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Evolving Artificial Pain from Fault Detection through Pattern Data
Analysis
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Abstract— Fault detection is a classical area of study in
robotics and extensive research works have been dedicated
to investigate its broad applications. As the breath of robots
applications requiring human interaction grow, it is important
for robots to acquire sophisticated social skills such as empathy
towards pain. However, it turns out that this is difficult to
achieve without having an appropriate concept of pain that
relies on robots being aware of their own body machinery
aspects. This paper introduces the concept of pain, based on
the ability to develop a state of awareness of robots own body
and the use of the fault detection approach to generate artificial
robot pain. Faults provide the stimulus and defines a classified
magnitude value, which constitutes artificial pain generation,
comprised of synthetic pain classes. Our experiment evaluates
some of synthetic pain classes and the results show that the
robot gains awareness of its internal state through its ability
to predict its joint motion and generate appropriate artificial
pain. The robot is also capable of alerting humans whenever
a task will generate artificial pain, or whenever humans fails
to acknowledge the alert, the robot can take a considerable
preventive actions through joint stiffness adjustment.

I. INTRODUCTION

Fault detection is a classical area of study in robotics
which mainly considered as a stimulus in robot motion
planning. Earlier studies, reported in [1], [2], [3] provide
the foundation for the importance of incorporating failure
detection into robot planning mechanisms. Various aspects of
robot motion planning are investigated in [4], [5], [6], [7], [8]
and extensions the scope to multiple robot planning [9], [10].
All of these studies assume that the robot is fully functional.
In practice, however, robots fail and their failure can affect
not only the plans but also put resources and people at risk.
As the use of robots grow, such as in human-robot interaction
or robot-to robot interaction,a new and growing field of
research, robots are required to develop more sophisticated
social skills. Understanding the concept of pain in humans
themselves is critical for planning and tasks that require
human-robot interaction. However, this raises an issue on
how a robot can develop a proper concept of pain which
relies on the robot being aware of its own body machinery
aspects. [11] proposes a damage recovery approach where
robots are aware of their body hardware failure, such as
one or few of robot joints suffer from malfunctions. The
study reports that the robot successfully discovers a new
qualitative behavior of hexapod gaits. However, when this
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type of fault is detected, it merely functions as a stimulus
to activate the new motion plan or new motion behaviour
generation. Unlike in robots, in human mechanism, any
machinery of body failure will generate internal states where
humans experience what is called ’pain’ [12]. In fact, if
the faults in robots themselves are associated with not only
stimulus but also specific meaningful magnitude, it will be
beneficial for robots to incorporate them as part of their ex-
perience. This paper intends to derive machinery faults of the
robots, detected from robot proprioceptive sensors, into an
appropriate representation of pain by introducing an artificial
pain concept containing synthetic pain classification. This
paper provides experimental results by presenting different
scenarios to evaluate each of synthetic pain classification
proposals.

The reminder of the paper proceeds as follows: section
II gives an overview of proposed artificial pain concept,
including description of the proposed synthetic pain and
the integration process into the robot mechanism. Section
III presents the raw data analysis and synthetic pain classes
followed by section IV which covers the experiment stages.
Results and discussions are presented in section V followed
by section VI which focuses on the overall achievement and
possible future developments.

II. APPROACH OVERVIEW

Our approach contains three major steps of development,
firstly, redefining the artificial pain, and then integrating
this artificial pain concept into real robot mechanism. Fi-
nally, experiments, which involve human-and-robot interac-
tion through a hand pushing task, are carried out.

A. Artificial Pain

Our artificial pain for robots contains three classifications
of synthetic pain de-rived from the report [13], described
as follows:

• Category 1 :Proprioceptive pain which is associated
with potential hardware damage, functions as an alert
signal.

