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Abstract  

The sorptive removal of dissolved organic matter (DOM) in biologically-treated effluent was 

studied by using multi-walled carbon nanotube (MWCNT), carboxylic functionalised 

MWCNT (MWCNT-COOH), hydroxyl functionalized MWCNT (MWCNT-OH) and 

functionalized biochar (fBC). DOM was dominated by hydrophilic fraction (79.6%) with a 

significantly lower hydrophobic fraction (20.4%). The sorption of hydrophobic DOM was not 

significantly affected by the sorbent functionality (~10.4% variation) and sorption capacity 

followed the order of MWCNT > MWCNT-COOH > MWCNT-OH > fBC. In comparison, 

the sorption of hydrophilic fraction of DOM changed significantly (~37.35% variation) with 

the change of sorbent functionality with adsorption capacity decreasing as MWCNT-OH > 

MWCNT-COOH > MWCNT > fBC. Furthermore, the affinity of adsorbents toward a 

hydrophilic compound (dinitrobenzene), a hydrophobic compound (pyrene) and humic acid 

was also evaluated to validate the proposed mechanisms. The results provided important 

insights on the type of sorbents which are most effective to remove different DOM fractions. 

 

Keywords: DOM fractions; Functionality; Hydrophobic fraction; Hydrophilic fraction; 

MWCNT  
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1. Introduction 

Dissolved organic matter (DOM) with a wide variety of chemical compositions and molecular 

sizes is ubiquitous in different types of water (Fu et al., 2017; Shimabuku et al., 2017). DOM 

is originated from plant litter, soil, humus, microbial biomass (with aquagenic and pedogenic 

sources) degradation, root exudates, and living or decayed vegetation (Conte et al., 2011; Fu 

et al., 2017). DOM has an average concentration of 0.5 to 10.0 mg L-1 in natural water (Genz 

et al., 2008). DOM anthropogenically impacted water and wastewater and plays an essential 

role in environmental and engineered aquatic systems (Fu et al., 2017; Shimabuku et al., 

2017). For example, DOM can serve as an energy source for bacteria, attenuate light, and 

influence the fate and transport of contaminants. Although DOM is regarded as non-toxic, 

however, many problems may arise with the naturally coloured groundwater. These leads 

direct concern to taste and odour problems of water (Cornelissen et al., 2008; Genz et al., 

2008). DOM is also responsible for membrane fouling; poor oxidation of iron and manganese; 

and biological instability of drinking water in distribution systems (re-growth) (Amy and Cho 

1999; Lee et al., 2018; Li et al., 2016; Peldszus et al., 2011; Sánchez-Martín et al., 2010; Van 

der Kooij 2003; Xing et al., 2008; Yang et al., 2017). In addition, the presence of DOM is 

responsible for the formation of disinfection by-products (DBP) such as trihalomethanes and 

haloacetic acids (Fu et al., 2017; Genz et al., 2008; Golea et al., 2017). Furthermore, residual 

natural organic matter can promote bacterial regrowth and pipe corrosion in the drinking 

water distribution system (Song et al., 2009). The content of NOM (especially for the 

hydrophobic fraction) in surface waters is increasing rapidly due to change in natural 

environment (Levchuk et al., 2017). The water-derived DOM contains a low amount of 

phenolic and aromatic compounds, whereas soil-derived DOM contains higher lignin content 

and aromatic fraction (Fu et al., 2017). Based on hydrophobicity, the components in DOM 

can be divided into hydrophobic and hydrophilic fractions.  
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To remove DOM, most commonly used methods are coagulation and flocculation 

followed by sedimentation/flotation and granular media filtration. However, coagulation 

mainly removes hydrophobic fraction of DOM rather than the hydrophilic fraction (Sharp et 

al., 2006). Unfortunately, the residual DOM after coagulation generally have significant DBP 

formation potential and need additional treatments to remove the residual DOM (Sharp et al., 

2006). It is recommended by the US EPA for the control of DBP precursors (Kim and Kang, 

2008). Furthermore, Biological system can promote the microbial growth and biofilm 

formation in the biofilters, subsequently enhancing the removal of NOM. Biopolymers can be 

well removed by biofiltration system, whereas low removal was found for humic acid 

fractions such as humic substances, building blocks, low MW neutrals and low MW acids 

(Chen et al., 2016). Granular activated carbon (GAC) has been employed to remove DOM as 

well as taste and odour through direct competition column bed and mentioned that pore 

blockage occurred due to fouling by DOM (Summers et al., 2013). Carbon nanotubes (CNTs), 

with their high surface area, hydrophobicity, porosity, and rapid sorption kinetics, have been 

explored for the interactions with DOM (Engel and Chefetz, 2015; 2016; Peng et al., 2017a). 

