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GENERALIZED LOG-MAJORIZATION

AND MULTIVARIATE TRACE INEQUALITIES

FUMIO HIAI, ROBERT KÖNIG, AND MARCO TOMAMICHEL

Abstract. We show that recent multivariate generalizations of the
Araki-Lieb-Thirring inequality and the Golden-Thompson inequality [Sut-
ter, Berta, and Tomamichel, Comm. Math. Phys. (2017)] for Schatten
norms hold more generally for all unitarily invariant norms and certain
variations thereof. The main technical contribution is a generalization
of the concept of log-majorization which allows us to treat majoriza-
tion with regards to logarithmic integral averages of vectors of singular
values.

1. Introduction

Majorization and log-majorization are powerful and versatile tools for
proving trace and norm inequalities (see, e.g., [1, 15, 10] for overviews on
the topic). A fundamental property of unitarily invariant norms (including
Schatten p-norms and the trace norm) can roughly be stated as follows
(see [5, Thm. IV.2.2] or [9, Prop. 4.4.13]):

For two matrices A and B, the singular values of A are weakly
majorized by the singular values of B if and only if |||A||| ≤ |||B|||
for every unitarily invariant norm ||| · |||.

(⋆)

A natural approach to prove norm inequalities for general unitarily invariant
norms then proceeds as follows: First, the desired inequality is shown for the
operator norm where such inequalities often boil down to operator inequal-
ities and are easier to prove. Next, it is shown using antisymmetric tensor
power calculus that the operator norm inequality implies log-majorization
and thus weak majorization of the eigenvalues. Consequently, the desired
inequalities follow directly from (⋆).

Let us illustrate this approach with an example (the reader unfamiliar
with the notation is referred to Section 2). For two positive definite operators
A1, A2 and any θ ∈ (0, 1), consider the following special case of the Araki-
Lieb-Thirring inequality [14, 4]:

∥∥∥∥∥
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2
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∥∥∥∥ , (1)

where ‖ · ‖ denotes the operator norm. Its elementary proof, using operator
monotonicity of t 7→ tθ as its main ingredient, simply argues that
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θ
2A

θ
2
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Inequality (1) for positive semi-definite operators follows by continuity. Ap-
plying (1) to the antisymmetric powers ∧kA1 and ∧kA2, using Properties (b),
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(c) and (d) of the antisymmetric tensor power discussed in the next section,
we find

λ

((
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2
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) 1
θ

)
≺log λ

(
A

1
2
1A2A

1
2
1

)
. (3)

Here λ(A) is a vector comprising the eigenvalues of A in decreasing or-
der counting multiplicities and ≺log denotes log-majorization. Since log-ma-
jorization implies weak majorization, the relation (⋆) allows us to lift (1)
to arbitrary unitarily invariant norms, including the trace. In fact, log-
majorization is stronger than weak majorization and thus allows us to derive
stronger norm inequalities (see, e.g., [9]).

The use of the antisymmetric tensor power approach has so far been
restricted to matrix functions made from operations of products, absolute
values and powers (see, e.g., [4] (explained above) and [3, 2]). In this work
we extend the approach to settings with a logarithmic integral average so
that it can be applied to recent multivariate trace inequalities [16]. For
example, [16, Thm. 3.2] specialized to the operator norm and three positive
semi-definite matrices A1, A2, A3 and θ ∈ (0, 1) generalizes the Araki-Lieb-
Thirring inequality and reads

log

∥∥∥∥
∣∣∣Aθ

1A
θ
2A

θ
3

∣∣∣
1
θ

∥∥∥∥ ≤

∫ ∞

−∞

log
∥∥A1A

1+it
2 A3

∥∥ dβθ(t) , (4)

where dβθ(t) is some probability measure on R. Using the antisymmetric
tensor power technique this can be transformed into a log-majorization re-
lation, namely1

λ

(∣∣∣Aθ
1A

θ
2A

θ
3

∣∣∣
1
θ

)
≺log exp

∫ ∞

−∞

logλ
(∣∣A1A

1+it
2 A3

∣∣) dβθ(t) . (5)

However, known results for majorization or log-majorization in the spirit
of (⋆) do not apply to (5) due to the integral average of vectors on the
right-hand side.

In Sections 3 we extend (⋆) to the case of weak majorization relations
where the right-hand side contains an integral average of vectors. Our first
main result, Theorem 7 in Section 4, deals with weak log-majorization rela-
tions of the form (5). It establishes that the weak log-majorization relation
is equivalent to two other conditions involving unitarily invariant norms,
and in particular implies that (4) holds for all unitarily invariant norms
and certain variations thereof. Our second main result, split into Theo-
rems 10 and 14 in Section 5, proves a similar characterization directly for
the log-majorization relation in (5) and implies even stronger inequalities for
unitarily invariant norms. For the special case where no average is present,
Propositions 8 and 13 imply new characterizations of weak log-majorization
and log-majorization, respectively. The implications for multivariate trace

1The details of this derivation are given in Section 6.
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inequalities are discussed in Section 6. There we present multivariate gen-
eralizations of the Araki-Lieb-Thirring inequality, the Golden-Thompson in-
equality [8, 17] and Lieb’s triple matrix inequality [13]—beyond the gen-
eralizations recently established in [16]. We also provide a simplified proof
of (4) for arbitrarily many matrices and the operator norm in Appendix A.

2. Preliminaries

Majorization. Let H be a Hilbert space of dimension d := dimH < ∞,
L(H) the set of linear operators on H, P(H) be the set of all positive semi-
definite operators in L(H), and P+(H) the set of all invertible (positive
definite) operators in P(H). For self-adjoint A,B ∈ L(H), we write A ≥ B
to indicate that A−B ∈ P(H).

We use bold font a = (a1, . . . , ad) ∈ R
d to denote vectors. Let R

d
+ :=

{a ∈ R
d : a1, . . . , ad ≥ 0}. For a, b ∈ R

d such that a1 ≥ · · · ≥ ad and
b1 ≥ · · · ≥ bd, weak majorization, denoted by a ≺w b, is the relation

k∑

i=1

ai ≤

k∑

i=1

bi, k ∈ [d] , (6)

where we used [d] := {1, 2, . . . , d}. Majorization, a ≺ b, additionally requires
that equality holds for k = d. For a, b ∈ R

d
+ such that a1 ≥ · · · ≥ ad and

b1 ≥ · · · ≥ bd, weak log-majorization, a ≺w log b, is the relation

k∏

i=1

ai ≤

k∏

i=1

bi, k ∈ [d], (7)

and log-majorization, a ≺log b, additionally requires equality for k = d. For
any function f on R+ we write f(a) = (f(a1), . . . , f(ad)) with conventions
log 0 := −∞ and e−∞ = 0. Moreover, weak majorization ≺w makes sense
even for vectors having entries −∞. With these conventions, it is evident
that a ≺w log b if and only if log a ≺w log b. The following relation takes a
prominent role (see [5, Thm. II.3.3] and [9, Prop. 4.1.4]):

Lemma 1. For any convex function f : [0,∞) → [0,∞), we have a ≺
b =⇒ f(a) ≺w f(b). Moreover, if f is also non-decreasing, then a ≺w

b =⇒ f(a) ≺w f(b).

As a direct consequence when applied to the exponential function, weak
log-majorization implies weak majorization.