• Category 2 :Inflammatory reduction pain associated
with the change of robot behaviour as the result of:

2.1 Predicted robot hardware damage.
2.2 Real robot hardware damage.

• Category 3 :Sensory malfunction pain, associated with:
3.1 Abnormal function of internal sensors.
3.2 Damage internal sensors.
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The region in which each body part motion occurs,
whether the motion is lateral or rotational, determines the
pain level. The pain level is assigned by measuring the
distance between the position of the respective body part
in the region and the threshold values assigned by the robot
awareness framework (see Figure 1). The physical motions
associated with the joint movements of the robot hardware
are actively monitored by the sensory mechanisms, which
contain proprioceptive and exteroceptive sensors. The further
the distance from the threshold value, the higher the pain
level to be assigned. The threshold values can be manually
designed by the human user and placed in the database as
a reference (static threshold), or they can be generated and
configured autonomously by the robot framework itself (self-
generated).

Fig. 1. Pain Region Assignment

B. Integration

Artificial pain definition is integrated into a NAO robot
mechanism, which utilise our novel Adaptive Self-awareness
framework for robots (ASAF) [13]. The ASAF framework
consists of several elements as shown in Fig. 2 and we will
only discuss briefly the key elements of the framework.

Fig. 2. Adaptive Self-Awareness Framework for Robot - ASAF

There are two predominant factors in directing robot
attention:

• (i) the ability to focus attention on a specified physical
aspect of the machinery of robot body.

• (ii) the ability to foresee, and at the same time, to be
aware of the consequences of predicted actions.

The ASAF addresses these two aspects and integrate them
into the framework so that the detection of synthetic pain can
be acknowledged and responded to in an appropriate way.

The framework maps the robot consciousness region into a
discrete range 1 - 3 for subjective and 4 - 6 for objective ele-
ments. This region values are called Consciousness Direction
Values (CDV) as shown in Fig. 3.

Fig. 3. CDV Region Distribution

In order to generate synthetic pain on the robot, we set
the robot joint restriction region that should be avoided.
Synthetic pain can then be generated when the robot joint
moves into this region. Pattern data analyses takes place in-
side the ASAF where the raw data is obtained from the robot
joint motion through the joint proprioceptive sensor. At early
implementation, the ASAF framework utilise the sequential
pattern prediction [14], [15] in order to capture the behaviour
of the observed real data and then use them to predict the
future possible conditions. The inter-correlation among data
is analysed using the associative theories [16], which utilises
covariance information obtained from sequence data. The
ASAF analyses the relationship among data covariance by
making predictions of sequence data patterns obtained from
robot’s proprioceptive sensor (joint position sensor). The
prediction process only takes place after several sequences
of data so as to reduce biased analyses. Any result made
from previous sequence predictions are reassessed with the
cur-rent incoming data, and the results either kept for future
prediction or amendment actions take place before execu-
tion proceeds. This cycle repeats only if current data and
predicted values are not classified in restricted region which
refers to the synthetic pain classifications. When joint values
falls into any region, the robot’s action will be either send
an alert which signifies proprioceptive pain (Category 1) or
modify motor stiffness values on the robot’s joint signifying
that the robot is experiencing Inflammatory reduction pain
(Category 2.1). By increasing motor stiffness, the robot joint
will resist any force generated from the physical pushing
interaction, and as a result, the robot will be prevented from
experiencing higher degree of synthetic pain. For Sensory
malfunction pain (Category 3.1), the joint sensor of the robot
being used at times produces abnormal data reading. When
this takes place, robots will analyse it, and the data sequence
is amended in order to preserve uniformity of the overall
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data.

III. DATA ANALYSIS

Raw data from the sensor is collected, and arranged
according to retrieval time and are further used to determine
the covariance data. By substituting the covariance data into
the latest obtained raw data, predicted data can be obtained.
This process is further discussed in the following subsections.