Therefore, materials characteristics, DOM molecular structure and composition, and the 

solution chemistry (e.g. pH, water temperature, and ionic strength) are prime factors affecting 

sorption of DOM (Hyung and Kim, 2008; Li et al., 2014; Wang et al., 2013). However, it is 

more difficult to explain how DOM characteristics influence its adsorption behaviour as 

DOM is composed of a mixture of heterogeneous compounds possessing highly different 

physical and chemical properties. Several studies have shown that DOM molecular size can 

determine its adsorption behaviour (Newcombe et al., 1997a; Newcombe et al., 1997b; Velten 

et al., 2011). In addition, DOM aromaticity and polarity can be important characteristics 

(Zietzschmann et al., 2015), yet it remains unclear which characteristics govern DOM 

adsorption.  
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It is generally expected that sorption of hydrophobic and hydrophilic organic 

compounds is affected by the increase or decrease of the sorbent hydrophobicity or 

hydrophilicity (Peng et al., 2017b; Teixidó et al., 2011). However, the comprehensive studies 

in the literature examining the adsorption of DOM fractions, based on sorbent functionality, 

by carbonaceous materials (CMs) are rare. Therefore, the main objective is to apply several 

CMs having unique functionalities (such as functionalized biochar (fBC), MWCNT, 

MWCNT-COOH and MWCNT-OH) to investigate the effect of functional groups for the 

adsorption of hydrophilic and hydrophobic fractions of DOM from membrane bioreactor 

(MBR) effluent. This will provide detailed knowledge on how the sorbents’ surface functional 

groups influence the removal of different DOM fractions and what type of adsorbent is most 

effective for DOM removal. 

 

2. Materials and methods 

2.1. Chemicals and sorbents 

All chemicals including 1,3-dinitrobenzene (DNB), pyrene (PYE), standard solutions (for Na, 

K, Mg, Fe, Pb, Mn, Ni, Ca, and Cu), KCl, Na2CO3 and NaHCO3 were of analytical grade and 

purchased from Sigma Aldrich, Australia. Three types of CMs namely, multiwalled carbon 

nanotube (MWCNT, specific surface area > 90 m2 g-1), carboxylic group functionalized 

MWCNT (MWCNT-COOH, specific surface area > 117 m2 g-1), hydroxyl group 

functionalized MWCNT (MWCNT-OH, specific surface area >117 m2 g-1); and 

functionalized biochar (fBC, surface area 2.18 m2 g-1) having distinct physical structures and 

chemical compositions, were used as sorbents. All MWCNTs have an outer and inner 

diameter of 8-15 and 3-5 nm, respectively and was > 99.9% pure. All MWCNTs were 

purchased from Chengdu Organic Chemistry Co., Chinese Academy of Sciences, China. 

Biochar was first prepared from Eucalyptus globulus wood via pyrolysis at 380 0C under 

continuous nitrogen supply at 1 psi. Then produced biochar was washed with milli-Q water 
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for several times and adjusted the solution pH to 7.0 and finally dried at furnace at 105 oC. 

fBC was prepared from biochar (produced at 380 oC) using phosphoric acid as activating and 

functionalized agent at 600 0C. A detailed preparation procedure of fBC is reported in our 

previous studies (Ahmed et al., 2017a; 2017b; 2017c; 2018). 

2.2. Characteristics of MBR effluent  

Municipal effluent was collected from a membrane bioreactor at Central Park, Sydney, 

Australia. After collection, the MBR effluent was filtered through 1.2 m glass fiber filter and 

physicochemical properties such as pH, turbidity, UV254, total organic carbon (TOC), 

chemical oxygen demand (COD), conductivity, alkalinity, dissolved oxygen, inorganic ions, 

and metal ions were measured as listed in Table 1.  

2.3. Sorption experiments 

The sorption of DOM and its fractions in MBR effluent was conducted in 250 mL conical 

fluxes at 25 oC in duplicate on an orbital shaker over 48 h at 120 rpm using different CMs. 