Unitarily invariant norms. Let us denote the eigenvalues of a self-adjoint
operator A ∈ L(H) in decreasing order counting multiplicities by the vector
λ(A) = (λ1(A), . . . , λd(A)). Moreover, let ||| · |||Φ be a unitarily invariant
norm on P(H) and Φ : Rd

+ → R+ the corresponding gauge function so that

|||L|||Φ = ||||L||||Φ = Φ(λ(|L|)) . (8)

(We refer the reader to [5, Sec. IV] for an introduction to unitarily invariant
norms. The bijective correspondence between symmetric gauge functions
on R

d
+ and unitarily invariant norms on P(H) is due to von Neumann [18].)
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Of particular interest here are Ky Fan norms. For k ∈ [d], the Ky Fan
k-norm, ‖ · ‖(k) : L(H) → R+, is defined as

L 7→ ‖L‖(k) :=
k∑

i=1

λi(|L|) . (9)

In particular, ‖ · ‖(1) is the operator norm ‖ · ‖. Another important and

familiar one is the Schatten p-norm ‖L‖p := (tr |L|p)1/p for p ≥ 1. In
particular, ‖ · ‖1 is the trace norm. The definition of ‖ · ‖p makes sense even
for 0 < p < 1 as a quasi-norm.

The following lemma is a Hölder inequality for the gauge function Φ and
follows from [5, Thm. IV.1.6].

Lemma 2. For l ∈ [m] let al = (al1, . . . , ald) ∈ R
d
+ and βl > 0 with∑m

l=1 βl = 1. Then

Φ

(
m∏

l=1

a
βl

l

)
≤

m∏

l=1

Φβl(al), (10)

where

m∏

l=1

a
βl

l :=

(
m∏

l=1

aβl

l1 , . . . ,

m∏

l=1

aβl

ld

)
. (11)

Proof. The lemma for m = 2 is [5, Thm. IV.1.6]. The case m = 3 is shown
as

Φ
(
a
β1
1 a

β2
2 a

β3
3

)
= Φ

((
a

β1
β1+β2
1 a

β2
β1+β2
2

)β1+β2

a
β3
3

)
(12)

≤ Φβ1+β2

(
a

β1
β1+β2
1 a

β2
β1+β2
2

)
Φβ3(a3) ≤ Φβ1(a1)Φ

β2(a2)Φ
β3(a3).

(13)

The general case can be shown similarly by induction. �

Antisymmetric tensor product. For k ∈ [d], let H⊗k be the kth tensor
power of H and let H∧k denote the antisymmetric subspace of H⊗k. The kth
antisymmetric tensor power, ∧k : L(H) → L(H∧k), maps any linear operator
L to the restriction of L⊗k ∈ L(H⊗k) to the antisymmetric subspace H

∧k

of H⊗k. It satisfies the following rules (see, e.g., [5, Sec. I.5 and p. 18]):

Lemma 3. Let L,K ∈ L(H) and A ∈ P(H). For any k ∈ [d], we have:

(a) (∧kL)† = ∧k(L†),
(b) (∧kL)(∧kK) = ∧k(LK),
(c) (∧kA)z = ∧k(Az) for all z ∈ C, and

(d)
∥∥ ∧k L

∥∥ =
∏k

i=1 λi(|L|).

In particular, we note that if L ∈ L(H) is positive semi-definite, so is its
antisymmetric tensor power ∧kL ∈ L(H∧k).
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3. (Weak) majorization with integral average

Let Ξ be a σ-compact metric space and ν a probability measure on the
Borel σ-field of Ξ. Let A ∈ L(H) and ξ ∈ Ξ 7→ Bξ ∈ L(H) be a continuous
function such that A and Bξ for all ξ ∈ Ξ are self-adjoint and sup

{
‖Bξ‖ :

ξ ∈ Ξ
}
< ∞. We use the convention
∫

Ξ
λ(Bξ) dν(ξ) :=

(∫

Ξ
λ1(Bξ) dν(ξ), . . . ,

∫

Ξ
λd(Bξ) dν(ξ)

)
. (14)

The following two theorems are characterizations of weak majorization and
majorization in the setting with integral average. They will be used in
Sections 4 and 5.

Theorem 4. With Ξ, ν, and self-adjoint A,Bξ ∈ L(H) given as above, the
following statements are equivalent:

(a) λ(A) ≺w

∫
Ξ λ(Bξ)dν(ξ);

(b) for every non-decreasing convex function f : R → [0,∞) and for every
unitarily invariant norm ||| · |||,

|||f(A)||| ≤

∫

Ξ
|||f(Bξ)|||dν(ξ) . (15)

Proof. Assume (a) and let f be as in (b). We have

λ(f(A)) = f(λ(A)) ≺w f

(∫

Ξ
λ(Bξ)dν(ξ)

)
(16)

thanks to [9, Prop. 4.1.4(2)]. Since

f

(∫

Ξ
λ(Bξ) dν(ξ)

)
≤

∫

Ξ
f(λ(Bξ)) dν(ξ) =

∫

Ξ
λ(f(Bξ)) dν(ξ), (17)

we have λ(f(A)) ≺w

∫
Ξ λ(f(Bξ)) dν(ξ). Since both sides of this relation are

non-negative vectors, applying the gauge function Φ to them yields (see [9,
Lemma 4.4.2])

|||f(A)|||Φ ≤ Φ

(∫

Ξ
λ(f(Bξ)) dν(ξ)

)
(18)

≤

∫

Ξ
Φ(λ(f(Bξ))) dν(ξ) =

∫

Ξ
|||f(Bξ)|||Φ dν(ξ) . (19)

Hence (b) holds.
To prove the converse, assume (b). Since Bξ is uniformly bounded, there

is an α > 0 such that A+αI ≥ 0 and Bξ+αI ≥ 0 for all ξ ∈ Ξ. We evaluate
inequality (15) for f(x) := max{x+α, 0} and the Ky Fan norm ||| · ||| = ‖·‖(k)
to get

k∑

i=1

(λi(A) + α) ≤

k∑

i=1

∫

Ξ
(λi(Bξ) + α) dν(ξ) . (20)

Therefore,
∑k

i=1 λi(A) ≤
∑k

i=1

∫
Ξ λi(Bξ) dν(ξ), which implies (a). �

Remark 1. In the case where A,Bξ ∈ P(H) for all ξ ∈ Ξ, conditions (a)
and (b) are also equivalent to the statement
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(c) for every unitarily invariant norm ||| · |||,

|||A||| ≤

∫

Ξ
|||Bξ |||dν(ξ) . (21)

Indeed, (b) =⇒ (c) is obvious by letting f(x) := max{x, 0} in (b),
and (c) =⇒ (a) is seen by evaluating (c) for the Ky Fan norm ||| · ||| =
‖ · ‖(k). The assumption Bξ ∈ P(H) is essential for the latter implication.
Statements (a) and (c) constitute a generalization of (⋆) when applied to
|A| and |Bξ| for A,Bξ ∈ L(H).

Theorem 5. With Ξ, ν, and self-adjoint A,Bξ ∈ L(H) given as above, the
following statements are equivalent:

(d) λ(A) ≺
∫
Ξ λ(Bξ)dν(ξ);

(e) inequality (15) holds for every convex function f : R → [0,∞) and for
every unitarily invariant norm ||| · |||.

