
Cluster Editing with Vertex Splitting

Faisal N. Abu-Khzam1,2, Judith Egan1, Serge Gaspers3,4, Alexis Shaw5, and
Peter Shaw6

1 Charles Darwin University, Darwin, Australia
2 Lebanese American University, Beirut, Lebanon

3 The University of New South Wales, Sydney, Australia
4 Data61, CSIRO, Sydney, Australia

5 Centre for Quantum Computation and Communication Technology, Centre for
Quantum Software and Information, Faculty of Engineering and Information

Technology, University of Technology Sydney, Australia
6 Massey University, Manawatu, New Zealand

Abstract. In the Cluster Editing problem, a given graph is to be
transformed into a disjoint union of cliques via a minimum number of
edge editing operations. In this paper we introduce a new variant of
Cluster Editing whereby a vertex can be divided, or split, into two or
more vertices thus allowing a single vertex to belong to multiple clusters.
This new problem, Cluster Editing with Vertex Splitting, has
applications in finding correlation clusters in discrete data, including
graphs obtained from Biological Network analysis. We initiate the study
of this new problem and show that it is fixed-parameter tractable when
parameterized by the total number of vertex splitting and edge editing
operations. In particular we obtain a 4k(k + 1) vertex kernel for the
problem.

1 Introduction

Given a graph G and a non-negative integer k, the Cluster Editing problem
asks whether G can be turned into a disjoint union of cliques by a sequence of
at most k edge-editing operations. The problem is known to be NP-Complete
since the work of Křivánek and Morávek in [20], and does not seem to have any
reasonable polynomial-time approximation unless the number of clusters is at
most two [24].

We assume that the reader is familar with fixed-parameter tractability and
kernelization [9,12,16,22]. The Cluster Editing problem is fixed-parameter tractable
when parameterized by k, the total number of edge editing operations [6, 17].
Over the last decade, Cluster Editing has been well studied from both theoretical
and practical perspectives (see, for example, [4, 7, 8, 10,11,13,14,18,19]).

In general, clustering results in a partition of the input graph, thus it forces
each and every data element to be in one and only one cluster. This can be a lim-
itation when a data element plays roles in multiple clusters. This situation, (i.e.
the existence of hubs), is recorded in work on gene regulatory networks [1], where
enumeration of maximal cliques was considered a viable alternative to clustering.

2 F. Abu-Khzam, J. Egan, S. Gaspers, A. Shaw, and P. Shaw

Moreover, the existence of hubs can effectively hide clique-like structures and also
greatly increase the computational time required to obtain optimum correlation
clustering solutions [23, 25]. Improved solutions (for correlation clustering) can
be obtained using the Multi-parameterized Cluster-Editing problem [2]
which further restricts the number of false positive and/or false negative corre-
lations (add and delete edge-edits incident to a vertex) that can be ascribed to a
given variable. However, the need to identify variables that lie in the intersection
of multiple clusters could further complicate this multi-parameterized model.

The Cluster Editing with Vertex Splitting problem (CEVS) is in-
troduced in this paper in an attempt to allow for overlapping clusters in graphs
that are assumed to be noisy in the sense that edges are assumed to have been
perturbed after the clusters overlap. CEVS can be viewed as an extended version
of the Cluster Editing problem.

In addition to introducing CEVS, we investigate its parameterized complex-
ity and obtain a polynomial kernel for the problem. In doing so we employ the
notion of a critical clique, as introduced in [21], and applied to the Cluster
Editing problem in [18]. Our proof technique is based on a novel clean edit
sequence approach which could be of interest by itself.

This paper is structured as follows. Section 2 overviews some background
material. Section 3 introduces the edit sequence approach while section 4 is
devoted to critical cliques. In section 5 we obtain a quadratic kernel. We conclude
in section 6 with a summary and future directions.

