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Abstract—Deep learning has been found to be vulnerable to
changes in the data distribution. This means that inputs that
have an imperceptibly and immeasurably small difference from
training data correspond to a completely different class label
in deep learning. Thus an existing deep learning network
like a Convolutional Neural Network (CNN) is vulnerable
to adversarial examples. We design an adversarial learning
algorithm for supervised learning in general and CNNs in
particular. Adversarial examples are generated by a game
theoretic formulation on the performance of deep learning.
In the game, the interaction between an intelligent adversary
and deep learning model is a two-person sequential noncoop-
erative Stackelberg game with stochastic payoff functions. The
Stackelberg game is solved by the Nash equilibrium which is a
pair of strategies (learner weights and genetic operations) from
which there is no incentive for either learner or adversary
to deviate. The algorithm performance is evaluated under
different strategy spaces on MNIST handwritten digits data.
We show that the Nash equilibrium leads to solutions robust
to subsequent adversarial data manipulations. Results suggest
that game theory and stochastic optimization algorithms can
be used to study performance vulnerabilities in deep learning
models.

Keywords : Supervised learning, Data mining and knowl-
edge discovery, Evolutionary learning, Adversarial learning,
Deep learning, Genetic algorithms, Game theory

1. Introduction

Machine learning algorithms make the stationarity as-
sumption that the training data (used to learn mathematical
patterns) and the testing data (evaluating algorithm perfor-
mance) are sampled from the same underlying probabil-
ity distribution of independent and identically distributed
random variables. However non-stationary data is being
increasingly found in real world applications. Designing
robust computing systems and machine learning algorithms
for such applications is the goal of adversarial learning. It
incorporates defence mechanisms into the machine learning
algorithm design and action.

Adversarial learning is simulated by training a learning
algorithm under various attack scenarios formulated by an
intelligent adversary [1]. The optimal attack policy for the
adversary is defined in terms of an objective function.
Search and optimization algorithms are used to arrive at

a satisfactory solution for the objective function. The var-
ious adversarial learning algorithms differ in assumptions
regarding adversary’s knowledge, security violation, attack
strategies, attack influence [2].

In this paper we propose a new adversarial learning algo-
rithm for studying deep learning models under attack. Deep
learning refers to a class of machine learning algorithms
with many stages of nonlinear information processing in
hierarchical architectures exploited for pattern classification
and feature learning [3]. Deep learning has been found to be
susceptible to adversarial examples [4]. Such adversarial ex-
amples can be crafted by prior knowledge, observation, and
experimentation on the network layers and loss functions in
the deep learning model.

Our adversarial examples are generated from algorithms
in learning-theoretic game theory. Game Theory is the study
of interactions or games between independent self-interested
agents or players. Each player has a set of associated strate-
gies/moves/actions that optimize a payoff or utility function.
The key idea in game theory is that of an equilibirum state
from which none of the players have any incentive to devi-
ate. Most common equilibirum is the Nash and Stackelberg
equilibrium.

Our adversarial algorithm proposes a game between two
players - a data miner or learner and an intelligent adversary.
The interactions between the learner and adversary are mod-
elled as a two-player sequential Stackelberg zero-sum game.
The payoff for each player is designed as objective functions
specifying the attack and learning processes. The attack
processes specify the adversary’s constraints and optimal
attack policy. The learning processes specify the learner’s
gain and adversary’s gain under the optimal policy. The
optimal attack policy is formulated in terms of stochastic
optimization and evolutionary computing.

Following are the major contributions of this paper.

• We formulate the problem of finding defence mecha-
nisms in adversarial learning as a maxmin optimiza-
tion problem in learning-theoretic game theory.

• We develop a new algorithm for adversarial learning
in deep learning models. We do not assume the
adversary knows anything about the deep network
structure which is close to real life settings.

• Our algorithm can adapt to continuous adversarial
data manipulations unlike most of the existing ad-
versarial learning algorithms. In each iteration of



the adversarial learning algorithm, we define a ten-
sors based fitness function and payoff function to
evaluate the solution domain represented by genetic
operators.

• The theoretical goal is to determine a manipulating
tensor on the input data that finds learner decision
boundary where many positive labels become nega-
tive labels. Upon convergence the learner can retrain
to find weights that are robust to adversarial attacks.

The paper starts with related work in Section 2 com-
paring the new approach with existing approaches. The
pseudocode and experiments for proposed algorithm are
presented in Section 3 and Section 4 respectively. The paper
ends in Section 5 with a summary of current work and future
work.