Proof. Assume (d) and let f be as in (e). It is obvious that λ(f(A)) ≈
f(λ(A)), where for a, b ∈ R

d, a ≈ b means that the entries of a coincide
with those of b up to a permutation. Since Lemma 1 gives

f(λ(A)) ≺w f

(∫

Ξ
λ(Bξ) dν(ξ)

)
≤

∫

Ξ
f(λ(Bξ)) dν(ξ) , (22)

we have

|||f(A)|||Φ ≤ Φ

(∫

Ξ
f(λ(Bξ)) dν(ξ)

)
(23)

≤

∫

Ξ
Φ(f(λ(Bξ))) dν(ξ) =

∫

Ξ
|||f(Bξ)|||Φ dν(ξ) . (24)

Hence (e) holds.
Conversely, if (e) is satisfied, then by Theorem 4 we have λ(A) ≺w∫

Ξ λ(Bξ) dν(ξ). Hence, to prove (d), it suffices to show that trA ≥
∫
Ξ trBξ dν(ξ).

Choose an α > 0 such that A ≤ αI and Bξ ≤ αI for all ξ ∈ Ξ. For
f(x) := max{α−x, 0} and the trace norm ||| · ||| = ‖ ·‖1, condition (e) implies
that

tr(αI −A) ≤

∫

Ξ
tr(αI −Bξ) dν(ξ) , (25)

giving the desired inequality. �

4. Weak log-majorization with integral average

In the following, we assume that A,Bξ ∈ P(H) for all ξ ∈ Ξ. The above
equivalent conditions (a), (b) of Theorem 4 and (c) of Remark 1 correspond
to weak majorization, and (d), (e) of Theorem 5 correspond to majorization.
We now consider stronger conditions than those, corresponding to (weak)
log-majorization. We have the following chain of implications, where the
last condition (4) is (b) of Theorem 4 and we use as in (14) the convention
∫

Ξ
logλ(Bξ) dν(ξ) :=

(∫

Ξ
log λ1(Bξ) dν(ξ), . . . ,

∫

Ξ
log λd(Bξ) dν(ξ)

)
. (26)
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Proposition 6. With Ξ, ν, A and Bξ given as above, consider the following
statements:

(1) λ(A) ≺log exp
∫
Ξ logλ(Bξ) dν(ξ)

(2) λ(A) ≺w log exp
∫
Ξ logλ(Bξ) dν(ξ)

(3) λ(A) ≺w log

∫
Ξ λ(Bξ) dν(ξ)

(4) λ(A) ≺w

∫
Ξ λ(Bξ) dν(ξ).

Then (1) =⇒ (2) =⇒ (3) =⇒ (4).

Proof. The implication (1) =⇒ (2) is trivial. Implication (2) =⇒ (3)
follows by Jensen’s inequality, and (3) =⇒ (4) follows by Lemma 1. �

The following theorem constitutes part of our main results and character-
izes the second condition in this chain. We will give a similar characteriza-
tion of the first condition in Theorems 10 and 14 below.

Theorem 7. With Ξ, ν, A and Bξ given as above, the following statements
are equivalent:

(i) λ(A) ≺w log exp
∫
Ξ logλ(Bξ) dν(ξ), i.e.,

logλ(A) ≺w

∫
Ξ logλ(Bξ) dν(ξ);

(ii) for every continuous non-decreasing function f : [0,∞) → [0,∞) such
that x 7→ log f(ex) is convex on R, and for every unitarily invariant
norm ||| · |||,

|||f(A)||| ≤ exp

∫

Ξ
log |||f(Bξ)|||dν(ξ) ; (27)

(iii) for every continuous non-decreasing function g : [0,∞) → [0,∞) such
that x 7→ g(ex) is convex on R, and for every unitarily invariant norm
||| · |||,

|||g(A)||| ≤

∫

Ξ
|||g(Bξ)|||dν(ξ) . (28)

When Ξ is a one-point set, Theorem 7 reduces to [9, Prop. 4.4.13], except
condition (ii). The proof of (ii) =⇒ (i) given below implies the next propo-
sition, which appears to be a new characterization of weak log-majorization.

Proposition 8. For A,B ∈ P(H), λ(A) ≺w log λ(B) if and only if

‖Ap‖(k) ≤ ‖Bp‖(k), p > 0, k ∈ [d]. (29)

Before presenting the proof of Theorem 7, we discuss the convexity condi-
tions appearing in (ii) and (iii). We will use the following properties in the
proof of Theorem 7 and again in Section 5.

Lemma 9. Let f : (0,∞) → [0,∞) be a continuous function such that
x 7→ log f(ex) is convex on R. Then:

(1) f(x) > 0 for any x > 0 unless f ≡ 0.
(2) f(0+) := limxց0 f(x) exists in [0,∞], and if f(0+) < ∞ then f is

non-decreasing on (0,∞).

Similarly, if g : (0,∞) → [0,∞) is a function such that x 7→ g(ex) is convex
on R, then g is automatically continuous on (0,∞), g(0+) := limxց0 g(x)
exists in [0,∞], and if g(0+) < ∞ then g is non-decreasing on (0,∞).
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In particular, (2) implies that a non-decreasing continuous function f :
(0,∞) → [0,∞) with the property that x 7→ log f(ex) is convex on R extends
to a continuous function f : [0,∞) → [0,∞). This corresponds to (ii) of
Theorem 7. Analogously, if g : (0,∞) → [0,∞) is continuous and non-
decreasing, and x 7→ g(ex) is convex on R, then g extends to a continuous
function g : [0,∞) → [0,∞). Such functions appear in (iii) of Theorem 7.
In Section 5, we will drop the assumption that f, g are non-decreasing and
instead consider majorization instead of weak majorization.

For instance, for any α ≥ 0 and any p > 0, f(x) := (α + x)p is an
increasing function on [0,∞) such that log f(ex) is convex on R. For any
p > 0, g(x) := log(1+xp) is an increasing function on [0,∞) such that g(ex)
is convex on R but log g(ex) is concave on R.

Proof. (1) Let h(x) := log f(ex), x ∈ R. If the conclusion is not true, then
there is an α > 0 such that f(α) = 0 and f(x) > 0 for x ∈ (α − δ, α) or
x ∈ (α,α + δ) for some δ > 0. Since limx→logα h(x) = log f(α) = −∞, h
cannot be convex around log α.
(2) From the convexity of h on R it follows that h(−∞) := limx→−∞ h(x)

exists in [−∞,∞]. This implies that f(0+) exists in [0,∞]. Unless h is
non-decreasing on R, the convexity of h implies that h(−∞) = ∞ and so
f(0+) = ∞.

The proof of the statements for g is similar and omitted here. �

Proof of Theorem 7. In comparing conditions (ii) and (iii), the convexity
of log f(ex) in (ii) is stronger than the convexity of f(ex) in (iii). Corre-
spondingly, the conclusion of (ii) is stronger than that of (iii). Hence it is
not clear how to pass directly between (ii) and (iii). The proof is thus split
into four parts, corresponding to the implications (i) =⇒ (ii), (ii) =⇒ (i),
(i) =⇒ (iii), and (iii) =⇒ (i).