Dosages of fBC, MWCNT, MWCNT-COOH and MWCNT-OH were selected based on 

removal capacity of all DOM fractions. Pristine biochar was also used for DOM removal but 

found with low removal efficacy of 7.2%. Therefore, pristine biochar was not utilized for 

further experiments. Initial and diluted MBR effluent samples were used for DOM isotherm 

study. Dilution of MBR effluent was carried out with MQ water with the same pH as MBR 

effluent. The control experiments without sorbent were also conducted. Initial and final pH 

and conductivity were measured.  

The sorption of DNB, PYE and humic acid was performed individually. The initial 

concentrations of DNB, PYE and humic acid were 5.0 mg L-1, 1.0 mg L-1 and 13.67 mg L-1, 

respectively. These concentration were chosen based on sorbent types and removal efficacy.  

The adsorbent dosage used was 50-70 mg L-1. Control experiments were also performed 

under the same condition. After the sorption experiments, the supernatants were filtered 
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through 0.45-μm (for DNB and PYE) and 1.2-μm (for DOM and humic acid) syringe filters 

before analysis. 

2.4.  Chemical analysis of MBR effluent 

 The concentration and the fractionation of DOM were carried out using liquid 

chromatography-organic carbon detector (LC-OCD). LC-OCD result also provides detail 

information on the hydrophilic and hydrophobic fractions of DOM together with quantitative 

and qualitative results regarding molecular size distribution of organics present in water and 

wastewater. As required, samples were pre-filtered using 0.45 μm cellulose nitrate membrane 

filters (Fisher Scientific, USA). UV254 absorbance analysis of treated and untreated MBR 

effluent at 254 nm was measured at room temperature using Shimadzu UV-visible 

spectroscopy instrument (UV-1700). Metal cation contents in raw and treated MBR effluent 

were analysed using inductive coupled plasma mass spectroscopy (ICP-MS 7900, Agilent 

Technologies, Japan). Inorganic anions were analysed for phosphate, chloride, nitrate, nitrite 

and sulphate using a Metrohm ion chromatography (IC) (model 790 Personal IC). The IC was 

equipped with an autosampler and conductivity cell detector. Na2CO3 (3.2 mmol L-1) and 

NaHCO3 (1.0 mmol L-1) were used as a mobile phase with 0.7 mL min-1 flow rate. The results 

provide a more robust understanding of the adsorption behaviour of DOM fractions on 

MWCNTs and fBC for MBR effluent treatment. 

DNB concentration (as a representative hydrophilic compound) was analysed by a high 

performance liquid chromatography (HPLC) equipment with an auto-sampler and a UV 

detector. A reverse-phase Zorbax Bonus RP C18 column (5.0 μm, 2.1 1.50 mm) was used 

throughout for detection and quantification of HOCs. The volume of injection was 100 μL. 

Mobile phase A was composed of acetonitrile and formic acid (99.9: 0.1) while mobile phase 

B was composed of Milli-Q water and formic acid (99.9: 0.1). The elution used 40% of A and 

60% of B at a flow rate of 0.4 mL min-1 and maintained 6 min. The UV wavelength for the 

whole method was selected at 285 nm and switched to 240 nm from 4.00 min to 5.00 min for 
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DNB detection. PYE concentration was measured using a UV-Vis spectroscopy with a 

specific wavelength of 240 nm. The DOM concentration of humic acid solution was measured 

by total organic carbon (TOC) analyser and using a UV-Vis spectroscopy with a specific 

wavelength of 254 nm. Any samples that could not be analysed immediately were stored at 4 

0C. 

2.5. Physical characterizations of sorbents  

The physicochemical characteristics of fBC and MWCNTs were extensively examined using 

Fourier transform infrared spectroscopy (FTIR, Miracle-10: Shimadzu), scanning electron 

microscopy (SEM, Zeiss Evo-SEM system), X-ray diffraction (XRD) analysis, and zeta 

potential measurement. SEM was used to determine the morphological properties of CMs. 

XRD analysis of the samples was carried out using a Bruker D8 Discover diffractometer 

using Cu Kα radiation, in the scattering angle 2θ range 20°–60°. FTIR was used to determine 

surface functional groups. The iso-electric values (zeta potential) of fBC and MWCNTs 

(dosage, 40-70 mg L-1)  were measured by suspending into 1 mM KCl solution in the pH 

range of 1.45–10.20 separately using a Zetasizer Nano instrument (Nano ZS Zen3600, 

Malvern, UK). Samples were pre-equilibrated for ~48 h. Measurements in triplicate (average 

30 scans with settling time of 5 s) were made to minimise undesirable biases, and the average 

value with standard deviation was used for data analyses.   