A. Raw Proprioceptive Data

The interaction occurs within a specified constant time
span, T. The representation of collected data obtained at a
specified time, ti is:

i<T∏
ti,i=0

dti

where:
dti represents a joint value at time ti, and the value of ti is
defined by:

ti =

{
i = 0, initiating experiment
i < T, time span of experiment

B. Raw Proprioceptive Data

Data covariance is derived from the difference of the last
obtained joint values and previous one, as depicted in Eq. 1:

∆int = dtT − dtT−1
(1)

C. Prediction Data

Data covariance is used during the analyses process in
formulating predicted sequence data, allowing the system to
reproduce a sequence predicted data. By substituting Eq. 1
into the obtained data, dti , we can reproduce the sequence
of predicted data shown in Eq. 2.

i<T̄∏
ti,i=m

d̄ti =

i<T̄∏
ti,i=m

(dti +∆int) (2)

d̄ti represents predicted data at sequence time ti, where the
values of ti are determined by:

ti =

{
i = m, data at time m analysing process initiates
i < T̄ , time discrete of prediction

where the value of m must satisfy the following conditions
(Criteria 1):

ti =


cs > 0, total similarity of joint values reference
cd > 0, total difference of joint values reference
cu >> cd; cu >> cs, unique data

D. Synthetic Pain Classification

Three joint values which are set to justify the range of
synthetic pain detection depicted in the Table I.

TABLE I
JOINT VALUES AS FAULT INDICATOR AND SYNTHETIC PAIN

ASSOCIATION

Joint Values Synthetic Pain Classification Robot Responses

Category Definition

1.5421 1 Proprioceptive pain Alert Human
1.5521 2.1 Inflammatory reduction pain Increase Joint Stiffeness

Fluctuate 3.1 Sensory malfunction pain Disregard/Sequence Values Amendment

Fig. 4. Robot Posture (a) Motion Direction (b) Initial Posture

IV. EXPERIMENT OVERVIEW

The purpose of the experiment is threefold:

(1) to conceptualise synthetic pain through robot faulty
joint settings and the response to pain times

(2) to analyse robot joint motion through sequential
data analyses

(3) to verify time responses of a robot through pro-
portionate joint stiffness settings that change with
respect to the force provided by the human to the
robot’s arm, e.g. a strong human force is met with
stronger joint stiffness

Besides that, we carry out an additional experiment where
there is no physical interaction involved (human partner does
not touch the robot hand). This experiment is dedicated
solely to measure the accuracy of the prediction output of
the pattern data analyser.

A. Experimental Set Up

The overview of the experimental set up is described as
follows: It involves the NAO robot and a human partner,
which is separated by a distance of 0.2 - 0.3 meter from the
robot feet. The robot raises its right arm until it is perpen-
dicular relative to its chest. Fig. 3 shows the illustration of
motion direction and the robot posture.

B. Scenario

The right elbow roll joint of the robot sets to minimum
stiffness, allowing the human to push the hand towards
robot’s chest. Then, data is collected the associated joint
sensor which acting as proprioceptive sensor, and ordered
according to their reading sequences, unless it is stated
differently. This experiment scenario repeats three times in
order to have a considerable reliable data analyses.
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TABLE II
JOINT VALUES DURING THREE TRIALS

Trial 1 2 3

Sequence Joint Data Time Joint Data Time Joint Data Time

1 0.22247 38.88 0.02765 776.46 0.02765 267.12
2 0.26696 39.40 0.02765 776.98 0.02765 267.64
3 0.37127 39.91 0.02919 777.49 0.02765 268.15
4 0.49246 40.44 0.21940 778.01 0.06907 268.68
5 0.63205 41.00 0.39735 778.54 0.29917 269.20
6 0.78852 41.54 0.68421 779.11 0.52774 269.73
7 0.95572 42.10 1.30548 781.36 0.71642 270.28
8 1.32695 44.37 0.87902 270.84
9 1.04470 271.39

10 1.41132 273.68

V. RESULTS AND ANALYSIS

The results of three trials is shown in Table II.
It can be seen that most of trials end up within different

time sequence this is the result from the values of m which
is determined by cs = cd = 3 and cu = 5 and T̄ = 4.
Setting the values of cs and cd equal to 3 will allow the
sequence pattern analyser to collect sufficient sensor data
before commencing prediction. The value of cu is set to
5 as the incoming sensor data may not perform a uniform
sequence values. As the hand movement lasts for a short
time, the system is restricted to produce 4 interval data
prediction. However, the length of data prediction is a subject
of adjustment whenever the the workspace of the robot arm
changes.
Using Eq. 1 and Eq. 2, the robot system analyses the
incoming joint data and produced the resulting sequence data
prediction as Table III.