Proof of (i) =⇒ (ii). First, assume that A,Bξ ∈ P+(H) and Bξ ≥ εI for
all ξ ∈ Ξ with some ε > 0. Because f is non-increasing on [0,∞), we have

logλ(f(A)) = log f(elogλ(A)) . (30)

Since log f(ex) is convex on R, Lemma 1 yields

log f(elogλ(A)) ≺w log f

(
exp

∫

Ξ
logλ(Bξ) dν(ξ)

)
(31)

≤

∫

Ξ
log f(λ(Bξ)) dν(ξ) (32)

from condition (i). Therefore, we have with (30)

λ(f(A)) ≺w exp

∫

Ξ
log f(λ(Bξ)) dν(ξ) (33)

so that

|||f(A)|||Φ = Φ(λ(f(A))) ≤ Φ

(
exp

∫

Ξ
log f(λ(Bξ)) dν(ξ)

)
. (34)

By Lemma 9 (1) we may assume that f(x) > 0 for any x > 0, so the func-
tion ξ 7→ log f(λi(Bξ)), i ∈ [d], as well as ξ 7→ log |||f(Bξ)|||Φ are bounded and
continuous on Ξ. Since, moreover, ν(Ξ) = 1 = sup{ν(K) : K ⊂ Ξ compact}
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due to the σ-compactness of Ξ, a standard compactness argument shows that
there are ξl

(m) ∈ Ξ and βl
(m) > 0 for l ∈ [m] and m ∈ N with

∑m
l=1 βl

(m) = 1
such that
∫

Ξ
log f(λi(Bξ)) dν(ξ) = lim

m→∞

m∑

l=1

β
(m)
l log f

(
λi

(
B

ξ
(m)
l

))
, i ∈ [d],

(35)
∫

Ξ
log |||f(Bξ)|||Φ dν(ξ) = lim

m→∞

m∑

l=1

β
(m)
l log

∣∣∣
∣∣∣
∣∣∣f
(
B

ξ
(m)
l

)∣∣∣
∣∣∣
∣∣∣
Φ
. (36)

Therefore,

Φ

(
exp

∫

Ξ
log f(λ(Bξ)) dν(ξ)

)
= lim

m→∞
Φ

(
m∏

l=1

f
(
λ

(
B

ξ
(m)
l

))β(m)
l

)
, (37)

exp

∫

Ξ
log |||f(Bξ)|||Φ dν(ξ) = lim

m→∞

m∏

l=1

∣∣∣
∣∣∣
∣∣∣f
(
B

ξ
(m)
l

)∣∣∣
∣∣∣
∣∣∣
β
(m)
l

Φ
. (38)

Since Lemma 2 implies that

Φ

(
m∏

l=1

f
(
λ

(
B

ξ
(m)
l

))β(m)
l

)
≤

m∏

l=1

Φβ
(m)
l

(
f
(
λ

(
B

ξ
(m)
l

)))
(39)

=

m∏

l=1

Φβ
(m)
l

(
λ

(
f
(
B

ξ
(m)
l

)))
(40)

=

m∏

l=1

∣∣∣
∣∣∣
∣∣∣f
(
B

ξ
(m)
l

)∣∣∣
∣∣∣
∣∣∣
β
(m)
l

Φ
, (41)

we have

Φ

(
exp

∫

Ξ
log f(λ(Bξ)) dν(ξ)

)
≤ exp

∫

Ξ
log |||f(Bξ)|||Φ dν(ξ) . (42)

Combining (34) and (42) gives inequality (27).
Next, consider the general case where A,Bξ ∈ P(H). For any ε > 0, since

k∏

i=1

λi(A) ≤

k∏

i=1

exp

∫

Ξ
log λi(Bξ) dν(ξ) (43)

<

k∏

i=1

exp

∫

Ξ
log(λi(Bξ) + ε) dν(ξ), k ∈ [d], (44)

one can choose a δε ∈ (0, ε) such that

k∏

i=1

(λi(A) + δε) ≤

k∏

i=1

exp

∫

Ξ
log(λi(Bξ) + ε) dν(ξ), k ∈ [d], (45)

i.e., we have the weak log-majorization λ(A + δεI) ≺w log exp
∫
Ξ logλ(Bξ +

εI) dν(ξ). By applying the first case to A+ δεI and Bξ + εI, we have

|||f(A+ δεI)|||Φ ≤ exp

∫

Ξ
log |||f(Bξ + εI)|||Φ dν(ξ). (46)
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Since log |||f(Bξ + εI)|||Φ ց log |||f(Bξ)|||Φ for every ξ ∈ Ξ as ε ց 0, the
monotone convergence theorem gives

∫

Ξ
log |||f(Bξ + εI)|||Φ dν(ξ) ց

∫

Ξ
log |||f(Bξ)|||Φ dν(ξ). (47)

Hence letting ε ց 0 in (46) gives the desired inequality. �

Proof of (ii) =⇒ (i). First, assume that Bξ ∈ P+(H) for all ξ ∈ Ξ. As-
sume (ii), and for every k ∈ [d] we prove that

k∏

i=1

λi(A) ≤
k∏

i=1

exp

∫

Ξ
log λi(Bξ) dν(ξ). (48)

Since (48) is obvious if λk(A) = 0, we may assume that λk(A) > 0. Applying
inequality (27) in (ii) to ||| · ||| = ‖ · ‖(k), and f(x) = xp for each p > 0 (which
obviously satisfies the condition in (ii)), we have

‖Ap‖(k) ≤ exp

∫

Ξ
log ‖Bp

ξ ‖(k) dν(ξ), (49)

i.e.,

log

k∑

i=1

λp
i (A) ≤

∫

Ξ
log

k∑

i=1

λp
i (Bξ) dν(ξ). (50)

Therefore,

1

p
log

(
1

k

k∑

i=1

λp
i (A)

)
≤

∫

Ξ

1

p
log

(
1

k

k∑

i=1

λp
i (Bξ)

)
dν(ξ). (51)

Since, for ai > 0, the function p > 0 7→ log
(
1
k

∑k
i=1 a

p
i

)
is convex, we find

that, as p ց 0,

1

p
log

(
1

k

k∑

i=1

λp
i (A)

)
ց

1

k

k∑

i=1

log λi(A), (52)

1

p
log

(
1

k

k∑

i=1

λp
i (Bξ)

)
ց

1

k

k∑

i=1

log λi(Bξ) (53)

for every ξ ∈ Ξ. This relies on the fact that x 7→ f(x)/x is non-decreasing if
f is convex and f(0) = 0. Hence the monotone convergence theorem yields

∫

Ξ

1

p
log

(
1

k

k∑

i=1

λp
i (Bξ)

)
dν(ξ) ց

1

k

∫

Ξ

k∑

i=1

log λi(Bξ) dν(ξ) as p ց 0.

(54)

Therefore, by letting p ց 0 in (51) we have

k∑

i=1

log λi(A) ≤

∫

Ξ

k∑

i=1

log λi(Bξ) dν(ξ), (55)

implying (48).
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Next, consider the general case where Bξ ∈ P(H) for all ξ ∈ Ξ. Since the
inequality (27) in (ii) holds with Bξ + εI instead of Bξ for any ε > 0, the
above case implies that

k∏

i=1

λi(A) ≤

k∏

i=1

exp

∫

Ξ
log(λi(Bξ) + ε) dν(ξ), k ∈ [d]. (56)

Letting ε ց 0 gives (48) so that (i) follows. �

Proof of (i) =⇒ (iii). Assume first that A,Bξ ∈ P+(H) and Bξ ≥ εI for
all ξ ∈ Ξ with some ε > 0. Since (i) means that

λ(logA) = logλ(A) ≺w

∫

Ξ
logλ(Bξ) dν(ξ) =

∫

Ξ
λ(logBξ) dν(ξ) , (57)

one can apply (a) =⇒ (b) of Theorem 4 to logA, logBξ and f(x) := g(ex),
where g is as in (iii). Inequality (28) then immediately follows. For the
general case where A,Bξ ∈ P(H), for any ε > 0 choose a δε ∈ (0, ε) satisfy-
ing (45). Since the above case gives |||g(A + δεI)||| ≤

