the Einstein relation /TkD B , 

corresponding to a root mean square diffusion distance 2/1)2( Dtd  , over the time t. For 

reference, a 1-μm object in water has a diffusion coefficient D = 4‧10
-13

 m
2
‧s

-1
, which gives a 

5-nm shift in position over 25 μs; this limits the number of particles that can be manipulated 

at the same time (Figure 7c, d).
150

 

A second, conceptually simpler, approach for multiple-particle trapping consists in dividing 

the laser in different beams.
148

 The paths have different deflection optics: control is thus more 

complex, but the appealing aspect is that the trapped objects can be moved independently at 

the same time. A third method for simultaneous trapping of particles relies on holographic 

optical tweezers, discussed below. 

 

3.2. Holographic Optical Tweezers 
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The natural extension to the method of laser division for multiple trapping is beam-shaping. 

This consists in using diffractive optical elements (DOEs)—either static or dynamic—at the 

pupil’s image to convert a single laser into multiple beams and thus realize multiple optical 

traps at definite positions, simultaneously. Examples of dynamic diffractive elements are 

computer-generated holograms, with the corresponding optical tweezers generally referred to 

as holographic optical tweezers (HOTs). The majority of holographic optical trapping is 

achieved via spatial light modulators (SLMs)—computer-programmable, liquid-crystal-based 

devices which can shape the incident light field. The SLM is usually placed in a plane 

conjugate to the objective focal plane (Figure 7a), so that the complex field distribution in the 

trapping plane of the sample is the Fourier transform of that in the SLM plane.
151, 152

 By 

modulating both the light amplitude and phase at the SLM, any optical field obeying the wave 

equation (and within the accessible field of view and range of spatial frequencies of the 

objective) can be generated inside the sample chamber, making HOTs extremely flexible. 

Typical SLMs tend to be phase-modulation-only devices
153, 154

 as amplitude modulation 

translates in undesirable power losses,
155

 (though phase-modulation often results in the 

formation of undesired ghost traps in the chamber). 

In alternative strategies, the SLM is placed in the Fresnel rather than in the Fourier plane, 

which gives a few advantages—namely the suppression of undesired diffraction orders, faster 

switching capabilities due to lower computation requirements and the ability to generate 

multiple optical traps by using multiple holograms at the same time.
156

 

High-performance SLMs allows the realization of complex 2D and 3D optical trap structures 

(Figure 7e, f)
151, 154, 157-160

 and can be used to create colloidal crystal templates for trapping of 

up to a few hundreds of particles, simultaneously.
161, 162

  

 

3.3. Plasmonic Optical Tweezers 
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I described plasmonic optical tweezers (POTs) in detail in section 2.1.2, in the context of 

indirect plasmon-enhanced forces. 

 

 

4. Analytical Techniques 

Optical tweezers can be effectively integrated with other techniques to characterize the 

properties of the trapped objects or the surrounding environment non-invasively, label-free 

and with high selectivity. This also means that objects can potentially be investigated and 

selected based on specific physicochemical characteristics: photoluminescence signal, 

spectroscopic signature and chirality, as well as electronic, plasmonic and nonlinear 

behaviour—to mention a few. Typical setups often consists of two beams, one for the 

trapping of the object and a second one for characterization purposes—yet single-beam 

configurations are possible if the wavelength is suitable both for trapping and analysis. The 

choice of the lasers might depend on factors such as reducing the risk of photodamage and 

opticution (crucial for instance for biospecimens), or maximizing absorption and excitation of 

the nanostructure to characterize. 

 

4.1. Photonic Force Microscopy 

Photonic force microscopy is an offshoot of optical trapping and is based on the idea of using 

a trapped object as the sensing element of a scanning-force microscope.
163, 164

 A trapped 

particle’s Brownian motion is affected by the interaction with the local environment. Hence 

by tracking (e.g. interferometrically) its three-dimensional trajectory and measuring the 

histogram of its positions, it is possible to derive the interaction potential and corresponding 

forces that act on the particle. The concept is not very different from that of an atomic force 

microscope (AFM); the advantage of a photonic force microscope (PFM) is the low stiffness 
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of the scanning probe, which results in higher deflections and thus better sensitivities. For 

reference, an AFM mechanical cantilever with a spring constant of 1–0.1 N‧m
-1

 can routinely 

detect forces in the range ~10
-10

 N; a trapped particle (size 2 μm, trapping laser power 150 

mW) with an axial spring constant of ~10
-4
–10

-5
 N‧m

-1
 can detect forces ~10

-12
–10

-13
 N in 

aqueous media.
163

 

The motion of a trapped object due to thermal fluctuations, in one dimension, is given by the 

overdamped Langevin equation (cf. §1.3.2, Equation 49). Once the trap stiffness has been 

determined and thus the PFM has been calibrated, the trapped object can be used to scan 

surfaces and structures by measuring how the motion of the object in the trap is affected by 

the probe-sample interaction.
163, 165

 Care must be taken to account for noise artefacts which 

are known to occur.
166, 167

  

