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Abstract—Magneto-rheological fluid (MRF) materials are 
used in many devices as smart materials. However, the 
application of this material is limited to damper or vibration 
absorber because of the lack of understanding of its 
magnetic hysteresis properties. This paper systematically 
presents our recent investigation and simulation on the 
magnetic hysteresis properties of MRF materials. The 
measurement of its magnetic hysteresis property was 
accomplished by using a two-dimensional single sheet 
tester with an MRF sample container. An extended large-
scale atomic/molecular massive parallel simulator 
(LAMMPS), which is combined with Stoner-Wohlfarth 
hysteresis model, was employed for simulating the 
magnetic hysteresis properties of MRF material. The 
measurement and simulation results are compared, 
analyzed and discussed. The results will be useful for 
modeling of magnetic hysteresis properties of MRF 
materials. 

 
Index Terms—Magnetic hysteresis, Magneto-rheological 

fluid, Magnetic field measurement, Magnetization 

I. INTRODUCTION 

agnetorheological fluid (MRF) is a type of material with 

magnetic particles in a carrier fluid, usually a type of oil. 

When it is subjected to a magnetic field, the fluid increases its 

apparent viscosity greatly to the point of becoming a 

viscoelastic solid. Importantly, the yield stress of the fluid in its 

active ("on") state can be controlled very accurately by varying 

the magnetic field intensity. The upshot is that the ability to 

transmit force can be controlled with an electromagnetic field. 

This promising feature makes MRF smart, simple, quiet and 

capable of a rapid interface between an electronic control 

system and a mechanical system. MRF materials have been 

widely used in various devices as “smart” materials [1-4]. 

However, the properties and mechanism of MRF materials have 

not been understood deeply, so their application in industry is 

still limited to damper or vibration absorber [5-10]. In recent 
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years research work has been carried out on the property 

characterization of the MRF materials, followed by laboratory 

experiments and applications in other devices [11-16]. 

In order to describe the inherent behavior of the device, such 

as the hysteresis characteristics of the materials and associated 

devices, some mathematical models were proposed. However, 

these models cannot explain the magneto-rheological 

mechanism in generating the device forces. The effects of 

dynamic behavior, nonlinear and vector characteristics of MRF 

materials were not taken into account in these models. 

Therefore, the magnetic property investigation and 

measurement of MRF are very important to deeply understand 

the magneto-rheological mechanism, and then establish 

mathematical models involving the magnetic hysteresis 

behavior and vector magnetization.  

It is noted that the molecular dynamic simulation is an 

efficient method to investigate the micro-scale suspension 

behaviors of magnetorheological fluid. The current simulations, 

however, mostly focus on the process of aggregation and micro-

structure of magnetorheological fluid under constant magnetic 

field [17]. The simulation of magnetic hysteresis property and 

micro-structure of MRF material have been rarely reported. In 

order to simulate the magnetic property of MRF material, an 

open source molecular dynamic simulation software package, 

extended large-scale atomic/molecular massive parallel 

simulator (LAMMPS), was employed and modified. 

Stoner-Wohlfarth model is a widely used model for the 

magnetization of single-domain ferromagnets. It is widely used 

for modeling small particle material in various applications 

[18]. Because the size of the ferromagnetic particles of MRF 

material is less than 10 micrometers, they could be treated 

approximately as single-domain particles. Hence, the Stoner-

Wohlfarth magnetic hysteresis model was employed for the 

calculation of magnetic moment of ferromagnetic particles. 

In this paper, the magnetic property of a kind of MRF 

material manufactured by Lord Ltd. USA, was measured under 

alternating and two-dimensional rotating magnetic fields by an 
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upgraded two-dimensional single sheet tester (2D-SST). The 

magnetic hysteresis property of this MRF material was also 

simulated by LAMMPS. Both measurement and simulation 

results are presented, compared and discussed. The results will 

be useful for modeling the magnetic hysteresis properties of 

MRF materials. 