2. Related Work

The existing adversarial learning algorithms are summa-
rized in Table 1, Table 2. The table’s columns list the various
criteria for comparing adversarial learning algorithms. The
table’s rows list the various algorithms under comparison.
The algorithms are compared on attack strategy, search
algorithm, adversary’s knowledge. The ”attack strategy” is
the attack scenario under which the adversary operates. The
”search algorithm” is the algorithm used to find an optimal
solution. The ”adversary’s knowledge” is the semantic in-
formation of the adversary. Our algorithm is termed ”Game
theory : deep learning”.

2.1. Adversarial Security Mechanisms

For various attack scenarios in adversarial learning, sev-
eral defence mechanisms have been proposed for learner
security [2, 5, 12, 13]. Such mechanisms include attempts
at designing secure learning algorithms [2], multiple clas-
sifier systems [5], privacy-preserving machine learning [12]
and use of randomization or disinformation to mislead the
adversary [13].

Biggio et al. [2] have an empirical framework for
evaluation of learner security. This framework extends the
model selection and performance evaluation steps of pat-
tern classification [14] by adding system design steps of
”security by design” rather than ”security by obscurity”.
The additional steps proposed in the framework are useful
for evaluating the security of both generative learning and
discriminative learning. Depending on the goal, knowledge
and capability of the adversary, these steps are classified
in terms of attack influence, security violation and attack
specificity.

The attack influence can be causative or exploratory.
Causative attack affects both training and testing data. Ex-
ploratory attack affects only testing data.

The security violation can target either integrity or
availability or privacy of the learner. A machine learning
algorithm whose integrity is compromised cannot detect
malicious behaviour of the adversary. The integrity of an

algorithm with many false negatives is compromised. A ma-
chine learning algorithm whose availability is compromised
has severely degraded performance for legitimate users. The
availability of an algorithm with many false positives is
compromised. The privacy of an algorithm whose detailed
feedback is made public is compromised.

The attack specificity can be either targeted or indis-
criminate for attacks that influence prediction or action of
the algorithm. In targeted attacks the attack is directed at
only a few instances of the training or testing data. In
indiscriminate attacks the attack is directed at an entire class
of instances or objects.

Our algorithm has causative attack influence, integrity
security violation, targeted attack specificity.

2.2. Adversarial Networks

In deep learning networks, adversarial examples are
generated by applying a small but intentional worst-case
perturbation to examples in the cross-validation data. Such
perturbed input results in an incorrect output with high con-
fidence. Goodfellow et al. [4] state that the primary cause of
deep learning networks vulnerability to adversarial examples
is their linear nature in high dimensional search spaces.
Another observation is that deep learning networks do not
perform well on points in search space that do not have high
probability in the training data distribution. This means that
inputs that have an imperceptibly and immeasurably small
difference from training data correspond to a completely
different class label in deep learning. Thus with increasing
dimensionality of the input data, a deep learning network
has a greater vulnerability to adversarial examples.

Thus Goodfellow et al. argue for the need of having an
adversarial training procedure with the objective to minimize
the worst case error when the data is perturbed by an adver-
sary. Adversarial learning is proposed to be a form of active
learning where the deep learning network is able to request
labels on new points and learn better regularization through
adversarial training. In active learning process, the labels on
faraway points are supplied by a domain expert whereas the
labels on nearby points are supplied by a heuristic labeler.

Adversarial samples are also known to transfer between
deep learning models. Papernot et al. [9] have a practical
demonstration of this phenomenon. The adversarial exam-
ples are constructed to control the integrity of a target Deep
Neural Network (DNN). The adversary has no access to the
target DNN’s architecture, parameters, training data.

Gu and Rigazio [10] study robustness of DNNs by
studying pre-processing and training strategies accounting
for structure of adversarial examples and model’s network
topology. The pre-processing is done with Denoising Au-
toencoders (DAEs).

Instead of an adversarial network, we have a genetic
algorithm constructing perturbations to training data.