The main advantages of photon force microscopy are the ability to image soft structure
164

 

(due to the aforementioned relatively low stiffness of the probe) with high sensitivities,
13

 as 

well as the ability to map 3D volumetric structures with fast temporal resolutions (~tens of 

kHz).
168

 The main limit of PFMs is the spatial resolution—intrinsically limited by the size of 

the probe (the trapped object can be ~hundreds of nm) and by thermal fluctuations. To 

improve the spatial resolution, non-spherical probes,
169-172

 and even light-guiding 

nanostructures
173

 have been proposed and utilised. Non-spherical probes also have the 

advantage to potentially provide angular information.
174, 175

  

Optically trapped objects have also been proposed and used as probes for near-field scanning 

optical microscopy (NSOM), with relatively high sensitivity and yet no photo/thermal 

damage.
176

 

         

4.2. Photoluminescence Spectroscopy 
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Photoluminescence spectroscopy is routinely integrated with OTs as it is a relatively simple 

optical method to measure fluorescence, electronic and structural properties of the trapped 

objects. Microphotoluminescence has, for instance, been used to identify different crystal 

phases in the trapped object
177

 or map structural inhomogeneities along its entire span for 

selection before assembly into a device.
178

 The optical response including strong 

nonlinearities
173, 179

 and even the chirality
180

 of certain nanomaterials can be readily 

investigated. The versatility of photoluminescent spectroscopy integrated with OTs, is proven 

by even more advanced applications. Geiselmann et al.
181

 for instance, showed the possibility 

to optically manipulate a diamond nanoparticle and addressing/controlling the spin state of a 

single nitrogen-vacancy (NV) centre hosted in it, while in the trap—which is intriguing for 

applications in vectorial, high-resolution magnetometry based on single-spin manipulation. 

OT-based spectroscopy is also largely used in biology where current methods allow for 

characterization of single molecules.
182, 183

           

 

4.3. Raman Spectroscopy and Surface-Enhanced Raman Scattering 

Raman OTs, are tweezers coupled with a high resolution spectrometer for chemical and 

physical (Raman) analysis of the trapped object. Since its first inception
184

 in 1984, Raman 

OTs have become an important analysis tool owing to their ability to overcome some of the 

primary limitations of standard Raman spectroscopy—lack of selectivity, required long 

acquisition times and signal contamination upon fixation to a substrate.
185

 The main 

advantage of Laser trapping Raman spectroscopy (LTRS) is the ability to perform analysis on 

trapped objects individually and selectively,
186

 in liquid or air (i.e. substrate-free), in situ and 

with time-resolved capabilities (for instance to measure the response to certain environmental 

changes
187, 188

—crucial in biological settings). While Raman OTs find applications in many 
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fields, for example for selection and sorting of nanomaterials,
180, 189-191

 the fact that they offer 

non-invasive and label-free imaging make them particularly appealing for biomedicine.
192, 193

        

In the context of Raman OTs, metal nanoparticles (MNPs) are particularly interesting. Owing 

to their localized surface plasmon (LSP) resonances—and associated local enhancement of 

the electromagnetic field near the surface—they are ideal candidate for surface-enhanced 

Raman scattering (SERS), which allows for molecular vibration spectroscopy with high 

sensitivity.
194, 195

 In combination with optical trapping, they can thus be—in effect—mobile, 

subwavelength spectral probes for ultrasensitive, label-free identification of molecular species, 

in liquid.
195, 196

 They have been successfully used, for instance, for detection of single DNA 

molecules
197

 and of proteins attached to their surface.
198

 Remarkably, SERS probes could 

potentially be integrated with photonic force microscopy,
199

 making PFM even more 

compelling as a sensing technique. 

 

 

5. Fields of Application 

In the course of this review, I have already highlighted many of the applications where optical 

trapping has a strong presence. In this last section, I overview a few fields where nanoscale 

optical trapping has been particularly impactful or offers promising future perspectives. 

 

5.1. Optical Assembly 

Optical trapping naturally offers itself as a powerful tool for fabrication and assembly of 

micro- and nanostructures. Whilst the yields can be comparatively lower than those obtainable 

by other means (chemistry, physisorption, optical lithography, etc.), the key advantage of OTs 
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is their ability to selectively position the nanoobjects in specific arrangements, and with 

control relatively to other structures.     