II. THEORY 

When an applied magnetic field is presented, the ferro-

magnetic particles are affected by elastic force of matrix, 

gravity force of itself and magnetic force between particles. A 

schematic diagram of the ith particle subjected to external forces 

is shown in Fig. 1 and its position is governed by the following 

Langevin equation 

 

𝑚
𝜕2𝑟𝑖

𝜕𝑡2
= 𝐹ℎ + ∑ 𝐹𝑚(𝑟𝑖𝑗)𝑗≠𝑖 + 𝐹𝑤 + 𝐹𝐵 + 𝐹𝑔     (1) 

 

where 𝒓𝒊  is the position vector and 𝒓𝒊𝒋  is the distance vector 

between the ith and jth particles. 𝐹ℎ denotes the hydrodynamic 

Stokes force [19]. 𝐹𝑚 is the interaction force between the ith and 

jth particles. The symbol 𝐹𝑤  denotes the interaction force 

between particles and boundaries. In this simulation, the 

periodic boundary conditions are applied. 𝐹𝐵 is the fluctuating 

Brownian force and 𝐹𝑔 is the gravity force of the ith particle. 

Magnetic particles are treated as magnetic dipoles in this 

paper. Therefore, the term 𝐹𝑚  denoting the magnetic dipole 

interaction force between particles i and j, may be written as 

 

𝐹𝑚(𝑟𝑖𝑗) = 𝐹𝑑
0(

𝑟𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)[𝑟(𝑚⃗⃗⃗𝑖 ∙ 𝑚⃗⃗⃗𝑗) + 𝑚⃗⃗⃗𝑖(𝑟 ∙ 𝑚⃗⃗⃗𝑗) +

𝑚⃗⃗⃗𝑗(𝑟 ∙ 𝑚⃗⃗⃗𝑖) − 5𝑟(𝑟 ∙ 𝑚⃗⃗⃗𝑖)(𝑟 ∙ 𝑚⃗⃗⃗𝑗)]  (2) 

 

where 𝑚⃗⃗⃗𝑖  and 𝑚⃗⃗⃗𝑗  are the unit vectors of magnetic moment of 

the ith and jth particles. 𝑟 is the unit vector of center-to-center 

distance vector 𝒓𝒊𝒋  and 𝑟𝑚𝑖𝑛,𝑖𝑗 = 𝑎𝑖 + 𝑎𝑗  is the minimum 

sphere distance between two particles with radii 𝑎𝑖  and 𝑎𝑗 ; 

𝒓𝒊𝒋 = |𝒓𝒋 − 𝒓𝒊|; and 𝐹𝑑
0  denotes the magneto-static force and 

takes the form 

𝐹𝑑
0 =

3𝜇0𝜇𝑐𝑚𝑖𝑚𝑗

4𝜋𝑟4
𝑚𝑖𝑛,𝑖𝑗

       (3) 

 

where 𝜇0 = 1.256𝑒 − 7 N/A is the vacuum permeability, 𝜇𝑐  is 

the relative permeability (with respect to the vacuum) of the 

matrix material, and 𝑚𝑖  and 𝑚𝑗  are the dipole moments of 

particles i and j, respectively [20]. 

For the magnetic property simulation of this material, the 

magnetic particles are treated as single domain particles. Hence, 

as shown in Fig. 1, a Stoner-Wohlfarth hysteresis model was 

applied on each particle, by which not only the nonlinear effect 

of magnetic property but also the magnetic hysteresis of this 

material could be considered in the simulation. 

III.  EXPERIMENTAL AND SIMULATION 

A. Magnetic hysteresis property measurement on MRF 
material 

A 2D single sheet tester (2D-SST) [21] was upgraded to study 

the hysteresis properties of the MRF materials at the Centre for 

Electrical Machines and Power Electronics, University of 

Technology Sydney. Fig. 2 shows the schematic diagram of the 

whole testing system and the photo of 2D-SST. 