∫
Ξ |||g(Bξ + εI)|||dν(ξ),

we have (28) by letting ε ց 0.
�

Proof of (iii) =⇒ (i). For k ∈ [d] let |||·||| = ‖·‖(k) and g(x) := log(1+ε−1x)
where ε > 0; then g satisfies the condition in (iii). Since

‖g(A)‖(k) =
k∑

i=1

log(ε+ λi(A))− k log ε, (58)

∫

Ξ
‖g(Bξ)‖(k) dν(ξ) =

k∑

i=1

∫

Ξ
log(ε+ λi(Bξ)) dν(ξ)− k log ε, (59)

inequality (28) implies that

k∑

i=1

log(ε+ λi(A)) ≤
k∑

i=1

∫

Ξ
log(ε+ λi(Bξ)) dν(ξ). (60)

Letting ε ց 0 gives

k∑

i=1

log λi(A) ≤

k∑

i=1

∫

Ξ
log λi(Bξ) dν(ξ), (61)

and hence (i) follows. �

5. Log-majorization with integral average

Consider the strongest condition (1) in the chain of implications in Propo-
sition 6. Our first main result concerning this condition is the following.

Theorem 10. With Ξ, ν, A and Bξ given as above, the following statements
are equivalent:

(I) λ(A) ≺log exp
∫
Ξ logλ(Bξ) dν(ξ), i.e., logλ(A) ≺

∫
Ξ logλ(Bξ) dν(ξ);
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(II) for every continuous function f : (0,∞) → [0,∞) such that x 7→
log f(ex) is convex on R, and for every unitarily invariant norm ||| · |||,

|||f(A)||| ≤ exp

∫

Ξ
log |||f(Bξ)|||dν(ξ) . (62)

In this statement, we extend f to [0,∞) by continuity and for any
unitarily invariant norm ||| · ||| use the convention |||f(A)||| = ∞ when
f(0+) = ∞ and A ∈ P(H) is not invertible.

The proof requires a few auxiliary results. We first show that the right-
hand side of (62) is well-defined.

Lemma 11. Let f : (0,∞) → [0,∞) be a continuous function such that
x 7→ log f(ex) is convex on R. Then (with the extension and convention as
stated in Theorem 10)

∫
Ξ log |||f(Bξ)|||dν(ξ) exists in [−∞,∞].

Proof. If f(0+) < ∞, then by Lemma 9 (2) (and the uniform boundedness of
Bξ) we have supξ |||f(Bξ)||| < ∞, so the integral

∫
Ξ log |||f(Bξ)|||dν(ξ) exists

in [−∞,∞). If f(0+) = ∞, then one can choose a > 0 and b ∈ R such
that log f(ex) ≥ −ax + b on R by the convexity assumption. This in turn
implies that f(x) ≥ ebx−a on (0,∞). Hence we have infξ |||f(Bξ)||| > 0, so
the integral exists in (−∞,∞]. �

Before proving the theorem we give another lemma.

Lemma 12. Let a, b ∈ R
d
+ be such that a1 ≥ · · · ≥ ad and b1 ≥ · · · ≥ bd,

and assume that a ≺log b. Furthermore, let b(m) ∈ R
d
+, m ∈ N, be such that

b
(m)
1 ≥ · · · ≥ b

(m)
d > 0 and b

(m) ց b as m → ∞. Then there exist m0 ∈ N

and a
(m) ∈ R

d
+ for m ≥ m0 such that a

(m)
1 ≥ · · · ≥ a

(m)
d > 0, a(m) → a as

m → ∞, and

a ≤ a
(m) ≺log b

(m), m ≥ m0 .

Proof. Assume that a ≺log b. The proof is divided into two cases. First,
assume that ad > 0 (hence bd > 0 as well). For each m ∈ N, since

loga, log b ∈ R
d and log a ≺ log b ≤ log b(m) so that loga ≺w log b(m),

it follows from [9, Proposition 4.1.3] that there exists a c
(m) ∈ R

d such that

log a ≤ c
(m) ≺ log b(m) . (63)

Now define a
(m) := exp c(m); then a ≤ a

(m) ≺log b
(m). It remains to prove

that a(m) → a. For this, note that

d∑

i=1

(
c
(m)
i − log ai

)
=

d∑

i=1

(
log b

(m)
i − log ai

)
−→

d∑

i=1

(log bi − log ai) = 0 (64)

as m → ∞. Therefore, we have c
(m)
i → log ai so that a

(m)
i → ai for all

i ∈ [d].
Secondly, assume that ad = 0 (hence bd = 0 as well). Assume that

a1 ≥ · · · ≥ ar > 0 = ar+1 = · · · = ad ,

b1 ≥ · · · ≥ bs > 0 = bs+1 = · · · = bd .
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Since 0 <
∏r

i=1 ai ≤
∏r

i=1 bi, we have r ≤ s. For each m ∈ N define

α(m) :=

(∏s+1
i=1 b

(m)
i∏r

i=1 ai

) 1
s−r+1

> 0 . (65)

Since b
(m)
s+1 → bs+1 = 0 and so α(m) → 0 as m → ∞, choose an m0 such that

α(m) ≤ min{ar, bs} for all m ≥ m0. Define for m ≥ m0,

a
(m) :=

(
a1, . . . , ar, α

(m), . . . , α(m)

︸ ︷︷ ︸
s−r+1

, b
(m)
s+2, . . . , b

(m)
d

)
. (66)

Since

α(m) =

∏s+1
i=1 b

(m)
i∏r

i=1 ai ·
(
α(m)

)s−r ≥

∏r
i=1 bi∏r
i=1 ai

(
bs

α(m)

)s−r

b
(m)
s+1 ≥ b

(m)
s+1 , (67)

we find that a
(m) is in decreasing order. We furthermore have a

(m) → a

and

r∏

i=1

ai · (α
(m))k ≤

r∏

i=1

bi · b
k
s ≤

r+k∏

i=1

b
(m)
i , 1 ≤ k ≤ s− r, (68)

r∏

i=1

ai · (α
(m))s−r+1 =

s+1∏

i=1

b
(m)
i , (69)

so that a ≤ a
(m) ≺log b

(m) follows. �

Proof of (I) =⇒ (II). First, assume that A,Bξ ∈ P+(H) and Bξ ≥ εI for
all ξ ∈ Ξ with some ε > 0. Since λ(f(A)) ≈ f(λ(A)), the corresponding
part of the proof of Theorem 7 can be adopted with the slight modification
that

logλ(f(A)) ≈ log f(elogλ(A)) (70)

instead of (30) because the assumption that f is non-decreasing has been
dropped.