Adversarial algorithm Attack strategy Search algorithm
Classifier ensembles [5] Reorder features by importance for dis-

criminant function
Randomized sampling

Feature weighting [6] Addition/deletion of binary features Feature bagging
SVM : inputs [7] Train noise injection Gradient ascent
SVM : labels [8] Label noise injection Gradient ascent
Deep learning [4] Linear perturbation on x Backpropagation with L-BFGS
Adversarial networks : DNN [9] Observe DNN outputs given inputs cho-

sen by the adversary
Jacobian-based dataset augmentation

Adversarial networks : DAE [10] Gaussian additive noise Stacking DAEs into a feed forward neu-
ral network

Game theory : support vector machines [11] Delete different features from different
data points

Quadratic programming

Game theory : deep learning (Our method) Move positive samples towards negative
samples

Genetic algorithm

TABLE 1: Adversarial Algorithms Comparision

Adversarial algorithm Adversary’s knowledge Learning games
Classifier ensembles [5] Train features None
Feature weighting [6] Train features None
SVM : inputs [7] Gradient of loss None
SVM : labels [8] Train labels None
Deep learning [4] Train and test data None
Adversarial networks : DNN [9] Test data None
Adversarial networks : DAE [10] Test data None
Game theory : support vector machines [11] Train features Non-zero sum game
Game theory : deep learning (Our method) Train and test data Constant sum game

TABLE 2: Adversarial Algorithms Comparison

2.3. Learning-Theoretic Game Theory

Game theory has been adapted to machine learning
algorithms vulnerable to adversarial data manipulations [15].
A game is assumed to mimic the parameter tuning actions in
the learning algorithm. Moreover, the data miner is assumed
to use only one learning algorithm throughout the game.
This is because adjusting parameters in existing model is
assumed to be computationally less expensive than building
a new model. The adversary is assumed to modify learning
strategy to avoid detection from learner. At the same time,
the learner updates its model based on new threats from
the adversary. The equilibrium is reached when neither the
learner nor the adversary has incentive to play the game.
The learner has no incentive to play the game that leads
to too many false positive with too little increase in true
positives. The adversary has no incentive to play the game
that increases utility of false negatives not detected by
the learning algorithm. A game ends with payoffs to each
player based on their objectives and actions. All player’s
are assumed to act in their rational interest to maximize the
payoffs. This assumption at every stage of game, eliminates
Nash equilibria with non-credible threats and creates an
equilibrium called the subgame perfect equilibrium. Here
perfect equilibrium means each player knows about the
others utility function. The players utility functions vary by
application domain.

Globerson and Roweis [11] discuss a classification
algorithm with a game theoretic formulation. The proposed
algorithm is robust to features deletion according to a min-
max objective function optimized by quadratic program-
ming. In Liu and Chawla [16], the interactions between
an adversary and data miner are modelled as a two-player
sequential Stackelberg zero-sum game where the payoff for
each player is designed as a regularized loss function. The

proposed minmax problem for optimization is solved with-
out making assumptions on the data distribution underlying
training and testing data. Each player’s move is based on
the observation of the opponent’s last play. The adversary
iteratively attacks the data miner by best possible strategy for
transforming the original training data. The data miner reacts
by rebuilding classifier based on data miner’s observations
of the adversarys modifications to the training data. The
adversarys strategy of play is determined independently by
the adversary. The game is repeated until adversary’s payoff
does not increase or the maximum number of iterations is
reached. Liu et al. [17] propose an extension to Liu and
Chawla where one-step game is used to reduce comput-
ing time of the minmax algorithm. The one-step method
converges to Nash equilibrium by utilizing Singular Value
Decomposition (SVD).

For deriving the payoff functions in the game, we as-
sume that the adversary has no knowledge of either the
network layers or loss functions in the deep learning model.

2.4. Stochastic Optimization

Evolutionary Computing (EC) has been used to gener-
ate rule-based data mining models and search algorithms
with attribute interactions [18]. The EC based stochastic
search and optimization algorithms are Evolutionary Pro-
gramming (EP), Evolutionary Strategies (ES), Genetic Al-
gorithms (GA), Differential Evolution (DE), Estimation of
Distribution Algorithm (EDA) and Swarm Intelligence (SI)
algorithms [19], [20].

We use EC algorithm to generate adversarial examples.
It is a genetic algorithm with standard selection, crossover,
mutation operators generating adversarial examples. By us-
ing EDA algorithms, the genetic operators can define ex-



plicit probabilistic distributions on the candidate solutions
in multivariate models [21].

3. Algorithm

In this section we discuss the problem formulation and
pseudocode for the proposed adversarial learning algorithm.