 

5.1.1. Spatially-Resolved Photochemistry 

The intense illumination at their focus and the freedom to manipulate objects make optical 

tweezers an ideal tool for spatially-resolved, sub-wavelength photochemistry. Microsurgery is 

a prime example of it.
200

 Pioneered in 1991,
201

 the technique relies on a pair of lasers at 

different wavelengths. A first infrared laser—only weakly absorbed by biological tissues—is 

used for manipulating the biological object, while a second ultraviolet laser—which is instead 

readily absorbed—is used to drill holes, weld and cut. The applications are numerous and 

include: injection of substances into cells (hole-drilling), cell-fusion to combine genetic 

material (welding), and microdissecting (cutting, Figure 8a).
202-205

  

Beyond life science, OT-photochemistry is used for micro-ablation
206

 as well as fabrication of 

sub-wavelengths nanostructures. Remarkable examples include the realization of functional 

micromachines. These are produced by deflecting a laser beam along predetermined shapes in 

a resin: the beam induces photopolymerization of the resin, which transitions into a rigid 

glass-like material of the same shape defined by the laser’s trajectory. Made in the form of 

rotors and cogwheels, these elements can then be actuated by a second trapping laser and even 

transfer momentum between one another (Figure 8b).
207

 In a similar fashion, optical tweezers 

have also been used to fabricate patterned electronic and photonic structures (e.g. of 

molecular compounds not suitable for vacuum deposition) by laser-induced, localized 

chemical reactions of solutions containing reagents.
208

  

OT-photochemistry is also advantageous for assembly of heterogeneous structures from 

nanoparts. For instance, a single laser beam can be used to trap individual nanoparticles in 

solution and subsequently fix them—with sub-wavelength accuracy—to the substrate or to 
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other structures. The fixation process can rely on different mechanisms: hydrophobic or van 

der Waals interactions between the nanoparticle and the substrate,
209

 laser-induced adhesion 

(transient melting)
210

 or laser-induced photo-polymerization.
211

 Other techniques exploiting 

similar approaches include optical printing of nanostructures onto a substrate from colloidal 

nanoparticles,
212-214

 and multi-photon polymerization of three-dimensional patterns (e.g. 

waveguides) in colloidal crystals.
215, 216

 Working electronic devices have been fabricated from 

nanowires tweezed and fused together (Figure 8c)
217, 218

 or fused onto other structures (Figure 

8d).
219

 

The assembly process in these cases is serial—one particle at a time—thus of relatively low 

throughput. This limitation has led to the development of parallel nanopatterning schemes 

which exploit OTs capable of trapping several nanoparticles at once—e.g. by means of 

holographic optical tweezers (HOTs, cf. §3.2). Both two- and three-dimensional quasi-

crystalline structures made up of over one hundred silica microspheres have been assembled 

using HOTs and photo-polymerization of the suspension (Figure 7e, f).
160, 220

 In an alternative 

realization, optical force stamping lithography (OFSL) has been used to create two-

dimensional patterns of 82-nm Au and 80-nm Ag particles with ~45-nm spatial accuracy.
221

 A 

spatial light modulator was used to simultaneously capture target nanoparticles in solution—

tailored to be electrostatically repelled by the substrate—and fix them onto the substrate via 

van der Waals attraction, as the laser helped the nanoparticles overcome the electrostatic 

repulsion.  

The ability to both create and assemble—from parts—micro- and nanometre-scale, 

functioning devices (mechanical, photonic and electronic) makes spatially-resolved 

photochemistry with OTs extremely attractive for fabricating hierarchically-structured 

materials and technologies, with advanced applications ranging from sensing to 

optomechanics and microfluidics. 
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5.1.2. Optical Actuation 

Optical tweezers are also ideal candidates for the actuation of micro- and nanomachines, with 

prospects in medical diagnostic and therapeutics, as well as sensing and micro/ 

nanofabrication.  

Impressive examples of their potential for dynamic assembling and actuation of 

micromachines includes the operation of micro-hydraulic pumps
222

 and valves
223

 from 

optically trapped particles (Figure 8e, f). In the case of the micro-hydraulic pumps,
222

 a piezo-

electric mirror was used to rapidly deflect (at frequencies higher than the associated time 

scales for Brownian diffusion) a trapping laser beam (cf. §3.1.3) and arrange microspheres in 

functional structures. In a first design, OTs were used to rotate in opposite directions two pairs 

of 3-μm silica microspheres (‘dumbells’) inside a 6-μm microfluidic pocket, displacing the 

fluid in the connected microchannel and creating a net flow (~1 nl‧h
-1

). A variation of this 

scheme consisted in a peristaltic pump made of six microspheres (size 3-μm) optically trapped 

in a line and moved in a ‘snake-like’ fashion (Figure 8e) to act as a sinusoidal pump 

(operating at ~2 Hz). In more advanced configurations, individual microspheres (one 3-μm 

and five 0.64-μm silica microspheres) were assembled by the OTs and locked into position by 

photopolymerization to form an arm-like structure free to pivot on one end (Figure 8f). The 

trapping laser was then used to actuate the arm, either to block the flow of other particles 

inside a straight microchannel or to sort them with a three-way action in a T-like microfluidic 

junction (Figure 8f). The combination of the OTs with the photpolymerization process is an 

extremely powerful tool for the realization of complex structures made of colloidal 

microspheres fused together.
223

 

Another advantage of micro- and nanomanipulation via optical tweezers is the control over 

rotational degrees of freedom. A linearly-polarized laser, for instance, can be used to 

angularly align an optically trapped birefringent micro-object in liquid, either with the slow 
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axis parallel or perpendicular to the vibration plane of the electric field (based on the 

retardation of the bi-refringence).
224, 225

 This is crucial for the alignment of microcomponents 

in, for instance, micro-optical systems where microlenses and microprisms need to be 

positioned along an optical axis and aligned angularly. Beyond alignment, OTs with polarized 

light can be used to induce rotation in micro-gears. In an elegant experiment,
226

 circularly 

polarized light was used to transfer optical angular momentum to a 1-μm birefringent calcite 