Next, consider the general case where A,Bξ ∈ P(H). With 0 < εm ց 0,
we have

k∏

i=1

λi(A) ≤
k∏

i=1

exp

∫

Ξ
log λi(Bξ) dν(ξ) (71)

<

k∏

i=1

exp

∫

Ξ
log(λi(Bξ) + εm) dν(ξ) , k ∈ [d] . (72)

Since
∫
Ξ log(λ(Bξ) + εm) dν(ξ) ց

∫
Ξ logλ(Bξ) dν(ξ) as m → ∞ by the

monotone convergence theorem, by Lemma 12 one can choose a(m), m ≥ m0,

such that a
(m)
1 ≥ · · · ≥ a

(m)
d > 0, a(m) → λ(A) and

a
(m) ≺log exp

∫

Ξ
log(λ(Bξ + εmI)) dν(ξ) . (73)
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Choosing A(m) ∈ P+(H) with λ(A(m)) = a
(m) and applying the first case

to A(m) and Bξ + εmI, we have

|||f(A(m))|||Φ ≤ exp

∫

Ξ
log |||f(Bξ + εmI)|||Φ dν(ξ) , m ≥ m0. (74)

When f(0+) < ∞ and hence f is non-decreasing on (0,∞) by Lemma 9 (2),
note that

|||f(A(m))|||Φ = Φ(f(a(m))) −→ Φ(f(λ(A))) = |||f(A)|||Φ (75)

and similarly |||f(Bξ+εmI)|||Φ → |||f(Bξ)|||Φ for every ξ ∈ Ξ as m → ∞. Since
ξ 7→ |||f(Bξ + εmI)|||Φ is uniformly bounded above (so − log |||f(Bξ + εmI)|||Φ
is uniformly bounded below), Fatou’s lemma yields

lim sup
m→∞

∫

Ξ
log |||f(Bξ + εmI)|||Φ dν(ξ) ≤

∫

Ξ
log |||f(Bξ)|||Φ dν(ξ) , (76)

and therefore, letting m → ∞ in (74) gives inequality (62). Finally, when
f(0+) = ∞, we may assume that

∫
Ξ log |||f(Bξ)|||Φ dν(ξ) < ∞. In this case,

f is decreasing on (0, δ) for some δ > 0. We will argue below that there are
constants α, β > 0 such that

α ≤ |||f(Bξ + εmI)|||Φ ≤ |||f(Bξ)|||Φ + β (77)

for all ξ ∈ Ξ and m ≥ m0. Since
∫
Ξ log(|||f(Bξ)|||Φ + β) dν(ξ) < ∞, the

Lebesgue convergence theorem can be used to get (62) by taking the limit
of (74).

It remains to show (77). By the uniform boundedness of the operators Bξ,
there is a constant γ > 0 such that

0 < Bξ + εmI ≤ γI , ξ ∈ Ξ ,m ≥ m0 . (78)

Because f is decreasing on (0, δ) and f(x) > 0 for all x > 0 (see Lemma 9 (1)),
this implies that ξ 7→ |||f(Bξ + εmI)|||Φ is uniformly bounded from below, as
claimed in (77). Observe that the upper bound in (77) is trivial for Bξ ∈
P(H)\P+(H) since |||f(Bξ)|||Φ = ∞ when Bξ is not invertible. Hence assume
that Bξ ∈ P+(H). Using the spectral decomposition Bξ =

∑
λ∈spec(Bξ)

λPλ,

where spec(Bξ) is the set of eigenvalues of Bξ, we then have

f(Bξ + εmI) =
∑

λ∈spec(Bξ)
λ+εm<δ

f(λ+ εm)Pλ +
∑

λ∈spec(Bξ)
λ+εm≥δ

f(λ+ εm)Pλ (79)

≤
∑

λ∈spec(Bξ)
λ+εm<δ

f(λ)Pλ +
∑

λ∈spec(Bξ)
λ+εm≥δ

f(λ+ εm)Pλ (80)

≤ f(Bξ) +
∑

λ∈spec(Bξ)
λ+εm≥δ

f(λ+ εm)Pλ (81)

The claim then follows by the triangle inequality for ||| · |||Φ and the fact that
f(λ+ εm) ≤ supδ≤x≤γ f(x) < ∞ for all λ ∈ spec(Bξ) with λ + εm ≥ δ and
for all ξ ∈ Ξ. The last fact is immediately seen from (78) and the continuity
of f .

�
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Proof of (II) =⇒ (I). The weak majorization relation

k∏

i=1

λi(A) ≤

k∏

i=1

exp

∫

Ξ
log λi(Bξ) dν(ξ) . (82)

is obvious from (ii) =⇒ (i) in Theorem 7 since condition (II) is stronger
than (ii). It remains to prove that equality holds in (82) when k = d. It
suffices to prove that

log(detA) ≥

∫

Ξ
log
(
detBξ

)
dν(ξ) . (83)

For this, we may assume that
∫
Ξ log

(
detBξ

)
dν(ξ) > −∞ and soBξ ∈ P+(H)

for ν-a.e. ξ ∈ Ξ. So we may assume that Bξ ∈ P+(H) for all ξ ∈ Ξ. Moreover,
replacing A, Bξ with αA, αBξ for some α > 0, we may assume that Bξ ≤ I
and so λi(Bξ) ≤ 1 for all ξ ∈ Ξ and i ∈ [d]. For every p > 0, since

1

d

∥∥B−p
ξ

∥∥
1
≤ λd(Bξ)

−p ≤
(
detBξ)

−p , (84)

we find that

1

p
log

(
1

d

∥∥B−p
ξ

∥∥
1

)
≤ − log

(
detBξ

)
. (85)

Applying inequality (62) to ||| · ||| = ‖ · ‖1 and f(x) = x−p for any p > 0 we
get

log ‖A−p‖1 ≤

∫

Ξ
log
∥∥B−p

ξ

∥∥
1
dν(ξ) . (86)

This means that

1

p
log

(
1

d
‖A−p‖1

)
≤

∫

Ξ

1

p
log

(
1

d

∥∥B−p
ξ

∥∥
1

)
dν(ξ) . (87)

Similarly to (52) and (53) we find that, as p ց 0,

1

p
log

(
1

d
‖A−p‖1

)
ց −

1

d
log(detA) , (88)

1

p
log

(
1

d

∥∥B−p
ξ

∥∥
1

)
ց −

1

d
log
(
detBξ

)
(89)

for every ξ ∈ Ξ. Thanks to (85) the Lebesgue convergence theorem yields

lim
pց0

∫

Ξ

1

p
log

(
1

d

∥∥B−p
ξ

∥∥
1

)
dν(ξ) = −

1

d

∫

Ξ
log
(
detBξ

)
dν(ξ) . (90)

Therefore, letting p ց 0 in (87) gives (83), as desired. �

When Ξ is a one-point set, Proposition 8 and Theorem 10 with the above
proof of the implication (II) =⇒ (I) yield a new characterization of log-
majorization.

Proposition 13. For A,B ∈ P(H), λ(A) ≺log λ(B) if and only if

‖Ap‖(k) ≤ ‖Bp‖(k), p ∈ R \ {0}, k ∈ [d]. (91)
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It is natural to wonder whether the generalized log-majorization condi-
tion (1) of Proposition 6 is equivalent to a third condition analogous to (ii)
of Theorem 7. The following theorem shows that this is the case under
one additional technical assumption. In the statement, we use the same
convention for |||g(A)||| as introduced in Theorem 10.

Theorem 14. With Ξ, ν, A and Bξ given as above, consider the additional
statement

(III) for every continuous function g : (0,∞) → [0,∞) such that x 7→ g(ex)
is convex on R, and for every unitarily invariant norm ||| · |||,

|||g(A)||| ≤

∫

Ξ
|||g(Bξ)|||dν(ξ) . (92)

Then (I) =⇒ (III), and if
∫
Ξ

∥∥B−p
ξ

∥∥
1
dν(ξ) < ∞ for some p > 0, then

(III) =⇒ (I).