2 Preliminaries

We assume familiarity with basic graph theoretic terminology. All graphs in
this work are simple, unweighted and undirected. The vertex and edge sets of a
graph G are denoted by V (G) and E(G) respectively. For a subset V ′ of V (G),
we denote by G[V ′] the subgraph of G that is induced by V ′.

A kernelization or kernel for a parameterized problem P is a polynomial time
function that maps an instance (I, k) to an instance (I ′, k′) of P such that:

– (I, k) is a yes instance for P if and only if (I ′, k′) is a yes instance;

– |I ′| < f(k) for some computable function f ;

– k′ < g(k) for some computable function g.

A proper kernelization is a kernelization such that g(k) < k [3]. The function
f(k) is also called the size of the kernel. A problem has a kernel if and only if it
is FPT [12], however not every FPT problem has a kernel of polynomial size [5].

A k-partition of a set S is a collection of pairwise disjoint sets S1, S2, . . . Sk

such that S =
⋃k

i=1 Si. A k-covering of a set S is a collection of sets S1, S2, . . . Sk

such that S =
⋃k

i=1 Si. A cluster graph is a graph in which the vertex set of each
connected component induces a clique.

Cluster Editing with Vertex Splitting 3

Problem Definition. The Cluster Editing with Vertex Splitting Problem
(henceforth CEVS) is defined as follows. Given a graph G = (V,E) and an
integer k, can a cluster graphG′ be obtained fromG by a k-edit-sequence e1 . . . ek
of the following operations:

1. do nothing,
2. add an edge to E,
3. delete an edge from E, and
4. an inclusive vertex split, that is for some v ∈ V partition the vertices in N(v)

into two sets U1, U2 such that U1∪U2 = N(v), then remove v from the graph
and add two new vertices v1 and v2 with N(v1) = U1 and N(v2) = U2.

A vertex v ∈ V (G) is said to correspond to a vertex v′ ∈ V (G′), constructed
from G by an edit-sequence S if v′ is a leaf on the division-tree T for v defined
as follows:

(i) v is the root of the tree, and
(ii) if an edit sequence operation splits a vertex u which lies on the tree then

the two vertices that result from the split are children of u.
As noted earlier, Cluster Editing corresponds to the special case where no

vertex splitting is permitted. So it would appear that Cluster Editing with
Vertex Splitting isNP-Hard due to theNP-hardness of the Cluster Edit-
ing problem. Moreover, suppressing vertex splitting is not an option in the def-
inition of CEVS. The NP-hardness of the problem is not obvious, so we pose it
as an open problem at this stage.

Our main focus in this paper is on the parameterized complexity of CEVS.
We shall present a quadratic-size kernel for the problem, which proves it to be
fixed-parameter tractable.

A similar problem has been defined and studied in [15] where a vertex is
allowed to be part of at most s clusters. In this case s is either treated as constant
or as a different parameter, which makes the NP-hardness proof easy since the
case s = 1 corresponds to the Cluster Editing problem. In our work we model
the overlap via another editing operation so we do not set a separate parameter
for the number of splittings per vertex. We are able to design a kernelization
algorithm that achieves a quadratic-size kernel (while the best kernel bound
achieved in [15] is cubic for the special case where s = 2).

3 The Edit-Sequence Approach

Defining CEVS in terms of edit-sequences is based on looking for the clos-
est graph which is a cluster graph, where distance is defined by the shortest
edit-sequence. An edit-sequence may however include a lot of redundancy (for
example, swap two edge additions). In this section we show how to eliminate re-
dundancy, first by showing that we can consider a specific form of edit sequence,
and then showing that we can efficiently compute the shortest edit-sequence be-
tween two graphs. This will provide some much needed structure to the problem
and provide a base for subsequent proofs.