The magnetic field used to magnetize the MRF materials is 

generated by two groups of electromagnets which are arranged 

along the X and Y axes, respectively. The excitation current was 

 

Fig. 1. Schematic diagram of the ith particle subjected to 

external forces [16] 

 
(a) 

 
(b) 

Fig. 2. (a) Schematic illustration, and (b) entity of the 2D single 

sheet tester 



 

supplied by a power amplifier which has two output channels. 

The original waveform signal, which was the input of the power 

amplifier, was generated by a function generator. By varying 

the waveform signal, e.g. magnitude and/or phase, any 

combination of one- or two-dimensional magnetic field can be 

obtained, such as alternating magnetic flux density inclined at a 

specified angle from the X or Y axis, and circularly or 

elliptically rotating magnetic flux density. Various B loci in the 

sample, such as circles and ellipses, could be obtained by 

controlling magnitude and/or phase angle of output waveform 

of function generator. A group of circular B loci and 

corresponding H loci, shown in Fig. 3, have validated that the 

SST tester works well. 

A square MRF sample container was placed in the center of 

SST tester, as shown in Fig. 2(b), which was designed for the 

measurement. The container was made of nonmagnetic 

Plexiglas material with four mild steel magnetic poles 

embedded along the four sides. The length of each edge is 54 

mm. To improve the measurement precision, the MRF 

container was designed as sandwich structure. The top and 

bottom sections were separated by a middle partition with 1 mm 

thickness.  

The magnetic field intensity sensing coil (H-coil) and flux 

density coils (B-coils) were fabricated to be small and thin to 

improve the measurement accuracy. The H-coil has two 

orthogonal thin windings so that it could measure both Hx and 

Hy components. The coil was embedded in the center of the 

partition and separated from the MRF sample by a 10 µm 

thickness plastic sheet. Eight B-coils were placed at the inner 

surface of the container, so that the flux densities along x- and 

y- directions could be measured. The H-coil and B-coil were 

calibrated in a long solenoid to obtain accurate coil coefficients. 

The positions of sensing coils are illustrated in Fig. 4. In this 

configuration, the H vectors were measured by the H-coils (#9 

in Fig. 4), and the B vectors were measured by four pairs of 

small annular B-coils, that is, 1-3, 5-7 pairs measuring the x-

direction and 2-4 and 6-8 pairs measuring the y-direction. 

B. Theory of measurement and calibration of sensing 
coils 

The surface magnetic field strength along one axis, e.g. the 

x-axis or the y-axis, can be computed from the induced output 

voltage of the coil along that axis: 

 dtV
K

H Hi

Hio

i


1
 (i = x, y) (4) 

where VHi  is the output voltage of the coil, o the permeability 

of air, and KHi the coil coefficients, which are determined by the 

calibration solenoid as KHx=0.00109, KHy=0.00147. The detail 

results are listed in Tables I and II, where I is the excitation 

current (15 Hz) input to the solenoid, BI is the magnetic flux 

density measured at the center of solenoid and Hm is the 

magnetic field intensity computed from BI. All the parameters 

are in RMS values. 

TABLE I 
H SENSING COIL COEFFICIENTS ON X AXIS  

I(A) BI(T) Hm(A/m) VHx(V) KHx 

3.005  0.00449  3575.637  0.00063  0.00112  

4.243  0.00630  5019.108  0.00087  0.00110  

5.233  0.00777  6187.102  0.00104  0.00107  

6.116  0.00911  7250.796  0.00120  0.00105  

7.036  0.01050  8357.484  0.00140  0.00106  

6.081  0.00903  7185.510  0.00123  0.00108  

5.162  0.00766  6100.318  0.00106  0.00110  

4.172  0.00620  4939.490  0.00085  0.00109  

2.970  0.00441  3507.962  0.00063  0.00114  

Average KHx 0.00109  

 
TABLE II 

H SENSING COIL COEFFICIENTS ON Y AXIS 

I(A) BI(T) Hm(A/m) VHy KHy 

3.005  0.00449  3578.025  0.00084  0.00149  

4.243  0.00630  5013.535  0.00116  0.00147  

5.233  0.00776  6177.548  0.00143  0.00147  

6.116  0.00910  7243.631  0.00165  0.00144  

7.036  0.01050  8356.688  0.00190  0.00144  

6.081  0.00904  7194.268  0.00165  0.00145  

5.162  0.00767  6107.484  0.00141  0.00146  

4.172  0.00620  4939.490  0.00116  0.00149  

2.970  0.00442  3515.924  0.00082  0.00148  

Average KHy 0.00147 

 