(CaCO3) particle in an optical trap. The particle was then moved, by the trapping laser, close 

to a 10-μm, SiO2 cog-like disk, and its optical torque transferred by the motion of the 

surrounding fluid to the cog. In alternative schemes rotational transport can also be achieved 

by shaping the wavefront of the trapping laser.
151

 For instance, a spatial light modulator can 

be used to create an optical vortex and induce the rotation of colloidal particles around its 

outer circumference. This occurs owing to the transfer of angular momentum carried by the 

helical beam to the particle, and differs from that carried by circularly polarized light—which 

would cause an absorbing particle to spin on its own axis.
227

 Controlled rotation of multiple 

microspheres has also been demonstrated using spiral interference patterns. These can be 

created by interfering a Laguerre-Gassian light beam and a plane wave, whilst changing the 

path length of the interferometer—which causes the trapped particles to rotate in a controlled 

fashion around the spiral’s axis.
228

               

 

5.2. Force and Displacement Measurements for Biology 

Optical tweezers possess a set of specific features which makes them particularly attractive 

for life science studies.
28, 29

 i) They are non-invasive and can operate at wavelengths (~0.8–

1.1 μm) where light is poorly absorbed by living matter; ii) they can access size (~nm) and 

force (~pN) regimes which are relevant for processes taking place between and within 

biomolecules; iii) they can be combined with other sensing and analytical techniques allowing 
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for target-specific characterization (cf. §4); and iv) they allow for fast (~kHz) investigation of 

multiple systems (which is an advantage over, e.g., magnetic tweezers), in parallel, via time-

sharing and multiple-trapping methods (cf. §3.1.3). 

Some of the most remarkable biological studies involving optical tweezers were conducted in 

the 1990s and early 2000s, when OTs were first used to characterize the motion of single 

motor proteins including kinesin, myosin and dynein,
229-231

 as well as the forces involved in 

receptors-ligands binding
232-234

 and the physics of biopolymers.
130, 235, 236

 Myosin, kinesin and 

dynein are linear motor proteins: they convert the energy of adenosine triphosphate (ATP) 

hydrolysis into mechanical work and move along polymer substrates: myosin along actin 

filaments in muscles and other cells, and kinesin and dynein on microtubules. Being 

responsible for muscle contraction, organelle transport, and cell and chromosomal division in 

living organisms, they have been subject of intense research over the last few decades. Yet, 

measuring their motion has always been challenging as it occurs at relatively small lengths 

(~nm) and fast time scales (≤ms). With high spatial resolution (~nm) and fast (~kHz) 

dynamics, optical tweezers have historically played a pivotal role in investigating the force 

and motion of motor proteins while, in turn, benefitting from having a test-bed for the 

developing new trapping designs. 

In one of the first realizations, a focused laser beam was employed to trap a silica particle 

(size ~0.6 μm) attached to a kinesin molecule. The kinesin was then brought in touch with a 

fixed microtubule, and—by means of the trapping laser itself—its step size was measured, 

interferometrically, as it moved along the microtubule.
229

 This type of OT is referred to as 

single-bead geometry (Figure 9a). A similar approach—albeit different in configuration 

(three-bead geometry)—was used to measure the force and displacement of myosin proteins 

interacting with a suspended actin filament, whose extremity were attached to two silica beads 

(size ~1 μm) held in two separate OTs, while the myosin was attached to a bead anchored to 

the substrate (Figure 9b).
230

 From these first designs, several different strategies have been 
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developed, tailored to studying specific biological systems.
137

 For instance, the two-bead 

configuration (Figure 9c) is used to measure the force and extension of a filament whose 

extremities are attached to two beads held in two OTs—one fixed, the other gradually pulled 

away. The single-, two- and three-bead geometries are so-called static configurations, as 

opposed to the dynamic ones that include force clamp, position clamp and dynamic force 

spectroscopy geometries. Force clamps operate by moving the trapping laser beam 

dynamically to maintain the force acting on the bead constant (Figure 9d). Position clamps 

operate by having a trapping beam monitoring the position of one bead, whereas the other 

bead (the motor) is moved using an acousto-optic deflector (AOD) to oppose the detected 

movements and maintain the bead-actin-bead assembly fixed at its initial position (Figure 

9e).
230, 237

 Dynamic force spectroscopy is used to measure the force of molecular bonds 

(Figure 9f). Their rupture forces are measured at different loading rates. Constant loading 

rates are applied by moving the trapped bead at constant velocity, or by clamping the position 

of the bead relative to the optical trap and constantly increasing the optical power.
238

 