3.1. Game Formulation

The training algorithm simulates the adversarial learning
as a constant sum Stackelberg game between two players.
The two players are called Leader (L) and Follower (F). The
leader initiates the game by making the first move/play. In
our algorithm, the adversary is the leader and the learner is
the follower. In a constant sum game, the learner’s loss is
assumed to be the adversary’s gain and vice versa.

Each player is associated with strategy spaces A and W
for L and F respectively. A strategy space is a choice of
moves available to each player. The outcome of a strategy
is determined by the player’s payoff function JL and JF .
For a given observation of w, the best strategy for the leader
is

α∗ = argmaxα∈AJL(α,w) (1)

Similarly for L’s move α, F’s best strategy is

w∗ = argmaxw∈WJF (α,w) (2)

Moreover, the sum of payoff functions JL for the adversary
and JF for classifier are assumed to sum to a constant profit
Φ. This allows us to rewrite the expression for w∗ in terms
of JL

w∗ = argmaxw∈WΦ− JL(α,w) = argminw∈WJL(α,w)
(3)

Combining Equation 1 with Equation 3 we formulate the
following maxmin problem in the game.

Maxmin : (α∗, w∗) = argmaxα∈AJL(α, argminw∈WJL(α,w))
(4)

We have trained a Convolutional Neural Network (CNN)
as the learner. With knowledge of only the learner’s clas-
sification error, the adversary is assumed to target the true
positives. In each iteration of the game, the learner trains the
weights w in CNN layers for the input α presented by the
adversary. The adversary then adapts the data manipulations
to the weights trained by the CNN. Thus, each player’s move
is based on the opponent’s last play. The game is initiated
by the adversary. Thus adversary is the leader L and learner
is the follower F.

Using a genetic algorithm, the adversary searches
for data manipulations that maximize classification er-
ror error(w). The fitness function in genetic algorithm
JL(α,w) is defined to be the adversary’s payoff function.
The genetic algorithm converges when adversary does not
see an increase in payoff function or the maximum number
of iterations are reached. The game and genetic algorithm
are assumed to have same convergence criteria.

For input training data Xtrain and corresponding labels
Ytrain, the adversary searches for a move α that maximizes
following payoff function or fitness function JL(α) where
error is the classification error as measured by recall for
current adversarial data. The term tensornorm is a modified
`2 norm for the current α.

JL(α,w) = 1 + λ ∗ error(w)− tensornorm(α) (5)

error(w) = 1− recall(w) (6)

tensornorm(α) =
√

Σα2/(32 ∗ 32 ∗ 3)/255 (7)

tensornorm(α) term in JL(α) is affected by the initial-
ization of α population whereas the error term is affected
by the genetic operators. tensornorm(α) ensures that the
adversary makes a minimum of changes to the current α
while maximizing the error or minimizing the corresponding
recall. tensornorm(α) is enhanced by an weighting term λ
whose default value 10. λ is empirically evaluated for each
dataset. A constant 1 is then added to JL(α) to ensure a
positive fitness function in the genetic algorithm.

We observe that the adversary’s interest is in converting
illegitimate data to legitimate data with a minimum of
changes and not vice versa. To account for this objective,
we have assumed that the adversary tries to reduce the true
positives in classifier performance regardless of the changes
to true negatives. By assuming the error to depend on recall,
the adversary attempts to convert true positives to either false
positives or false negatives. The recall is inturn determined
by the learner’s performance.

3.2. Game Illustration

We choose a Convolutional Neural Network (CNN) as
the learner. CNN architecture’s input layers and output layer
are described in [22] and available in the Tensorflow API 1

as the CIFAR10 model. The CNN has input layers consist-
ing of convolution layers, maxpooling layers, regularization
layers, activation units. The CNN has output layer of the
softmax probability distribution function. The overall loss
function of the learner is defined by the CNN’s input and
output layers.

Figure 1 has an illustration of the game. The CNNinitial
is trained on training data (Xtrain) and evaluated on testing
data Xtest to give a performance metric recall(Xtest) |
CNN(Xtrain) given as ”learner performance” for method
1 in Figure 1. The adversary targets this performance by
engaging the CNN in a game. The game has steps executed
by the adversary and learner for each interaction. In these
steps, the adversary is targeting the learner by data produced
from genetic operators. The learner is then adapting for the
adversarial data by retraining the CNN. Upon convergence,
the game outputs a adversarial data manipulation step α that
is added to the original data sample to create final adversarial
data sample.