4 F. Abu-Khzam, J. Egan, S. Gaspers, A. Shaw, and P. Shaw

3.1 Restricted Re-ordering of the edit-sequence

Two edit sequences S = e1 . . . ek and S′ = e′1 . . . e
′
k are said to be equivalent if:

– GS and GS′ , the graphs obtained from G by S and S′ respectively are
isomorphic to each other with isomorphism f : V (GS)→ V (GS′), and

– if uS ∈ V (GS) and uS′ = f(uS) then the division tree which uS is contained
in and the division tree which uS′ is contained in share a common root. In
other words, uS and uS′ correspond to the same vertex of the original graph.

Lemma 1. For any edit-sequence S = e1 . . . eiei+1 . . . ek where ei is an edge
deletion and ei+1 is an edge addition, there is an equivalent edit-sequence S′ =
e1 . . . e

′
ie
′
i+1 . . . ek of the same length where either e′i is an edge addition and e′i+1

is an edge deletion, or both e′i and e′i+1 are do-nothing operations.

Proof. We begin by noting that we only have to consider the edits ei and ei+1

as we can think of the edit-sequence being a sequence of functions composed
with each other, thus if ei deletes edge uv and ei+1 adds edge wx then the graph
immediately after applying the two operations in the opposite order will be the
same in all cases except that where uv = wx whereby the net effect is that
nothing happens, as required.

Lemma 2. For any edit-sequence S = e1 . . . eiei+1 . . . ek where ei is a vertex
splitting and ei+1 is an edge deletion there is an equivalent edit-sequence S′ =
e1 . . . e

′
ie
′
i+1 . . . ek where either e′i is an edge deletion and ei+1 is a vertex splitting

or e′i is a do-nothing operation and e′i+1 is a vertex splitting.

Proof. If the edge deleted by ei+1 is not incident to one of the resulting vertices
of the splitting ei then swapping the two operations produces the required edit-
sequence E′. Otherwise let ei split vertex v and ei+1 delete edge uvi. Then if
ei has associated covering U1, U2 of N(v) and without loss of generality u ∈ U1

then if u 6∈ U2 then the edit-sequence with e′i being a deletion operation deleting
uv and e′i being the vertex splitting and U ′i = Ui \{u} and U ′1 = U2 is equivalent
to E. Otherwise, u ∈ U1 ∩U2. Without loss of generality, suppose uv2 is deleted
by ei+1. Then the sequence where e′i is a do-nothing operation and where e′i+1

is a vertex splitting on v with covering U ′1, U
′
2 with U ′1 = U1 and U ′2 = U2 \ {u}

is equivalent.

Lemma 3. For any edit-sequence S = e1 . . . eiei+1 . . . ek where ei is a ver-
tex splitting and ei+1 is an edge addition there exists an equivalent sequence
S′ = e1 . . . e

′
ie
′
i+1 . . . ek where either e′i is an edge addition and e′i+1 is a vertex

splitting, or e′i is a do-nothing operation and e′i+1 is a vertex splitting.

Proof. If the edge added by ei+1 is not incident to one of the resulting vertices
of the splitting ei then simply swap the two operations to produce the required
edit-sequence E′. Otherwise, without loss of generality, let ei divide vertex v on
covering U1, U2 and ei+1 add vertex wv1. Then let e′i be the operation that adds
the edge wv, if wv does not exist at that point, otherwise e′i is a do-nothing
operation and let e′i+1 split vertex v on covering U ′1 = U1 ∪ {w}, U ′2 = U2. The
resulting edit-sequence is equivalent to E.

Cluster Editing with Vertex Splitting 5

Lemma 4. For any edit-sequence S = e1 . . . ek where ei is a do-nothing op-
eration, the edit-sequence S′ = e1 . . . ei−1ei+1 . . . ek is equivalent to it and has
strictly smaller length.

3.2 Edit sequences in Add-Delete-Split form

From the above lemmas we can deduce the following theorem.