These schemes have been, and still are, successfully employed to study motion and forces at 

size (~nm) and force (~pN) regimes relevant for biology.
232-234

 Variation on force clamp 

designs have been used to study individual translocation events during DNA-to-RNA 

transcription by means of the RNA polymerase (RNAP) enzyme. During transcription, the 

RNAP moves progressively along the DNA template (creating a complementary RNA) by 

discrete steps of subnanometre length. Ultra-stable optical trapping systems were thus 

developed to monitor the process with the required ångström-level resolution. The 

transcriptional elongation by single molecules of Escherichia coli RNAP was found to show 

discrete steps averaging (3.7 ± 0.6) Å (Figure 9g–i).
239

 This is 20-fold smaller than the 8-nm 

kinesin step measured by the single-bead geometry discussed above (Figure 9a)
229
—and thus 

a testament to the potential of OTs for exploring biological systems down to the single-

molecule level, at room temperature, in real time (Figure 9j–l)
183, 239-242
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As mentioned a few times in the course of this review, arguably the major obstacle to the 

widespread use of optical trapping in biology is damage due to light absorption and heating. 

Nevertheless the field is constantly evolving, with these challenges driving the development 

of new approaches and solutions (e.g. ad-hoc cooling systems
84

 or fast light modulation).
183, 

243
       

 

5.3. Optomechanics 

Optomechanics focuses on the interaction between electromagnetic radiation and mechanical 

systems by way of radiation pressure.
244

 The field’s agenda is vast, and is mainly driven by 

the goal of realizing systems (e.g. transducers) which—whilst macroscopic—can reach 

motions (thus sensitivities) close to the limits imposed by quantum mechanics of ground-state, 

zero-point-fluctuations and of the uncertainty relation.
245

 Such systems would be able to 

detect very weak forces, leading to the development of a large variety of ultra-high-resolution 

sensing applications,
246-248

 as well as offering a test-bed for investigating non-equilibrium 

thermodynamics
249, 250

 and a multitude of fundamental quantum phenomena.
251-254

 The main 

idea of optomechanics pivots around fabricating an optical cavity whose resonance frequency 

depends on the displacement of some mechanical oscillator—e.g. two facing mirrors, one 

movable, confining light between them. As the oscillator moves, its resonant frequency 

changes and so does the radiation pressure exerted onto the mechanical object—cooling down 

its motion ideally to its ground state. Since the first theoretical inceptions,
255

 several 

optomechanical candidate systems have been investigated,
256

 including optically-trapped 

nanoparticles levitating in a high-finesse optical cavity.
257

 In fact, being physically detached 

from any other mechanical object, a levitating NP offers a low-noise, undamped environment, 

ideal for reaching ground-state cooling. One of the possible implementations consists in using 

a trapping laser (e.g. orientated vertically) to levitate a dielectric particle and a second driving 
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laser perpendicular to it (e.g. along a horizontal axis, z) and confined between two facing 

mirrors to form a high-finesse cavity, such that the radiation pressure of the driving field 

would cool down the mechanical motion to the ground state (Figure 10a). Alternative 

schemes include self-trapping using two optical modes combined to provide both trapping and 

optomechanical coupling,
257

 and single-beam parametric feedback cooling schemes (Figure 

10b).
258

   

Optical levitation has been proposed and realized a few decades ago, yet at the time feedback 

cooling was beyond reach.
259, 260

 The field has experienced a dramatic surge in interest in the 

last few years and recently optical levitation has improved to the point of enabling the 

measurement of zeptonewton forces
261

 and radiation-pressure shot noise,
262

 as well as the 

demonstration of centre-of-mass motion cooling of micron-sized (3 μm)
263

 and nano-sized 

(~70 nm)
258

 particles down to ~mK temperatures (Figure 10b)—with prospects for reaching 

even lower values (~μK).
264

 These demonstrations hold great promise in the context of high-

resolution detection and sensing
265

 with force sensitivities potentially ~10
-20

 N‧Hz
-1/2

 (i.e. 

orders of magnitude greater than most other force measurement techniques).
266

 Realistic 

applications include detection of single electron or nuclear spins (Figure 10c–f),
267, 268

 Casimir 

forces
269

 and vacuum friction,
269, 270

 phase transitions, and non-Newtonian gravity-like 

forces.
265

  

 

 

6. Conclusions and Outlook 

The field of optical trapping is incredibly active. Yet, while at opposite side of the spectrum 

OT techniques are well-established—ultracold atom physics on one side and manipulation of 

micron-sized particles on the other—optical manipulation of nanoscale objects is still 

developing. The limited success in either scaling up or down the techniques respectively 
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available for single atoms or microparticles, has exposed some of its inefficiencies, leaving 

quite a few barriers to overcome. These include the desirable need for: i) reducing the volume 

of the OTs for better specificity [sensing and characterization], ii) reaching sub-nanometre 

trapping accuracy [sensing and integrated nanofabrication], iii) achieving precise and 

repeatable manipulation of many (hundreds to thousands) nanoobjects, simultaneously 

[integrated nanofabrication], as well as iv) limiting invasive effects such as photodamage and 

heating [biomedical sensing and drug delivery]. 