TABLE III
JOINT VALUES PREDICTION

Trial Sequence Joint Values Prediction Cycles

1st 2nd 3rd 4th 5th

1

1 0.22247
2 0.26696
3 0.37127
4 0.49246 0.49246
5 0.63205 0.61365 0.63205
6 0.78852 0.73484 0.77164 0.78852
7 0.95572 0.85603 0.91123 0.94499 0.95572
8 1.32695 0.97722 1.05082 1.10146 1.12292 1.32695
9 1.69818

2

1 0.02765
2 0.02765
3 0.02919
4 0.21940
5 0.39735 0.39735
6 0.68421 0.57530 0.68421
7 1.30548 0.75325 0.97107 1.30548
8 1.92675

3

1 0.02765
2 0.02765
3 0.02765
4 0.06907
5 0.29917
6 0.52774 0.52774
7 0.71642 0.75631 0.71642
8 0.87902 0.98488 0.90510 0.87902
9 1.04470 1.21345 1.09378 1.04162 1.04470

10 1.41132 1.44202 1.28246 1.20422 1.21038 1.41132
11 1.77794

A. Analysis

By using Criteria 1, the robot determines when the
prediction starts and it can be seen from Table III that
Trial 1 and Trial 2, the robot commences its analyses at
sequence data 4 and Trial 3, takes place at sequence 6.

This shows the incoming data from the robot joint elbow
sensor is not necessarily the same for each trial. Human
hand physical forces during interaction with the robot arm
is not the same in all trials. During Trial 1, the highest
margin of error takes place at prediction cycle 1,which is
the fourth interval, 34.97%. This trend remains the same
for the rest of the prediction cycles. Similar situation occurs
in Trial 2 which produces the highest margin of error at
fourth interval of prediction cycle 1, 55.22%. In contrast,
Trial 3 produces lower margin of error at fourth interval
of prediction cycle 1, 3.07%. The lowest margin of error
takes place at second interval of prediction cycle 3, 0.31%.
Over the three trials, the highest margin of error occurs in
Trial 2, particularly at prediction cycle 1, second interval,
about 55.22%. The average standard deviation of Trial 1
and Trial 2 tend to increase, from the lowest σ value in
Trial 1 equals to 0.01 to 0.28 in Trial 2. The margin of
σ values in Trial 3 is likely twice of in Trial 1(see Table IV).

TABLE IV
PREDICTION ERROR

Trial Sequence Prediction Cycles Std D (σ)

1 2 3 4 5 6

1

4 0
5 1.84% 0.00% 0.01
6 5.37% 1.69% 0.00% 0.03
7 9.97% 4.45% 1.07% 0.00% 0.04
8 34.97% 27.61% 22.55% 20.40% 0.00% 0.13
9

2

5 0.00%
6 10.89% 0.00% 0.08
7 55.22% 33.44% 0.00% 0.28
8

3

6 0.00%
7 3.99% 0.00% 0.03
8 10.59% 2.61% 0.00% 0.06
9 16.87% 4.91% 0.31% 0.00% 0.08

10 3.07% 12.89% 20.71% 20.09% 0.00% 0.11
11

With the additional experiment, we obtained a comparison
data as shown in Table V with the standard deviation of
accuracy of prediction is 0.00.