Theorem 1. For every edit-sequence S = e1 . . . ek there is an edit-sequence
S′ = e′1 . . . e

′
k′ with equal or lesser length such that

1. if e′i is an edge addition and e′j is an edge deletion or a vertex splitting, then
i < j,

2. if e′i is an edge deletion and e′j is a vertex splitting, then i < j, and
3. S′ contains no do-nothing operations

We refer to an edit-sequence satisfying the statement of Theorem 1 as an
edit-sequence in the add-delete-split form. We will now consider only these edit-
sequences, as for any equivalence class of edit-sequences, there is a minimal
member of that equivalence class which is in add-delete-split form. In fact, the
equivalence class of an add-delete-split edit-sequence is the intersection of an
equivalence class of edit-sequences and the set of edit-sequences in add-delete-
split form. A minimal member of any such equivalence class is an edit-sequence
in add-delete-split form.

Uniqueness of the pre-splitting edge modification graph correspond-
ing to any add-delete-split edit-sequence equivalence class. It is now
necessary to prove that in any equivalence class the graph obtained after the
addition and deletion of edges and before splitting vertices is fixed. By doing so
we provide a significant amount of structure to the problem, and do away with
the direct use of edit-sequences altogether when searching for a solution.

The approach we adopt is to work on time-reversed edit-sequences, taking
the final graph of the edit-sequence and the relation between the vertices in the
initial graph and the final graph, and proving that we always arrive at the same
graph. In preparation for this we define the split relation, f : V → 2V

′
for a

given solution S to CEVS for a graph G and edit-distance k as a function.
The split relation for such a solution S, graph G and distance k is a function

f : V → 2V
′

defined such that when G′ = (V ′, E′) is derived from G by S the
following properties hold on f

1. For a vertex v ∈ V : v′ ∈ f(v) if and only if v corresponds to v′ under S,
2. For any u, v ∈ V that f(u) ∩ f(v) = ∅, and
3. For any u ∈ V that f(u) 6= ∅.

A simple consequence of this definition is that two edit-sequences are equiv-
alent if and only if the resulting graphs are isomorphic and the split relation is
equivalent under that isomorphism.

6 F. Abu-Khzam, J. Egan, S. Gaspers, A. Shaw, and P. Shaw

In order to talk about time-reversed vertex-splitting sequences we define a
merge graph as being a graph G′ = (V ′, E′) derived from another graph G =
(V,E) by a sequence of vertex merge operations, that is there is a relation f :
V ′ → 2V called the merge relation which partitions the vertex set V on members
of V ′ such that u′v′ ∈ E′ if and only if uv ∈ E for some u ∈ f(u′) and some
v ∈ f(v′). A vertex merge operation constructs a merge graph with a merge
relation such that there is only one v′ such that |f(v′)| 6= 1 and for that value
f(v′) = u, v; we call this the merger of u and v. A k-merge-graph G′ of G is a
merge graph for which there is a sequence of exactly k vertex merges G1 . . . Gk =
G′ such that for all i = 1 . . . k and defining G0 = G, we have Gi is derived from
Gi−1 by a vertex merge operation.

Lemma 5. For any graph G = (V,E) and merge-graph G′ = (V ′, E′) of G with
merge relation R : V ′ → 2V we have that

E′ = {u, v ∈ V ′ : ∃u′ ∈ R(u) ∃v′ ∈ R(v) such that u′v′ ∈ E} .

Proof. If V = V ′ then no merge has occurred and so this is trivially so, otherwise
we proceed by induction on k = |V | − |V ′|

Suppose that G′ = (V ′, E′) is a k-merge-graph of G with merge relation
Rk : V ′ → 2V and suppose that G′′ is a 1-merge-graph of G′ and a (k + 1)-
merge-graph of G with relations R′ : V ′′ → 2V

′
and Rk+1 : V ′′ → 2V . Without

loss of generality suppose that G′′ was produced by merging vertices u and v of
G′ into w. Then, by definition,

E′′ = E′\({vx ∈ E′|x ∈ V ′} ∪ {ux ∈ E′|x ∈ V ′}) ∪ {wx|x ∈ (NG′(u) ∪NG′(v))}) .