1. https://www.tensorflow.org/versions/r0.10/tutorials/deep\ cnn/index.
html



Figure 1: A flow chart illustrating the benefits of a game theoretic
learner. The game has Adversary and Learner as the players. The
game produces a final deep learning network CNNfinal that is
better equipped to deal with the adversarial manipulations than the
initial deep learning network CNNinitial.

The CNN trained and tested on the adversarial data sam-
ple has performance recall(Xtest+α) | CNN(Xtrain+α)
given as ”manipulated learner performance” for method 2
in Figure 1. This recall is significantly less than the original
CNN recall recall(Xtest) | CNN(Xtrain) on original train-
ing and testing data (Xtrain, Xtest). A new Convolutional
Neural Network CNNfinal is then retrained to adapt on the
manipulated data (Xtrain+α) and (Xtest+α). CNNfinal
performance on manipulated data is recall(Xtest + α) |
CNN(Xtrain + α) given as ”secure learner performance”
for method 3 in Figure 1. Method 3 is our proposed method.
It is found to be better than the manipulated CNN recall
recall(Xtest + α) | CNN(Xtrain + α).

Thus we arrive at the conclusion that the new CNNfinal
has successfully adapted to adversarial data manipulations
as compared to the original CNNinitial. Our algorithm is
able to find a data sample that affects the training of a CNN.
The CNN that is able to recover from our adversarial attack
is better equipped to deal with unforseen changes in the
data. The game between adversary and learner allows us
to produce a CNN that is able to estimate changes in the
underlying data distribution.

3.3. Game Algorithm

Algorithm 1 gives the training algorithm that takes into
consideration adversarial attacks. As input, Algorithm 1
requires the training data Xtrain labelled by Ytrain and

testing data Xtest labelled by Ytest. In our algorithm, each
example in the input data is a three dimensional tensor of
RGB pixel values. Algorithm 2, Algorithm 3, Algorithm 4,
Algorithm 5 give the genetic operators used by Algorithm 1
to search for candidate solutions.

The Algorithm 1 initializes the game by training the
CNN on Line 3 to store the weights to disk. The fitness
function values are computed on Line 6 for each randomly
initialized α. α belongs to a genetic population αpopulation
operating on the input data Xtrain and Ytrain. αpopulation
is randomly initialized around the mean of the positive
class. It is assigned to population on Line 5. A variable
maxpayoff is used to keep track of the adversary’s current
payoff in current iteration of the game from Line 8 to Line
30. The if condition on Line 12 ensures that the algorithm
converges when maxpayoff does not exceed current payoff
currpayoff by a small number 0.0001. In each game iter-
ation, the current αcurr giving best fitness value is selected
on Line 9. On Line 10, the CNN is retrained to react to
attack Xtrain+αcurr. The variable maxpayoff is updated
on Line 14 if αcurr satisfies the game convergence criteria.

From Line 15 to Line 25, the standard genetic opera-
tors selection,crossover,mutation,clone are used to generate
population in the genetic algorithm.

On Line 15, selection operator does a weighted sampling
without replacement where weights are proportional to fit-
ness function values for current population. Selection func-
tion in Algorithm 3 randomly samples the current population
to return selected candidates and remaining candidates as the
offspring and parents respectively. On Line 19, crossover
operation is applied between the odd children and even
children in the offspring. Crossover function in Algorithm 4
randomly slices and swaps the pixels of current children.
The starting and ending indices for slicing are also selected
randomly. On Line 23, random mutations are applied to
pixels of each offspring. Mutation function in Algorithm 5
applies a mask of randomintegers that are added to the
pixel values in current child. Since the masking allows for
pixel values in the range of -255 and +255, any mutated
pixel values crossing 255 and 0 are taken to be 255 and
0 respectively. The pixels for mutation are selected with a
uniformly probability.

The new population for next iteration is cloned on Line
25. Line 26 calls Algorithm 2 to recompute the fitness
function values for new αpopulation. Line 4 of Algorithm 2
inturn calls an evaluation function to compute the perfor-
mance metrics on data subject to adversarial manipulation.
These metrics are calculated subject to the current softmax
probabilities of the learner. Line 6 of the Algorithm 2 calls
Equation 7 to compute tensornorm of α∗, tensornorm(α).

In Algorithm 1, Line 31 and Line 32 find α∗ that is
the final converged attack for the adversary. On Line 35,
the training algorithm Algorithm 1 returns the final testing
performance f1score on input testing data Xtest and Ytest
subject to adversarial data manipulation Xtest + α∗.