TABLE V
COMPARISON EXPERIMENT

Sequence Joint Values Prediction Cycles Std D(σ)

1st 2nd 3rd

1 0.02765
2 0.02765
3 0.02765
4 0.02765 0.02765
5 0.02765 0.02765 0.02765 0.00
6 0.02765 0.02765 0.02765 0.02765 0.00
7 0.02765 0.02765 0.02765

It can be seen that in Trial 1 and Trial 2, the interaction
only lasts for a short time which is caused by the speed
of human when pushing the robot hand, while at final trial,
human partner reduce the pushing speed allowing the robot
to obtained more joint values for analyses process. Table VI
below depicts final prediction for each trial produces joint
values which are higher than joint values listed in Table
I. For Trial 1, sequence 8, the robot elbow experiences
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Category 1 of Synthetic Pain and as the consequence, the
robot sending an alert to human partner. As the human is
not aware of the alert sending by the robot, the robot suffers
from Synthetic Pain Category 2.1 which forces the robot
to react with resistance by increasing joint motor stiffness.
This situation causes robot arm to resist any human physical
forces applied on the robot hand.

TABLE VI
ARTIFICIAL PAIN AND ROBOT RESPONSES

Trial Seq Prediction Cycles Syntehtic Pain Robot Responses

1 2 3 4 5 6 Catgeory Definition

1

4
5
6
7
8 1.32695 1 Proprioceptive Alert Human
9 1.69818 2.1 Inflammatory reduction Joint Stiff

2

5
6
7 1.30548 1 Proprioceptive Alert Human
8 1.92675 2.1 Inflammatory reduction Joint Stiff

3

6
7
8
9

10 1.41132 1 Proprioceptive Alert Human
11 1.77794 2.1 Inflammatory reduction Joint Stiff

For instance in Trial 3, as the robot is experiencing the
kind of proprioceptive pain, Category 1 at sequence 10,
it is not subsequently increasing its elbow stiffness. The
mechanism still allows the joint to be moveable as previous
average prediction is still below the limit joint values. On
the opposite, the robot may possibly alerting human and
subsequently maximizing its elbow joint stiffness. It can be
seen that the robot’s mind generates proprioceptive pain,
which as per our definition, functions as an alert signal.
Apart from sending a voice alert to human partner, the robot
also takes a preventive action by increasing its elbow joint
stiffness to a degree that the human partner detects resistance.

Overall, robot is capable of predicting in advance the kind
of synthetic pain that the robot will experience whenever an
interaction proceeds.

VI. CONCLUSIONS

As the robot utilises our ASAF framework, we are able
to demonstrate that a robot can develop an accurate pain
acknowledgement and appropriate response. The causal rea-
soning through sequential pattern prediction enables the
robot’s decision making to embrace the past, the current and
the future considerations as it builds its expectation during
interaction, which leads to effective and accurate decisions.

The experiment has demonstrated two kinds of Synthetic
Pain, which are Category 1, Proprioceptive pain and Cate-
gory 2.1, Inflammatory reduction pain, and the robot is able
to develop associated pain based on prediction of its elbow
joint values. The robot’s capability to predict its joint value
as the consequence of interaction with human, has allow the
robot develop artificial pain through appropriate synthetic
pain classification, and at the same time, takes proper counter
responses in a timely fashion. This capability allows the robot
to expose its own internal state to its human partner whenever
the task would lead to physical damage. At the same time,
robot can take considerable preventive actions whenever

human fail to acknowledge the alert. Besides, response time
which becomes an important factor to be considered from
the detection of pain till the counter reactions taken by the
robot, has been successfully enabled the robot whether to
follow up with subsequent actions or not.

Building on this implementation and proof-of-concept
work, future research will extend the pain acknowledgement
and responses further by integrating sensor data across more
than one sensor using more sophisticated data integration.
Furthermore, future works will include carefully designed
experiments that evaluate the other categories, which are
Inflammatory reduction pain, Category 2.2 (Real robot hard-
ware damage) and Sensory malfunction pain, Category 3.1
(Abnormal function of internal sensors) and Category 3.1
(Damage internal sensors).
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