Therefore we deduce that the edge set E′′ is the same as E′ except on those
edges incident to u and v, which were merged into W . However, R′(x) = {x} for
all vertices x 6= w and R′(w) = {u, v} and so,

E′′ = {u′′, v′′ ∈ V ′′ : ∃u′ ∈ R′(u′′) ∃v′ ∈ R′(v′′) u′v′ ∈ E′}.

By our induction hypothesis we also know that

E′ = {u′, v′ ∈ V ′ : ∃u ∈ Rk(u′) ∃v ∈ Rk(v′) uv ∈ E}.

By merging these two equations together (noting that we can disclose the
initial definition of u and v in the second equation) to give

E′′ = {u′′, v′′ ∈ V ′′ : ∃u′ ∈ R′(u′′) ∃v′ ∈ R′(v′′) ∃u ∈ Rk(u′) ∃v ∈ Rk(v′) uv ∈ E}.

By re-ordering the order of the existential operators we can obtain

E′′ = {u′′, v′′ ∈ V ′′ : ∃u′ ∈ R′(u′′) ∃u ∈ Rk(u′) ∃v′ ∈ R′(v′′) ∃v ∈ Rk(v′) uv ∈ E}.

Cluster Editing with Vertex Splitting 7

This is the same as saying,

E′′ = {u′′, v′′ ∈ V ′′ : ∃u ∈
⋃

u′∈R′(u′′)

Rk(u′) ∃v ∈
⋃

v′∈R′(v′′)

Rk(v′) uv ∈ E}.

By the definition or Rk+1 this means

E′′ = {u′′, v′′ ∈ V ′′ : ∃u ∈ Rk+1(u′′) ∃v ∈ Rk+1(v′′) uv ∈ E}

as required.

3.3 Representation of edit-sequences as resultant graphs and merge
relations

We can see that a vertex merge is the time-reversed image of a vertex splitting,
in as much as that any sequence of splits will correspond to a time-reversed
sequence of merges and the converse. Thus we can use vertex mergers to prove
the following.

Lemma 6. For any collection of edit-sequences in add-delete-split form which
are equivalent to some edit-sequence S, the graph GRS

immediately preceding the
vertex splitting is the same for all members of the class in that form. Further
if the split relation for this equivalence class is R and the graph G′ = (V ′E′)
resulting from S are known, then

E′ = {u, v ∈ V ′ : ∃u′ ∈ R(u) ∃v′ ∈ R(v) such that u′v′ ∈ E} .

Proof. This follows directly from Lemma 5, and Theorem 1.

We are now ready to prove the following lemma:

Lemma 7. For any graph G = (V,E) there is a computable bijection between
pairs (G′ = (V ′, E′), f : V → 2V

′
) of resultant graphs and split-relations and

equivalence classes of edit-sequences. Further there is an algorithm to compute
a min-edit-sequence from the resultant graph/split-relation pair for this class in
O((|V ′| − |V |)∆(G) + |V |+ |E|+ |V ′|+ |E′|) time.

Proof. The edit-sequence to graph/relation direction has been proved above,
further we have proved that if two edit-sequences have the same graph/split-
relation pair then they are equivalent. Thus all that remains to be proved is that
we can always construct a min-edit-sequence from an input graph to a valid
resultant graph/split-relation pair. We note:

– As the split-relation f can be represented as a merge-relation it is possible
by Lemma 5 to construct a graph GR such that GR has the same vertex
set as G and there is an edit-sequence consisting of only vertex divisions
from GR to G′ and with relation-relation f . Further this can be done in
O((|V ′| − |V |)∆(G) + |V |+ |E|+ |V ′|+ |E′|) time, and

8 F. Abu-Khzam, J. Egan, S. Gaspers, A. Shaw, and P. Shaw

– As GR shares the same vertex set as G it is possible to construct an optimal
edit-sequence from G to GR with only edge additions and deletions (by
looking at the edge sets of G and GR). Further we can do this in O(|E|)
time.