Algorithm 1 Training Game
Training Input:
1: Xtrain, Ytrain, Xtest, Ytest

Training Output:
2: α∗
3: train(Xtrain, Ytrain)
4: maxpayoff = 0, exitloop = False
5: population = αpopulation . Initialize population to size ψ
6: F (Xtrain) = fitness(Xtrain, Ytrain, αpopulation))
7:
8: while gen<maxiter ∧ ¬ exitloop do
9: αcurr, currpayoff = max(F (Xtrain))

10: cnn train(Xtrain + αcurr, Ytrain)
11:
12: If abs(currpayoff - maxpayoff) < 0.0001 then
13: Begin
14: maxpayoff = currpayoff
15: parents,offspring = selection(population,0.5)
16:
17: for child1 in odd offspring and child2 in even offspring do
18: Begin
19: child1, child2 = clone(crossover(child1,child2))
20: End
21: for mutant in offspring do
22: Begin
23: mutant = mutation(mutant)
24: End
25: population = clone(parents + offspring)
26: F (Xtrain) = fitness(Xtrain, Ytrain, αpopulation)
27: End
28: else
29: exitloop = True
30: end while
31: αcurr,maxpayoff = max(F (Xtrain))
32: α∗ = αcurr
33: cnn train(Xtrain, Ytrain)
34: f1score = cnn test(Xtest + α∗, Ytest)
35: return α∗, f1score

Algorithm 2 Genetic Operators: Fitness function
1: function FITNESS(X,Y, αpopulation)
2: for α ∈ αpopulation do
3: Begin
4: metrics = evaluate(X + α, Y ) . Compute performance

measures on manipulated data
5: error = λ ∗metrics[′recall′]
6: αfitness = 1 + error − tensornorm(α) . Update

fitness values for population
7: End
8: return αpopulation
9: end function

Algorithm 3 Genetic Operators: Selection function
1: function SELECTION(P, ζ)
2: Retrieve fitness values WP for all P
3: Sample P without replacement biased by WP for ζ percentage of

children C
4: return P − C,C
5: end function

Algorithm 4 Genetic Operators: Crossover function
1: function CROSSOVER(c1, c2)
2: Randomly slice c1 and c2 into c1sliced and c2sliced with minimum

width η
3: Swap c1sliced with c2sliced
4: return c1, c2
5: end function

Algorithm 5 Genetic Operators: Mutation function
1: function MUTATION(m)
2: Randomly select a step between δ and −δ
3: Randomly generate a boolean tensor mask for m
4: m[mask] = m[mask] + step . Slice m by mask and update by

step
5: return m
6: end function

4. Experiments

In this section we discuss the experimental validation
and parameters of the adversarial learning algorithm.

4.1. Dataset description

We use a crossvalidation dataset of colour images split
between two class labels. The dataset is taken from the
MNIST handwritten images database [23]. The two class
labels and their cardinality are described in Table 3. The
lower digit is taken to be the positive class. For example,
if the class labels are 7 and 9, the class label 7 is taken to
be the positive class. The learner is Tensorflow’s CIFAR10
model 2. The learner’s architecture is described in [22]. The
learner’s testing performance is the baseline performance
targeted by the adversary in the game. We assume the adver-
sary has a mean image of positive label data for initializing
the αpopulation in the genetic algorithm Algorithm 1.

4.2. Illustrative Examples

Figure 2 has examples for data transformations on posi-
tive labels that appear to be negative labels in the adversarial
algorithm. Some of the transformations that avoid detection
are adding and deleting pixels, changing shape and size of
the image. In Figure 2, Figure (a) has handwritten digit 2
manipulated to looks like 8 by adding pixels. Figure (b) has
handwritten digit 3 manipulated to looks like 8 by changing
thickness and shape. Figure (c) has handwritten digit 4
manipulated to looks like 9 by deleting pixels and changing
shape. Figure (d) has handwritten digit 7 manipulated to
looks like 9 by deleting pixels and changing shape.