The flux density on one axis can be calculated by 

 dtV
AN

B Bi

BiiB

i

1
 (i = x, y) (5) 

where NBi is the number of turns, ABi the cross-sectional area, 

and VBi the induced terminal voltage of the B-coil on the axis. 

The coefficients KBi=NBiABi can also be determined by the 

 
 

Fig. 4 Position of H sensing coils and B sensing coils. 



 

calibration solenoid as KBx=0.00143, KBy=0.00138. The detail 

results are listed in Tables III and IV. All the parameters are in 

RMS values.  

 TABLE III 

B SENSING COIL COEFFICIENTS ON X AXIS 

I(A) BI(T) VBx(V) KBx 

3.005  0.00455  0.00168  0.00147  

4.243  0.00640  0.00230  0.00143  

5.303  0.00788  0.00280  0.00141  

6.187  0.00922  0.00328  0.00142  

7.142  0.01062  0.00378  0.00142  

6.152  0.00913  0.00327  0.00143  

5.233  0.00775  0.00280  0.00144  

4.207  0.00627  0.00225  0.00143  

2.970  0.00446  0.00160  0.00143  

Average KBx 0.00143  

 
TABLE IV 

B SENSING COIL COEFFICIENTS ON Y AXIS 

I(A) BI(T) Vby(V) KBy 

3.005  0.00450  0.00158  0.00140  

4.243  0.00631  0.00219  0.00138  

5.233  0.00777  0.00268  0.00137  

6.116  0.00910  0.00314  0.00137  

7.071  0.01053  0.00361  0.00136  

6.081  0.00904  0.00311  0.00137  

5.162  0.00768  0.00265  0.00137  

4.172  0.00621  0.00215  0.00138  

2.934  0.00441  0.00155  0.00140  

Average KBy 0.00138 

 

 

C. MRF material sample 

A kind of MRF, MRF-132DG, manufactured by LORD Ltd. 

USA, was used in the magnetic hysteresis property 

investigation. Table V lists the typical properties of the 

material. 

D. Simulation 

For simulating the magnetic hysteresis properties of MRF 

materials, an extended large-scale atomic/molecular massive 

parallel simulator (LAMMPS) was employed. It provides not 

only an embedded routine for large-scale and 3D Brownian 

dynamic simulation but also an extensive library of potential 

functions and force fields. In this paper, the function of the 

magnetic force and Stoner-Wohlfarth hysteresis model was 

added to this software package. Hence, it can not only simulate 

the aggregation of magnetic particle of MRF materials under 

applied magnetic field, but also the magnetic hysteresis 

properties of MRF materials.  

A particle system which contains 4000 particles, shown in 

Fig. 5, was used to simulate the aggregation structure and 

magnetic hysteresis properties of MRF material. The 

aggregation structures of MRF material under 1D alternating 

and 2D rotating applied magnetic field are shown in Fig. 5(a) 

and Fig. 5(b), respectively. In this simulation, each particle was 

applied by a Stoner-Wohlfarth magnetic hysteresis model and 

the orientation of easy axis was set randomly. The 

magnetization-status of each particle, such as orientation of 

 
(a) 

 
(b) 

Fig. 5.  Aggregation structure of particles in MRF material under 

(a) 1D alternating, and (b) 2D-rotating applied magnetic field 

TABLE VI 

TYPICAL PROPERTIES OF MRF-132DG 

Appearance   Dark Gray Liquid 

Viscosity○1 , Pa @ 40°C (104°F)   
Calculated as slope 800-1200 sec-1 

0.092 ± 0.015 

Density g/cm3 2.98-3.18 

Solids Content by Weight, %      80.98 

Flash Point○2 , °C (°F)                         >150 (>302) 

Operating Temperature, °C (°F)           -40 to +130 (-40 to +266) 

Relative permeability ≈ 4.24 

○1  The viscosity of a fluid is a measure of its resistance to gradual 

deformation by shear stress or tensile stress. For liquids, it corresponds to 
the informal concept of "thickness".  