With these challenges also come opportunities and what seems to be clear is that, in parallel 

with optimizing methods which already exist, new approaches will expectedly be advanced to 

progress the ever-growing field’s agenda.  
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Figures 

 

Figure 1. Origin of the scattering and gradient forces, Fscatt and Fgrad for high refractive index 

spheres due to a Gaussian beam, in the geometrical (ray optics) regime. a) The forces F1 and 

F2 have longitudinal and transversal components. The formers sum up to produce the 

scattering force in the direction of the beam. The latters are opposite in direction and due to 

the lateral displacement from the beam axis, result in the gradient, restoring force which 

draws the particle towards the centre of the beam. Inset, top: geometry for determining the 

force using the Fresnel equations for reflection and transmission. Inset, bottom: geometry of 

two-beam trap—the scattering and gradient forces of the counter-propagating lasers lock the 

particle in the equilibrium point (green dot). b) For tightly focused rays, F1 and F2 produce a 

net force towards the beam focus. 
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Figure 2. Schematics and conventions for deriving the optical forces in the Rayleigh regime. 

a) The trapped object is considered as a point-like dipole consisting of two particles of mass 

M1 and M2 and opposite charge, q and –q. The quantity r is the centre of mass coordinate. b) 

Geometry of a particle of radius a at position r in a Gaussian trapping beam of waist w0. 

 

 

Figure 3. Gradient and scattering forces in the semiclassical description. a) Left: light-shifts 

for a two-level atom interacting with an off-resonant laser. The laser—detuned by —

couples to the ground and excited states i and f with Rabi frequency R . The interaction 

causes the ground and excited states to form light-shifted dressed states
271

  and  . The 

quantity   is the spontaneous emission decay rate from the excited state. Right: a spatially 

inhomogeneous field (e.g. a Gaussian laser beam) produces a ground-state potential well, in 

which an atom can be trapped. This mechanism is responsible for the gradient force. b) 

Momentum exchanges between the atom and photons in a single fluorescence cycle. Over 

many cycles, the recoil scattk


  due to the spontaneously scattered photons averages out to 

zero: the average momentum acquired by the atom is directed along the wavevector k


of the 

incident laser. This mechanism is responsible for the scattering force. 
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Figure 4. Doppler cooling and applications. a) Doppler cooling in one dimension. Two 

counter-propagating waves ( 12 kk


 ), are incident on the atom. They have the same intensity 

and frequency 0  , ( 0  being the atomic resonance frequency). In the reference frame of 

the moving atom, the wave that opposes its motion is closer to resonance than the one in the 

direction of motion and its absorption is predominant. This slows the atom down due to 

conservation of momentum. b) Resultant force of the two waves in (a), plotted in reduced 

units ( 2/0sk , with satIIs /0  ), and for 2/ . The total radiative force always opposes 

the velocity of the atom (friction-type force). An ensemble of atoms with initial velocities 

~ k/  is efficiently cooled. c) Three pairs of counter-propagating laser beams along three 

orthogonal axes can slow down atoms in all spatial directions (figure not to scale). 
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Figure 5. Plasmonic optical tweezers: basic designs and performance. a) Schematic of the 

Kretschmann configuration. The laser beam is guided through a prism. Evanescent optical 

waves are excited at the interface between a high (glass prism) and a low (water) refractive-

index medium; the beam is incident at the total-internal-reflection angle. Plasmonic structures 

such as nanopillars, nanoholes, nanopyramods, etc. (inset) are used to create high local fields 

confined in a sub-diffraction volume and able to efficiently trap nanoparticles. A microscope 

objective, atop, is used to image the sample. b) Comparison of designs and performances for 

conventional (left) and plasmonic optical tweezers (centre, right). Notice how POTs are 

exploited to create more localised and intense fields than their conventional OTs counterpart. 

In POTs the linear size of the trap can break the diffraction limit, with specific designs (right) 

offering dramatic confinement. Note: drawings are not to scale and depths of the potential can 

change based on size and properties of the nanoparticles—scales of reference are approximate. 

c) First demonstration by Grigorenko et al. that a 200-nm nanoparticle held by conventional 

OTs is confined more efficiently—owing to plasmon resonances—when it is between two 

metallic nanodots (red circles) rather than free (green circles). The histograms at the bottom 
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show the distribution of the displacement for the two cases, fitted with Gaussians. d) 

Schematic of self-induced back-action (SIBA) POTs. The particle is localized in the aperture 

with a certain kinetic energy at time t1 (left). Upon a high-energy event at time t2, the object 

starts leaving the trap (centre). As the particle is moving out of the aperture at time t3, the 

SIBA force increases the potential depth and keeps the object within the trap. Figures adapted 

and reproduced with permission (c),
80

 2008, Springer Nature; (d),
272

 2009, Springer Nature. 