2.6. Modelling of sorption data 

Adsorption capacity, i.e. solid phase sorption (qs, g g-1) of DOM was calculated using 

following equations. 

𝐴𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑞𝑠 =
𝐶0−𝐶𝑒

𝑚
× 𝑉    (1) 

where C0 and Ce are the initial and equilibrium concentration of DOM (mg L-1), m is the mas 

of sorbent used (g) and V is the volume of solution (L). 

Isotherm models employed to fit the adsorption isotherms are as follows:   

   Langmuir model: 𝑞𝑠 =
𝑞𝑚𝑎𝑥𝐾𝐿𝐶𝑒

1+𝐾𝐿𝐶𝑒
     (2) 
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where qmax is the maximum adsorption capacity (mg g-1) and KL is the Langmuir fitting 

parameter (L mg-1). Parameters were estimated by nonlinear regression weighted by the 

dependent variable. 

The Freundlich model: 𝑞𝑠 =  𝐾𝑓 𝐶𝑒
𝑛

      (3) 

where qs is the solid-phase sorbed capacity (mg g-1) of DOM fractions, n is a dimensionless 

number related to surface heterogeneity, and Kf  is the Freundlich affinity coefficient (mg1-n Ln 

g-1). Ce represents the aqueous-phase concentration of solute (mg L-1) at 25 0C. All model 

equations were fitted by origin-pro, with model parameters being obtained with a standard 

coefficient of determination (r2) and adjusted coefficient of determination (radj
2). 

 

3. Results and discussion 

3.1. Characteristics of sorbents  

All three MWCNTs have randomly distributed surface and grooves. MWCNTs appear to 

form bundles or aggregates driven by van der Waals forces due to their high hydrophobicity. 

These surface, groove, interstitial and inner areas on MWCNTs offer many sites for 

adsorption of organic chemicals (Wang et al., 2017).   

XRD spectra of fBC consists of amorphous structure, and broad peak appeared at 25-

30o. On the other hand, it is evident that the general trends of all three MWCNTs plots, which 

can be ascribed to their crystalline arrangements, are very similar. Thus, it can be concluded 

that functionalization process of graphitised MWCNTs did not affect the graphitic structure of 

MWCNTs significantly. Obviously; these plots show the expectable characteristic of a 

MWCNT structure. The C(002) peak around 2θ = 26.2o is flatten due to the limited number of 

layers and tube curvature represent a typical phase of CNT or graphite. As shown in these 

patterns, the intensity of C(002) in MWCNT is much lower than MWCNT-OH and MWCNT-

COOH. This can be attributed to the higher packing density in MWCNT-COOH and 

MWCNT-OH and defects caused by functionalization. The peaks appearing at 42.3o, 44.5o, 
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54.5 o
, 59.8 o and 77.8o refer to the crystalline plane diffraction peaks. In all cases, higher peak 

intensity was observed for MWCNT-COOH followed by MWCNT-OH and MWCNT. 

The FTIR spectra of fBC, MWCNT, MWCNT-OH and MWCNT- COOH possess a peak 

at 1589.7-1598.52 cm-1 corresponds to C=C double bond of nanotubes. The peak at 3770-

3780 is attributed to hydroxyl (–OH) stretching vibration. Peaks at 1720 represent the C=O 

bonds. The simultaneous presence of these two peaks characterises the appearance of the 

carboxyl group on the surface of MWCNT. Two peaks at ~2030 and ~2100 indicate the 

presence of CH group in MWCNTs. On the other hand, fBC consist of different functional 

groups especially graphitic carbon (~57%), phenolic or alcoholic (C-O-, ~13.5%), carbonyl or 

quinone (C=O, ~4%), carboxylic or ester (COO-, ~3%), π-π* transition (~1%), quaternary 

nitrogen (~1%), and polyphosphates and/or phosphates (C-O-PO3, ~1%) (Ahmed et al., 

2018). Structural analysis of carbon network showed that fBC was composed of mesopore (2-

50 nm) and macrospore (> 50 nm) structure (Ahmed et al., 2018). The point of iso-electric 

charge for fBC was pH 2.2 (Ahmed et al., 2018). The point of iso-electric charge for 

MWCNT, MWCNT-COOH and MWCNT-OH was found to be 4.47, 4.36 and 5.14 (Figure 

1).  