So we can construct an edit-sequence from G to G′ with split-relation f in
O((|V ′| − |V |)∆(G) + |V | + |E| + |V ′| + |E′|) time. Further by Lemma 6 this
graph GR is fixed for all edit-sequences in add-delete-divide form, of which one
is minimal. Thus as the initial add-divide sequence is minimal by construction,
and all division sequences are minimal, this sequence is a min-edit-sequence from
G to G′ with split relation f as required.

3.4 Representation of optimal Cluster Graph edit-sequences by
coverings

Consider the CEVS problem for a graph G and an edit distance k. If there is
a solution edit-sequence S for this problem, we may also represent the resulting
graph G′ by a covering of the vertices in the original graph. As G′ is a cluster
graph every pair of vertices from a clique are joined by an edge, and we can
reconstruct G′ and f : V (G)→ 2V (G′), the corresponding vertex relation. And so
by Lemma 7 we can represent the search space for optimal CEVS edit-sequences
by coverings of the vertex set of G, and evaluate the min-edit distance for each
of them in O((|V ′| − |V |)∆(G) + |V |+ |E|+ |V ′|+ |E′|) time.

4 Critical Cliques

Originally introduced by Lin et al. [21], critical cliques provide a useful tool in
understanding the clusters in graphs. A critical clique of a graph G = (V,E) is
a maximal induced subgraph C of G such that:

– C is a complete graph.

– There is some subset U ⊆ V such that for every v ∈ V (C), N [v] = U .

It was shown in [21] that each vertex is in exactly one critical clique. Let the
critical clique containing a vertex v be denoted by CC(v). The critical clique
graph CC(G) can then also be defined as a graph with vertices being the critical
cliques of G, having edges wherever there is an edge between the members of
the critical cliques in the original graph [21]. That is to say, that the critical
clique graph G′ = (V ′, E′) related to the graph G = (V,E) is the graph with
V ′ = CC(G) and edges E′ = {uv|∀x ∈ VC(u).∀y ∈ VC(v).xy ∈ E} Furthermore,
the vertices in G′ are given as a weight the number of vertices they represent in
the original graph, similarly for the edges.

The following lemma, dubbed “the critical clique lemma” is adapted from
Lemma 1 in [18], with a careful restatement in the context of this new problem.

Cluster Editing with Vertex Splitting 9

Lemma 8. Any covering C = (S1 . . . Sl) corresponding to a solution to CEVS
for a graph G = (V,E) that minimizes k will always satisfy the following prop-
erty: for any v ∈ G, and for any Si ∈ C either CC(v) ⊆ Si or CC(v) ∩ Si = ∅.

Proof omitted for length reasons.

By the critical clique lemma, the CEVS problem is equivalent to a weighted
version of the problem on the critical clique graph.

Lemma 9. If there is a solution to CEVS on (G, k) then there are at most 4k
non-isolated vertices in CC(G). Moreover, there are at most 3k+1 vertices in any
connected component of CC(G) and there are at most k connected components
in CC(G) which are non-isolated vertices.

Proof. l. We follow an approach similar to that taken by Fellows et al. and Gou.
Let Sopt be an optimal solution of CEVS and partition the vertex set of CC(G)
into 4 sets W , X, Y and Z. Let W be the set of vertices which are the endpoint of
some edge added by Sopt, Let X be the subset of vertices which are the endpoint
of some edge deleted by Sopt and not in W , Let Y be the subset of vertices
which are split by Sopt and not in W ∪X, finally let Z be all other non-isolated
vertices in G. As each vertex in W , X, and Y is affected by some operation in
Sopt and any operation in Sopt can affect at most 2 vertices, if |Sopt| < k then
|W ∪X ∪ Y | < 2k. Let us now consider Z. Suppose that u, v ∈ VS[opt] ∩ Z are
in the same clique in GSopt , then as they are in Z they are adjacent to exactly
every vertex in Y as they are not involved in any edge addition, deletion or
vertex splitting. However as they are adjacent to each other and have the same
neighborhood, apart from each other, they are in a critical clique together. i.e.
u = v. Thus there can be at most one vertex in Z for any connected component
of GSopt .