 

 

Figure 6. Optical binding. a) Simplified schematic representation of the optical binding 

mechanism (for the electric field component) between two particles, assuming absence of 

multiple scattering. The incident field (red wavy lines) induces the dipoles pj(rj) = αjE(rj), 

with j = 1, 2 on particle ‘1’ and ‘2’, respectively (red arrows centred at particles ‘1’ and ’2’). 

The field emitted by particle ‘1’ (blue wavy line) reaches particle ‘2’ and induces the dipole 

component (blue arrow centred at particle ‘2’) p1-2(r1) = Gα1E(r1) which interacts with the 

incident field E(r2). The quantity G is the field propagator (or dyadic Green’s function) 

between two dipoles.
106

 b) Linear arrays of two (top), three (centre) and seven (bottom) 
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polystyrene spheres (diameter 3 μm) in water, achieved via optical binding, between the foci 

of two counterpropagating beams. c) Diagrams showing the filling up of the approximately 

harmonic potential created by the two counterpropagating beams in (b) for the case of three 

spheres. d) Image of a 2D- and 3D-optical crystal (as it assembles: 1 through 4) by means of 

sets of crossed beams. The particles are 490-nm-diameter polystyrene spheres in water. 

Arrows indicate the areas where the lattice potential is deepest.  e) Optical trapping and 

assembly of nanoparticles in a complex horn-like structure, exploiting optical binding and 

light polarization. Inset: schematic of laser intensity (red lines) relative to the particles. f) 

Optical micrographs and model (inset) of a closely-packed assembly of 500-nm polystyrene 

nanoparticles via metal nanostructures. Figures adapted and reproduced with permission: 

(b),
109

 2002, APS Physics; (d),
113

 2011, APS Physics; (e),
117

 2016, ACS Publications; (f),
119

 

2011, ACS Publications. 

 

 

Figure 7. Design for conventional OTs and applications. a) Schematic of conventional OTs. 

The beam telescope, steering mirror and relay telescope send the laser to slightly overfill the 

back aperture of the high-NA trapping objective, which focuses the beam into the chamber. 
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Direct imaging of the sample is possible with a CCD camera, whereas tracking is carried out 

with a quadrant photodiode (QPD). Lenses are precisely positioned to assure that the beam 

can be manipulated without walking at the objective back aperture: this allows moving the 

trapping position of the beam in the sample plane without significant power losses. The small 

green arrows indicate conjugated planes. (Note: for HOTs the steering mirror is replaced by a 

spatial light modulator, SLM). Insets: time tracking and corresponding power spectrum 

density (PSD; the red line indicates the corner frequency) of the particle in the OT. b) 

Schematic representation of force clamps in single-bead configuration to measure the motion 

of the molecular motor kynesin. The quantity κtrap is the trap stiffness, while κmotor comprises 

the motor protein stiffness in series with the stiffness of the linkages connecting the protein to 

the bead and the coverslip surface (note that the bead is also subject to the Stokes drag 

coefficient β). c, d) Silica particles (size 1.5 μm) trapped in water using a scanning laser 

optical trap. Scale bar is 10 μm. e, f) Image (e) and corresponding geometry schematics (f) of 

a rotating icosahedron of colloidal spheres (size 1.5 μm) created with dynamic holographic 

optical tweezers. Figures adapted and reproduced with permission (c, d),
150

 2001, Elsevier; (e, 

f),
160

 2005, OSA Publishing.    
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Figure 8. OTs Applications: nanoassembly and actuation. a) Microdissection using OTs and a 

UV cutting laser. A single chromosome (black arrow) adherent to the glass coverslip is 

selected (left); a UV laser (black triangle) cuts it into segments (centre); by radiation pressure, 

a second, trapping laser (at 1,064 nm) detaches the chromosome from the glass away from the 

cut telomere (right). b) Complex micromachine built by photopolymerization, and actuated by 

OTs. Two engaged cogwheels (solid arrows) are rotated by a light-driven rotor (dashed 

arrow) which is held and spun by the laser tweezers. c) Assembly of a rhomboidal structure 

from semiconductor nanowires using HOTs. A nanowire is brought to an existing structure 

created earlier by trapping and fusing two nanowires (1). The long nanowire is cut with a 

pulsed optical scalpel (2). The resulting free-floating nanowire piece is then brought back to 

the structure and fused to the fourth nanowire (3, 4). d) Fusion of nanowire onto a premade 

structure. OTs are used to bring a nanowire to the target site and fuse it to a preexisting, 

imprinted Au electric circuit. e) Silica beads (~3 μm) activated by optical trapping and used as 

a peristaltic pump, operating at 2 Hz, to push a 1.5-μm tracer sphere (arrow) in water solution. 

f) Silica beads (one 3-μm in size, working as the fulcrum, and five 0.64-μm in size, working 

as the arm) assembled by photopolymerization via optical trapping into a three-way valve. 