Remark 2. The integrability assumption is essential in the proof of the im-
plication (III) =⇒ (I) with use of test functions x−p for p > 0. Indeed, it is
easy to provide an example of Ξ, ν andBξ such that−

∫
Ξ log

(
detBξ

)
dν(ξ) <

∞ but
∫
Ξ

∥∥B−p
ξ

∥∥
1
dν(ξ) = ∞ for all p > 0. Since there is no good test func-

tion other than x−p, it seems difficult to remove or relax the integrability
assumption.

Proof of (I) =⇒ (III). Assume first that A,Bξ ∈ P+(H) and Bξ ≥ εI for
all ξ ∈ Ξ with some ε > 0. Since (I) means that λ(logA) ≺

∫
Ξ λ(logBξ) dν(ξ),

one can apply (d) =⇒ (e) of Theorem 5 to logA, logBξ and f(x) := g(ex)
for g as in (III). Inequality (III) then follows. For general A,Bξ ∈ P(H)

satisfying (I), with 0 < εm ց 0 choose a
(m) and A(m), m ≥ m0, as in the

proof of (I) =⇒ (II). By the first case we have

|||g(A(m))|||Φ ≤

∫

Ξ
|||g(Bξ + εmI)|||Φ dν(ξ) . (93)

When g(0+) < ∞, letting m → ∞ in (93) gives inequality (92) immediately.
When g(0+) = ∞, the proof is similar to the last part of the proof (I) =⇒
(II) by noting that there is a constant β > 0 such that |||g(Bξ + εmI)|||Φ ≤
|||g(Bξ)|||Φ + β for all ξ ∈ Ξ and m ≥ m0. �

Proof of (III) =⇒ (I) under the integrability assumption. The weak majoriza-
tion relation

k∑

i=1

log λi(A) ≤
k∑

i=1

∫

Ξ
log λi(Bξ) dν(ξ) , k ∈ [d] (94)

is obvious from (iii) =⇒ (i) in Theorem 7 since condition (III) is stronger
than (iii). It remains to prove that equality holds in (94) when k = d.

Here, we use the assumption that
∫
Ξ

∥∥B−p0
ξ

∥∥
1
dν(ξ) < ∞ for some p0 > 0.

Inequality (92) in (III) is applied to ||| · ||| = ‖ · ‖1 and g(x) = x−p for any

p > 0, so that we have ‖A−p‖1 ≤
∫
Ξ

∥∥B−p
ξ

∥∥
1
dν(ξ). Therefore,

1

p
log

(
1

d
‖A−p‖1

)
≤

1

p
log

∫

Ξ

1

d

∥∥B−p
ξ

∥∥
1
dν(ξ) . (95)
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Thanks to Lemma 15 separately shown below (and (88) as well), letting
p ց 0 in (94) yields

−
1

d
log(detA) ≤ −

1

d

∫

Ξ
log
(
detBξ

)
dν(ξ) , (96)

which gives the desired equality.
�

Lemma 15. Let Ξ, ν and Bξ be as above. If
∫
Ξ

∥∥B−p0
ξ

∥∥
1
dν(ξ) < ∞ for

some p0 > 0, then

lim
pց0

(
1

p
log

∫

Ξ

1

d

∥∥B−p
ξ

∥∥
1
dν(ξ)

)
= −

1

d

∫

Ξ
log
(
detBξ

)
dν(ξ) . (97)

Proof. The following proof is similar to that of [6, Lemma 6.12]. The as-
sumption implies that Bξ ∈ P+(H) for ν-a.e. ξ ∈ Ξ. So we may assume that
Bξ ∈ P+(H) for all ξ ∈ Ξ. Moreover, replacing Bξ with αBξ for some α > 0,
we may assume that Bξ ≤ I. Let ν̃ := ν ⊗ µ be the product measure of ν
and the uniform probability measure µ on [d]. Define

φ(ξ, i, p) := λi(Bξ)
−p, ξ ∈ Ξ , i ∈ [d], p > 0. (98)

It is clear that

∫

Ξ

1

d

∥∥B−p
ξ

∥∥
1
dν(ξ) =

∫

Ξ×[d]
φ(ξ, i, p) dν̃(ξ, i) , p > 0. (99)

Hence (ξ, i) 7→ φ(ξ, i, p0) is integrable with respect to ν̃. According to the
mean value theorem applied to the function p 7→ λi(Bξ)

p, we have

φ(ξ, i, p) − φ(ξ, i, 0)

p
= −λi(Bξ)

−θp log λi(Bξ) ≤ −λi(Bξ)
−p log λi(Bξ) ,

(100)

for some θ ∈ (0, 1) depending on ξ, i, p, and

lim
pց0

φ(ξ, i, p) − φ(ξ, i, 0)

p
= − log λi(Bξ) . (101)

Furthermore, when 0 < p < p1 < p0, we have

−λi(Bξ)
−p log λi(Bξ) ≤ −λi(Bξ)

−p1 log λi(Bξ) (102)

= λi(Bξ)
−p0
{
−λi(Bξ)

p0−p1 log λi(Bξ)
}
. (103)

Since sup0<λ≤1

(
−λp0−p1 log λ

)
< ∞, we find that

(ξ, i) 7→ −λi(Bξ)
−p1 log λi(Bξ)
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is integrable with respect to ν̃. Hence the Lebesgue convergence theorem
yields

d

dp

∫

Ξ×[d]
φ(ξ, i, p) dν̃(ξ, i)

∣∣∣∣
p=0+

= lim
pց0

∫

Ξ×[d]

φ(ξ, i, p) − φ(ξ, i, 0)

p
dν̃(ξ, i)

(104)

= −

∫

Ξ×[d]
log λi(Bξ) dν̃(ξ, i) (105)

= −

∫

Ξ

1

d

d∑

i=1

log λi(Bξ) dν(ξ) (106)

= −
1

d

∫

Ξ
log
(
detBξ

)
dν(ξ) , (107)

where d
dp(·)

∣∣
p=0+

means the right derivative at p = 0. Now we obtain the

desired equality since

lim
pց0

(
1

p
log

∫

Ξ

1

d

∥∥B−p
ξ

∥∥
1
dν(ξ)

)
=

d

dp

∫

Ξ×[d]
φ(ξ, i, p) dν̃(ξ, i)

∣∣∣∣
p=0+

(108)

as easily seen from (99). �

6. Application to multivariate norm inequalities

We recall the inequality [16, Thm. 3.2] specialized to the operator norm.
For Aℓ ∈ P(H), ℓ ∈ [n] and θ ∈ (0, 1], we have

log

∥∥∥∥∥∥

∣∣∣∣∣

n∏

ℓ=1

Aθ
ℓ

∣∣∣∣∣

1
θ

∥∥∥∥∥∥
≤

∫ ∞

−∞

log

∥∥∥∥∥

n∏

ℓ=1

A1+it
ℓ

∥∥∥∥∥ dβθ(t) , (109)

where

dβθ(t) :=
sin(πθ)

2θ
(
cos(πt) + cos(πθ)

) dt , (110)

and the functional calculus Az
ℓ for any z ∈ C is defined with the convention

that 0z = 0. A concise proof of this special case is given in Appendix A. Us-
ing the rules of antisymmetric tensor power calculus presented in Lemma 3,
we find
∣∣∣∣∣

n∏

ℓ=1

(∧kAℓ)
θ

∣∣∣∣∣

1
θ

= ∧k

∣∣∣∣∣

n∏

ℓ=1

Aθ
ℓ

∣∣∣∣∣

1
θ

and

∣∣∣∣∣

n∏

ℓ=1

(
∧kAℓ

)1+it
∣∣∣∣∣ = ∧k

∣∣∣∣∣

n∏

ℓ=1

A1+it
ℓ

∣∣∣∣∣ .