4.3. Search algorithm validation

During the game, an adversary finds adversarial exam-
ples using a genetic algorithm as the search algorithm. In
this section, we report the effect of genetic operators in the
search algorithm. We conclude that an adversary is able to
affect the testing performance of the CNN learner by varying
the search algorithm parameters. These parameters allow us
to produce a adversarial manipulation α∗ on the images
such that the positive class examples are misclassified as
negative class examples by the CNN. For example, the
CNN misclassifies the handwritten digit 7 that is positively

2. https://github.com/tensorflow/tensorflow/tree/master/tensorflow/
models/image/cifar10



Class Labels Positive Class Positive Class Cardinality Negative Class Cardinality
(2,8) 2 6990 6825
(4,9) 4 6824 6958
(1,4) 1 7877 6824
(5,8) 5 6313 6825
(3,8) 3 7141 6825
(7,9) 7 7293 6958
(6,8) 6 6876 6825
(2,6) 2 6990 6876

TABLE 3: Datasets of colour images used in the experiments

(a) 2 manipulated to look like 8

(b) 3 manipulated to look like 8

(c) 4 manipulated to look like 9

(d) 7 manipulated to look like 9

Figure 2: Examples of transformed images found at Nash equi-
librium in a Stackelberg game. To avoid detection, the adversary
adds pixels in (a), changes shape in (b), deletes pixels and changes
shape in (c) and (d)

labelled before adversarial manipulation as the negatively
labelled handwritten digit 9 after adversarial manipulation.

The adversarial data is constructed by the mutation,

Figure 3: Testing performance with variation in mutation step δ.
Secure learner has higher performance than manipulated learner.

crossover, selection genetic operators defined on images.
The testing performance for mutation, crossover, selection
operators and population size on data manipulated by α∗

is reported in Figure 3, Figure 4, Figure 5 and Figure 6
respectively. The x-axis is has variation in the parameters
for each genetic operator. The y-axis has the learner f1score
performance for manipulated data. In all the figures, we
observe that the secure learner performance is higher than
the manipulated learner performance. From the figures, we
can also find the best values of the genetic parameters that
minimize f1score to around 0.5.

In the following, the genetic operators and parameters
are described in more detail.

Population initialization In the initial αpopulation of
images, the pixel values are randomly initialized around the
meanimage of the positive class. The range for random pixel
values is between lower bound of RGB pixel value(-255)
and upper bound of RGB pixel value(+255). The size of
images is 32*32*3 as required by the CNN model. For input
images manipulated by adding α∗, the pixels with values
greater than 255 are set to 255 and pixels with values less
than 0 are set to 0.

Mutation operation A mask of randomly generated



Figure 4: Testing performance with variation in crossover width
η. Secure learner has higher performance than manipulated learner.

integers between a lower bound -δ(set to -50 by default) and
upper bound +δ(set to +50 by default) for the step is added
to the current image in mutation operation. In Figure 3, the
x-axis is varied by δ - the mutation step. From Figure 3 we
conclude that the f1score is minimized to 0.5 on MNIST
dataset for δ around 80.

Crossover operation For a three dimensional 32*32*3
RGB image, the height and width indices are randomly
selected. The starting index for height is selected between
pixels 1 and 16(half of largest height). The ending index
for height is selected between lower bound η(set to +2 by
default) and η(set to +10 by default) from the corresponding
starting index of height and upper bound 32. A similar
random indexing scheme selects the starting width and
ending width of the image. The slice of starting and ending
index of height/width over all the pixels in depth is then
swapped between the two images in crossover operation. In
Figure 4, the x-axis is varied by η - the crossover width.
From Figure 4 we conclude that the f1score is minimized
to 0.5 on MNIST dataset for η around 7.

Selection operation Selection operation is an extension
of random sampling without replacement. The parents for
next generation are randomly chosen from current gener-
ation parents. A ζ(set to 0.5 by default) percentage of the
current generation parents are selected to be the offspring for
next generation. Remaining candidates in current generation
of parents are preserved as parents for next generation. The
probability of selection of an offspring is proportional to the
fitness values of the current parents. The selected offspring
are then changed by crossover and mutation to get the
parents for next generation. Across every generation of the
genetic algorithm, the size of entire population(consisting
of current offspring and parents) is fixed to the initial size

Figure 5: Testing performance with variation in selection size ζ.
Secure learner has higher performance than manipulated learner.

Figure 6: Testing performance with variation in population size ψ.
Secure learner has higher performance than manipulated learner.

of the parents. In Figure 5, the x-axis is varied by ζ - the
selection size. From Figure 5 we conclude that the f1score
is minimized to 0.5 on MNIST dataset for ζ around 30 %.