Now every vertex in Z is adjacent to a vertex in W ∪ X ∪ Y . To see this
suppose that z ∈ Z is not, then by the above lemma it is the only vertex in Z
in its clique in GSopt , however as it is in Z then it has neither been split nor
been severed from any vertex, thus it is an isolated vertex of CC(G). This is a
contradiction.

As each connected component of GSopt
, which is not an isolated vertex in

CC(G), contains at least one vertex of W ∪X ∪ Y there are at most 2k vertices
in Z and there are at most 4k non-isolated vertices in CC(G).

As each connected component CC(G) has to be separated into at most k+ 1
cliques in GSopt

there can be at most k + 1 elements of Z in any connected
component of CC(G), thus there can be at most 3k+1 vertices in any connected
component of CC(G).

As no clique in GSopt
has members from two connected components of G,

and as if any connected component component of G is not an isolated vertex
in CC(G) there is at least one edit performed to some vertex in that connected
component there can be at most k such connected components which are non
isolated vertices in CC(G)

10 F. Abu-Khzam, J. Egan, S. Gaspers, A. Shaw, and P. Shaw

5 A 4k(k + 1) vertex kernel

From the result in Section 4 we can devise a polynomial size kernel for CEVS.
To achieve this we propose three reduction rules, prove that they are valid, and
that their application gives a kernel as required.

Reduction Rule 1 Remove all isolated Cliques.

Lemma 10. Reduction Rule 1 is sound.

Proof. As no optimal solution has a final clique which bridges two connected
components of a graph G and an isolated clique needs no edits to make it com-
plete, the clique will remain in all optimal solutions and as such can be removed
without affecting the result.

Reduction Rule 2 Reduce all critical cliques with more than k + 1 vertices to
k + 1 vertices.

Lemma 11. Reduction Rule 2 is sound.

Proof. As no solution clique in an optimal solution partially contains a critical
clique and the cost to delete the edges incident to, or add edges to all of, or to
divide the vertices of such a critical clique is greater than k is too high to be
allowed we only need to maintain this invariant. Thus we can remove vertices
from any critical clique with more than k + 1 vertices until there are at most
k + 1 vertices in a critical clique and this will not affect the result.

Reduction Rule 3 If there are more than 4k non-isolated critical cliques re-
duce the graph to a P3 and set k = 0 in this case.

Lemma 12. Reduction Rule 3 is sound.

Proof. As proved in Lemma 9 if there are more than 4k non-isolated critical
cliques then there is no solution, thus we can emit a trivial No-instance.

Theorem 2. There exists a polynomial-time reduction procedure that takes an
arbitrary instance of the Cluster Editing with Vertex Splitting problem
and produces an equivalent instance whose order (number of vertices) is bounded
above by 4k(k + 1). In other words, CEVS admits a quadratic-order kernel.

Proof. As shown in the previous lemmas, reduction rules 1, 2 and 3 are well
founded, and as after having applied them exhaustively, there are at most 4k
critical cliques in the input graph. Due to reduction rule 2, there is no critical
clique with more than k + 1 vertices, and therefore, the application of these
reduction rules results in a 4k(k + 1) vertex kernel.

Cluster Editing with Vertex Splitting 11

6 Conclusion

By allowing a vertex to split into two vertices we extend the notion of Cluster
Editing in an attempt to better-model clustering problems where a data element
may have roles in more than one cluster. The corresponding new version of
Cluster Editing is shown to be fixed-parameter tractable via a new approach
that is based on edit-sequence analysis.