(111)

The inequality (109) applied to the matrices ∧kAℓ for all k ∈ [d] thus imme-
diately yields the log-majorization relation

logλ

(∣∣∣∣
n∏

ℓ=1

Aθ
ℓ

∣∣∣∣
1
θ

)
≺

∫ ∞

−∞

logλ

(∣∣∣∣
n∏

ℓ=1

A1+it
ℓ

∣∣∣∣

)
dβθ(t) , (112)
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where in particular the equality condition for log-majorization is satisfied
since

det

∣∣∣∣
n∏

ℓ=1

Aθ
ℓ

∣∣∣∣

1
θ

= det

∣∣∣∣
n∏

ℓ=1

A1+it
ℓ

∣∣∣∣ =
n∏

ℓ=1

detAℓ . (113)

Hence we arrive at the following application of Theorem 10 and Theorem 14.
Here we again use the continuous extension and convention of Theorem 10.

Corollary 16. Let Aℓ ∈ P(H) for ℓ ∈ [n], θ ∈ (0, 1] and ||| · ||| a unitarily
invariant norm. Then, for any continuous function f : (0,∞) → [0,∞) such
that x 7→ log f(ex) is convex on R, we have

log

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣f
(∣∣∣∣

n∏

ℓ=1

Aθ
ℓ

∣∣∣∣

1
θ

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ≤
∫ ∞

−∞

log

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣f
(∣∣∣∣

n∏

ℓ=1

A1+it
ℓ

∣∣∣∣

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣dβθ(t) . (114)

Moreover, for any continuous function g : (0,∞) → [0,∞) such that
x 7→ g(ex) is convex on R, we have

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣g
(∣∣∣∣

n∏

ℓ=1

Aθ
ℓ

∣∣∣∣
1
θ

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ≤
∫ ∞

−∞

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣g
(∣∣∣∣

n∏

ℓ=1

A1+it
ℓ

∣∣∣∣

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ dβθ(t) . (115)

These inequalities generalize and strengthen the results in [16]. For ex-
ample, consider the function f : x 7→ xq for q ∈ R \ {0} and the trace norm
to find

Corollary 17. Let Aℓ ∈ P(H) for ℓ ∈ [n] and θ ∈ (0, 1]. Then we have

log tr

∣∣∣∣
n∏

ℓ=1

Aθ
ℓ

∣∣∣∣

q

θ

≤

∫ ∞

−∞

log tr

∣∣∣∣
n∏

ℓ=1

A1+it
ℓ

∣∣∣∣
q

dβθ(t) , (116)

for any q ∈ R\{0}.

Indeed, this is a strengthening of both [16, Thm. 3.2] (which establishes (116)
for q ≥ 1) and [16, Thm. 2.3] (which establishes a looser bound for q > 0
where the integration on the right-hand side of (116) is replaced by a supre-
mum over t) to the case of arbitrary non-zero q ∈ R.

Finally note that if Aℓ ∈ P+(H), all of these inequalities remain valid in
the limit θ → 0, where the Lie-Trotter product formula asserts that

∣∣∣∣
n∏

ℓ=1

Aθ
ℓ

∣∣∣∣
1
θ

−→ exp

(
n∑

ℓ=1

logAℓ

)
. (117)

Equations (114) and (115) thus hold with this substitution and θ = 0.

Corollary 18. Let Aℓ ∈ P+(H) for ℓ ∈ [n]. With ||| · |||, f and g given as in
Corollary 16,

log

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣f
(
exp

(
n∑

ℓ=1

logAℓ

))∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ≤
∫ ∞

−∞

log

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣f
(∣∣∣∣

n∏

ℓ=1

A1+it
ℓ

∣∣∣∣

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣dβ0(t) , (118)

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣g
(
exp

(
n∑

ℓ=1

logAℓ

))∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ ≤
∫ ∞

−∞

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣g
(∣∣∣∣

n∏

ℓ=1

A1+it
ℓ

∣∣∣∣

)∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ dβ0(t) . (119)
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These inequalities generalize [16, Cor. 3.3], where the result was shown for
the norms ‖ · ‖p with p ≥ 1 and f and g equal to the identity function.
Using this inequality with n = 4 and p = 2, the authors of [16] obtained
the best currently known lower bound on the remainder term in the strong
subadditivity inequality involving the universal rotated Petz recovery map
introduced in [12]. (The first such remainder terms involving recovery maps
were recently presented in [7].) It remains an open problem whether this
application to quantum information can be extended using the strengthened
inequalities obtained here.

Acknowledgements. We thank the anonymous referees for their sugges-
tions on this manuscript. FH and MT thank the Zentrum Mathematik at
Technische Universität München for its hospitality while part of this work
was completed. MT thanks Mario Berta and David Sutter for helpful dis-
cussions. FH acknowledges support by Grant-in-Aid for Scientific Research
(C)26400103. MT is funded by an ARC Discovery Early Career Researcher
Award (DECRA) fellowship and acknowledges support from the ARC Cen-
tre of Excellence for Engineered Quantum Systems (EQUS). RK is sup-
ported by the Technische Universität München - Institute for Advanced
Study, funded by the German Excellence Initiative and the European Union
Seventh Framework Programme under grant agreement no. 291763. He
acknowledges additional support by DFG project no. KO5430/1-1.

Appendix A. A short proof of (109)

Hirschman’s strengthening of Hadamard’s three line theorem [11] reads:

Lemma 19 (Hirschman). Let S := {z ∈ C : 0 ≤ Re(z) ≤ 1} and let g(z) be
uniformly bounded on S, holomorphic on the interior of S and continuous
up to the boundary. Then for θ ∈ [0, 1], we have

log |g(θ)| ≤

∫ ∞

−∞

log |g(it)|1−θ dβ1−θ(t)+

∫ ∞

−∞

log |g(1 + it)|θ dβθ(t) . (120)

Now let G(z) be a uniformly bounded holomorphic function with values
in C

d×d. Fix θ ∈ (0, 1) and let u, v ∈ C
d be normalized vectors such that

〈u,G(θ)v〉 = ‖G(θ)‖. Consequently, g(z) := 〈u,G(z)v〉 can be bounded as
|g(z)| ≤ ‖G(z)‖ for all z ∈ S. It satisfies the assumptions of Hirschman’s
theorem, yielding

log ‖G(θ)‖ ≤

∫ ∞

−∞

log ‖G(it)‖1−θ dβ1−θ(t) +

∫ ∞

−∞

log ‖G(1 + it)‖θ dβθ(t) .

(121)

As in [16, Thm. 3.2], consider now a set of n matrices Aℓ ∈ P(H), ℓ ∈ [n]
and set G(z) =

∏n
k=1A

z
ℓ . Since G(it) is a product of isometries, the first

term in the right-hand side of (121) is non-positive and after dividing by θ
we find

log

∥∥∥∥∥∥

∣∣∣∣∣

n∏

ℓ=1

Aθ
ℓ

∣∣∣∣∣

1
θ

∥∥∥∥∥∥
≤

∫ ∞

−∞

log

∥∥∥∥∥

n∏

ℓ=1

A1+it
ℓ

∥∥∥∥∥ dβθ(t) . (122)
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