The same trapping laser used to assemble the spheres into the valve is also used to actuate it 

and sort 3-μm beads with flow rates of ~2 nl‧h
-1

. Figures adapted and reproduced with 

permission: (a),
201

 1991, Wiley; (b),
207

 2001, AIP Publishing; (c),
218

 2005, OSA Publishing; 

(d),
219

 2009, OSA Publishing; (e, f),
 222

 2002, AAAS; 
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Figure 9. OTs Applications: force and displacement measurement in biology. a) Single-bead 

geometry. The laser trap is static and the protein displacement is measured via the bead 

position (xbead). b) Three-bead geometry. Both laser traps are static, the protein displacement 

is measured via the trapped beads position (xbead). c) Two-bead geometry. The left trap is 

static and measures the force applied to the polymer. The right bead is moved in steps or 

ramps and the forces of the polymer extension are measured. d) Force-clamps. A feedback 

tracking mechanism moves the laser trap to maintain the force on the bead constant. Protein 

displacements are measured by trap position (xtrap). e) Position-clamps. The left bead detects 

movements of the dumbbell (xbead), whereas the right bead moves using an acousto-optic 

deflector (AOD) to oppose the measured movements. The right bead measures the force 

applied by the motor (Fmotor). f) Dynamic force spectroscopy. The molecular bond is subjected 

to constant loading rates; rupture forces and bond lifetimes are measured. g–i) Measurement 

of base-pair stepping during RNA polymerase (RNAP) action via two-bead, optical force 

clamps. In the schematic (g), a single transcriptionally active molecule of RNAP (green) is 
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attached to a bead (blue) held in the trap to the right (Tweak) and tethered via the upstream 

DNA (dark blue) to a larger bead held in the trap to the left (Tstrong). During elongation, the 

DNA tether lengthens; the right bead moves relatively to the left one and its displacement is 

measured. Representative record (h) for single molecules of RNAP transcribing <18 pN of 

assisting load—median-filtered at 50 ms (pink) and 750 ms (black). The horizontal dotted 

lines are spaced at 3.4 Å intervals. The graph in (i) is the power spectrum showing a peak at 

the dominant spatial frequency, corresponding to the inverse of the fundamental step size of 

(3.7 ± 0.6) Å. j–l) Schematic of dual optical trap combined with a confocal microscope. Two 

beads are held in dual traps tethered together by 3-kbp dsDNA with a 19-nt single-stranded 

portion near the centre. The ssDNA probe strands diffuse in the surrounding solution and 

bind-unbind the complementary single-stranded region in the tethered DNA (j). Fluorescence 

image with the probe bound to the tethered DNA labeled. Scale bar, 1 μm (k). Plot of 

fluorescence with the confocal measurement localized between the two beads at the probe 

strand binding location. Fluorescence increases and decreases as the probe binds and unbinds, 

respectively (l). Figures adapted and reproduced with permission: (a–f),
137

 2013, Elsevier; (g–

i),
239

 2005, Springer Nature; (j–l),
183

 2011, Springer Nature. 
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Figure 10. OTs applications: optomechanics. a) A dielectric sphere is trapped by OTs inside a 

high-finesse optical cavity. The confinement of the centre-of-mass motion along the z-axis is 

harmonic. The driving field generates radiation pressure to cool down the mechanical motion 

to the ground state. b) Photograph of light scattered from an optically-trapped, levitating silica 

nanoparticle (size ~70 nm, arrow), in high vacuum. The object to the left is the outline of the 

objective that focuses the trapping laser. c) Schematic of an optical trap to levitate a diamond 

nanoparticle (size ~100–150 nm) containing a single nitrogen-vacancy (NV) colour centre. 

The trapping laser (wavelength at 1,064 nm) is superimposed to a green laser (wavelength at 

532 nm) and emission from the NV centre (wavelength ~637–750 nm) is collected. A 

microwave field (MW) and a magnetic field (BMW) are applied to measure the optically 

detected magnetic resonance (ODMR) spectrum from the NV (f). d) Photograph of the 

levitated nanodiamond illuminated by the green laser in (c). e) Second order auto-correlation 

measurement showing that the levitated nanodiamond in (c) contains a single NV quantum 

emitter (g
(2)
(Δt) < 0.5 at Δt = 0). f) ODMR spectrum of the NV centre hosted in the levitated 

nanodiamond in (c). The microwave field pumps the NV from its (bright) ground spin state ms 

= 0 to the (dark) ground spin states ms = ±1. The magnetic field splits the degeneracy of the 

levels ms = +1 and -1 by an amount proportional to the intensity of the field. The overall 

experiment in (c) demonstrates the ability to imprint the multi-dimensional mechanical 

motion of the cavity-free mechanical oscillator into the nitrogen–vacancy (NV) centre 

fluorescence and manipulate the mechanical system's intrinsic spin. Figures adapted and 

reproduced with permission: (b),
258

 2012, APS Physics; (c–f),
268

 2005, Springer Nature.  
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Optical trapping is the craft of manipulating objects with light. A powerful, well-

established tool for ultracold-atom physics and manipulation of micron-sized particles, optical 

trapping of objects at the nanoscale is still confronting open challenges. These are presented 

alongside the state-of-the-art of the field and its potential for advancing future applications in 

single-molecule biology, hybrid-device nanofabrication and quantum-driven optomechanics. 
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