The vertex splitting operation may also be applicable to other classes of
target graphs, including bipartite graphs, disjoint complete bipartite graphs (bi-
cluster graphs), chordal-graphs, comparability graphs, and perfect graphs. The
results in Section 3 are directly applicable to these other classes, and it may be
possible to find an analog to the critical clique lemma for bi-cluster graphs.

The work reported in this paper did not consider the exclusive version of ver-
tex splitting, where the two vertices which result from a split must additionally
have disjoint neighborhoods. This is ongoing research at this stage.

Acknowledgments: Serge Gaspers is the recipient of an Australian Research
Council (ARC) Future Fellowship (FT140100048) and acknowledges support un-
der the ARC’s Discovery Projects funding scheme (DP150101134). Alexis Shaw
is the recipient of an Australian Government Research Training Program Schol-
arship.

References

1. Abu-Khzam, F.N., Baldwin, N.E., Langston, M.A., Samatova, N.F.: On the rel-
ative efficiency of maximal clique enumeration algorithms, with applications to
high-throughput computational biology. In: International Conference on Research
Trends in Science and Technology (2005)

2. Abu-Khzam, F.N.: On the complexity of multi-parameterized cluster editing. Jour-
nal of Discrete Algorithms 45, 26–34 (2017)

3. Abu-Khzam, F.N., Fernau, H.: Kernels: Annotated, proper and induced. In: Pa-
rameterized and Exact Computation, Lecture Notes in Computer Science, vol.
4169, pp. 264–275. Springer Berlin Heidelberg (2006)

4. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. Journal of
Discrete Algorithms 16, 79 – 89 (2012)

5. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. Journal of Computer and System Sciences 75(8), 423 – 434
(2009)

6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters 58(4), 171–176 (May 1996)

7. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences 78(1), 211–220 (2012)

8. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences 72(8), 1346
– 1367 (2006)

9. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

12 F. Abu-Khzam, J. Egan, S. Gaspers, A. Shaw, and P. Shaw

10. D’Addario, M., Kopczynski, D., Baumbach, J., Rahmann, S.: A modular computa-
tional framework for automated peak extraction from ion mobility spectra. BMC
Bioinformatics 15(1), 25 (2014)

11. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster
editing problem: Implementations and experiments. In: Parameterized and Exact
Computation, pp. 13–24. Springer Berlin Heidelberg (2006)

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science, Springer London (2013)

13. Fadiel, A., Langston, M.A., Peng, X., Perkins, A.D., Taylor, H.S., Tuncalp, O.,
Vitello, D., Pevsner, P.H., Naftolin, F.: Computational analysis of mass spectrom-
etry data using novel combinatorial methods. AICCSA 6, 8–11 (2006)

14. Fellows, M., Langston, M., Rosamond, F., Shaw, P.: Efficient parameterized prepro-
cessing for cluster editing. In: Fundamentals of Computation Theory. pp. 312–321.
Springer (2007)

15. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-
based data clustering with overlaps. Discrete Optimization 8(1), 2 – 17 (2011),
parameterized Complexity of Discrete Optimization

16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
17. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering:

Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–
392 (2005)

18. Guo, J.: A more effective linear kernelization for cluster editing. Theoretical Com-
puter Science 410(8-10), 718 – 726 (2009)

19. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory of Computing Systems 47(1), 196–217
(2010)

20. Kr̆ivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta
Informatica 23 (3), 311–323 (1986)

21. Lin, G.H., Kearney, P.E., Jiang, T.: Phylogenetic k-root and Steiner k-root. In:
Algorithms and Computation, pp. 539–551. Springer (2000)

22. Niedermeier, R.: An Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

23. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular near-
est neighbors in high-dimensional data. Journal of Machine Learning Research
11(Sep), 2487–2531 (2010)

24. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144(1-2), 173–182 (Nov 2004)

25. Tomašev, N., Radovanović, M., Mladenić, D., Ivanović, M.: The role of hubness in
clustering high-dimensional data. In: Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining. pp. 183–195. Springer (2011)