Population size In Figure 6, the x-axis is varied by ψ
- the population size. ψ is supposed to have an effect on
the randomization of the genetic operators. From Figure 6,
we observe that the testing performance of the manipulated
learner decreases by around 20% from 0.79 to 0.60 f1score.
Then the testing performance of the secure learner trained
on the manipulated data increases by around 15% from 0.6



to 0.75 f1score. The highest decrease in the manipulated
learner’s performance is seen at population size 3000, 8000
and 9000. But the highest increase in performance of secure
learner is seen at 9000. So we conclude that the secure
learner performance increases with an increase in ψ. But
the corresponding performance of the manipulated learner
performance is seen to be periodically decreasing with ψ. ψ
values of 3000 and 9000 seem to be suitable for the MNIST
dataset.

We find higher values of λ>1 are suitable for finding
the most suitable genetic algorithm parameters. In all the
figures we have used λ = 10 for minimizing the f1score
and maximizing the error term in fitness function of Equa-
tion 5. For various settings of the genetic parameters, the
game quickly converges onto an α∗ at Nash equilibrium
in a maximum of 20 generations of the genetic algorithm.
Randomization and corresponding effect on the manipulated
learner performance increases with attack strengths, itera-
tions and population size in the game.

4.4. Fitness function validation

The adversarial manipulation α∗ is found on conver-
gence of the game. The game convergence criteria are
subject to the fitness function Equation 5 used in the genetic
algorithm. In this section, we report that using an α∗, an
adversary is able to affect the testing performance of the
learner across various positive and negative classes in the
MNIST database. t-statistics are calculated on the testing
f1score performance to check the effect of α∗ across various
classes and attack scenarios.

For a converged α∗ output by the game in Algorithm 1,
f1score measures the performance of our algorithm in
terms of the testing data Xtest, manipulated testing data
Xtest+α

∗ that are seen when the learner is trained on input
data Xtrain and manipulated training data Xtrain + α∗.

Table 4 has the testing performance of the learner un-
der various attack scenarios of varying attack strengths of
the adversary. The attack strengths are expressed in terms
of the genetic parameters. A low strength attack scenario
corresponds to δ = 50, η = 5, ζ = 30, ψ = 1000. A
high strength attack scenario corresponds to δ = 100, η =
10, ζ = 50, ψ = 3000.

Table 5 shows the p-values seen for learner’s f1score
before and after the game. Here t-statistic is an unpaired
2-sample t-test statistic. The p-values are reported for the t-
statistic between pairs of columns in Table 4. The p-values
for friedmantest-statistic are for all columns giving testing
performance in Table 4. We conclude the following from
the p-values in Table 5.

• The manipulated learner under attack has lower per-
formance than the learner trained on original data.

• The secure learner retrained from the game has
higher performance the manipulated learner under
attack.

• The secure learner has equal or higher performance
than the original learner.

• The low p-values in Table 5 allow us to reject the
null hypothesis that the means of the performance
measures are the same before and after adversarial
data manipulations.

• From low p-values (<0.05) of comparison1 t-
statistic, comparison3 t-statistic and friedmantest-
statistic in paired test statistics we conclude that
adversarial manipulations affect learner performance
with and without adversarial training data.

• From high p-values (>0.05) of comparison2 t-
statistic we conclude that secure learner is robust
to adversarial attacks simulated on the learner.

• From low p-value (<0.05) of comparison2 t-statistic
for Population Size (ψ) we conclude that further
attack scenarios can be obtained by finding suitable
ψ across datasets.

Thus, from Table 4 and Table 5 we observe that a learner
trained on manipulated data shows a significant decrease
in testing performance as compared to the learner trained
on original data. After the game’s convergence, the learner
can retrain on the manipulated data to find weights that are
secure to further adversarial manipulations on both training
and testing data.

5. Conclusion and Future Work

We have presented a maxmin problem for adversarial
learning in deep learning networks. The experiments on
images data demonstrate the correctness and performance
of proposed algorithm. The algorithm converges onto an
adversarial dataset affecting testing performance in deep
learning. This allows us to propose a secure learner that
is immune to the adversarial attacks on deep learning.

An efficient search algorithm and fitness function would
generate multilabel adversarial data for training deep learn-
ing networks. Dimensionality in multilabel data can be
tackled by training the algorithm on multiple processing
units. By changing the deep learning architecture, we can
also experiment with various classification functions. By
changing the genetic operators in the fitness function evalu-
ation, we can experiment with various evolutionary comput-
ing and multi-objective optimization methods for stochastic
optimization.
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