○2 The flash point of a volatile material is the lowest temperature at which 

vapors of a fluid will ignite. 

 



 

easy axis, intensity of magnetization (M) and intensity of 

applied magnetic field (H), was updated and recorded in each 

time step. Various M could be obtained by accumulating the Ms 

of all the particles.  

IV. RESULTS AND DISCUSSION 

A. Magnetic hysteresis property under 1D alternating 
applied field 

Fig. 6 illustrates the measured (solid line) and simulated 

(solid line with circular symbols) H-B hysteresis loop of MRF 

material with 15 Hz, 1D alternating applied magnetic field. The 

measured remanence is 0.006 T, the coercivity is 0.038 kA/m, 

and the relative permeability is about 4.56, which is not large 

due to particle separation and strong demagnetization field. The 

relative permeability is consistent with the data provided by 

manufacturer. The simulated remanence is 0.009 T, the 

coercivity is 0.12 kA/m, and the relative permeability is 4.43. 

B. Magnetic hysteresis property under 2D rotating 
applied magnetic field 

In the measuring of magnetic hysteresis property under 2D 

rotating applied magnetic field, people often measure the H loci 

under circular B loci because the B loci is easier to be controlled 

as a circular shape than H loci. Fig. 7 shows a series of 

controlled circular B loci (a) and corresponding H loci (b) at 15 

Hz. It can be seen from the B and H loci that the sample shows 

isotropic characteristic when it is subjected to circular magnetic 

fields. The slight distortions of H loci may be caused by 

magnetic coupling between x- and y-axis poles of the tester 

because the particles aggregated between the neighbor poles. 

Fig. 8 illustrates the simulation of a series of controlled 

circular H loci (b) and corresponding B loci (a) at 15 Hz. It can 

be seen from the B and H loci that the simulation results show 

isotropic characteristic which are similar to the measured 

results. For simulation, the magnetic field intensity H was set 

before running the simulation, so the shape of H loci could be 

controlled as circle easily. On the other hand, the shape of B 

loci cannot be controlled as circles easily because the B loci are 

the output of particle system and affected by the complex 

 
Fig. 6. Measured and simulated H-B loop of MRF 

material under 15 Hz, 1D alternating applied magnetic field. 

The loop in solid line is the measured result and the loop 

with the dotted line is the simulated result. 

 
(a) 

 
(b) 

Fig. 7.  Circular B loci (a) and corresponding H loci (b) at 15 

Hz 

 
      (a) 

 
                          (b) 

Fig. 8. Circular H loci (b) and corresponding B loci (a) 

simulated at 15 Hz, rotating magnetic field 



 

interaction of B among particles. 

 

 

V. CONCLUSION 

Some research results on magnetic hysteresis property of 

MRF material were presented in this paper. The magnetic 

hysteresis property of this material under 1D alternating and 2D 

rotating applied magnetic fields was measured and investigated. 

A molecular dynamic simulation method, which combines 

Stoner-Wohlfarth magnetic hysteresis model and molecular 

dynamic simulation, was applied successfully to simulate the 

aggregation structure and the hysteresis property of MRF 

material. The simulation results illustrate the different 

aggregation structure of MRF material under 1D alternating and 

2D rotating applied magnetic field. This enables us to reveal the 

relationship of magnetic hysteresis properties between 

microscopic ferromagnetic particle and macroscopic MRF 

material and it is also possible to propose a new magnetic 

hysteresis model based on the work of this paper.  
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