3.2. MBR effluent properties 

The pH, conductivity and turbidity of MBR effluent were 7.94 (±0.06), 7.95 (μS cm-1) and 

0.42 (NTU), respectively. The concentrations of DOM and inorganic carbon content in MBR 

effluent were 8.63 mg L-1 and 48.15 mg L-1, respectively. The UV254 adsorption value and 

chemical oxygen demand of the MBR effluent were 0.269 cm-1, and 28.3 mg L-1, 

respectively. Characteristics of MBR effluent is shown in Tables 1 and 2. UV254 and SUVA 

values (from LC-OCD) also reduced significantly depending on the type of sorbents which 

indicated the removal of DOM fractionations. MWCNT-COOH and MWCNT-OH have 

higher removal efficacy of SUVA and UV254 values of MBR effluent than fBC and MWCNT 

(Table 2). 
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The higher amount of metal ions such as sodium ion (198.96 mg L-1), potassium ion 

(31.42 mg L-1), calcium ion (12.90 mg L-1) and magnesium ion (4.72 mg L-1) were also found 

in MBR effluent, and they might have negative effect on DOM sorption. Further, MBR 

effluent also contained higher concentration of nitrate ion (35.97 mg L-1), sulphate ion (33.02 

mg L-1) and chloride ion (2.56 mg L-1). After adsorption experiments with CMs, the 

concentration of anions did not decrease, which can be explained by the zeta potential values 

of fBC and CMs. For example, fBC, MWCNT, MWCNT-COOH and MWCNT-OH zeta 

potential values were 2.2, 5.12, 4.47 and 4.78, respectively (Figure 1). The surface of CMs at 

pH 7.94   were negative. Therefore, electrostatic repulsion between negative CMs surfaces 

and negative anions should be the main reason for insignificant sorption of all anions.  

3.3. Adsorption affinity of DOM and its fractions 

Data on DOM adsorption have been fitted to two different isotherm models (Table 3). The 

Freundlich sorption isotherm model provided slightly better fit with the experimental data 

than the Langmuir isotherm model for all sorbents, as indicated by the coefficient of 

determination values (r2 and adjusted r2). The maximum adsorption capacity of DOM (40.68 

mg g-1) was observed for hydroxyl functionalized MWCNT followed by MWCNT (39.30 mg 

g-1), MWCNT-COOH (36.23 mg g-1), and fBC (7.81 mg g-1). The Freundlich adsorption 

coefficient value of fBC, MWCNT, MWCNT-COOH and MWCNT-OH were found to be 

1.32, 4.11, 5.32 and 6.50 (mg1-n Ln g-1), respectively. The Freundlich parameter n values of 

DOM ranged from 0.58 to 0.71 (from fBC to MWCNT). Thus, DOM sorption onto fBC and 

MWCNTs were non-linear indicating that favorable for multilayer adsorption and non-

heterogeneous energy distribution of fBC and MWCNTs. Therefore, DOM sorption onto fBC 

and MWCNTs mostly followed the monolayer cover according to Langmuir postulates as 

well as multilayer coverage according to the Freundlich postulates. However, the Langmuir 

adsorption isotherm sorption capacity among different MWCNTs varies by 10%, and the 

Freundlich isotherm coefficient value of MWCNTs varies more significantly (up to 58%). 
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This information primarily implies that the ionizable functional groups of DOM (i.e. 

carboxylic and phenolic group) may govern adsorption of DOM based on the type of 

functionality of the sorbent. From the above result it is found that sorption of DOM is greatly 

affected by CMs material type and surface functionality has great influence toward adsorption 

of fractionations of DOM. 

From the DOM fractionation of MBR effluent, it is found that the percentage of 

hydrophobic and hydrophilic organic fraction is 20.4% (1.76 mg L-1) and 79.6% (6.87 mg L-

1), respectively. In hydrophilic organics, the amount of biopolymers (MW >> 20,000), humic 

substances (HS, MW ~1000), building blocks (MW 300-500), LMW neutrals (MW < 350) 

and LMW acids (MW < 350) were 58. 50, 0.74, 1.14 and 0 mg L-1, respectively.  

3.4. Hydrophobic DOM removal by sorbents 

The physical properties of MWCNTs play an important role in the adsorption of DOM. 

Selected MWCNT is hydrophobic (graphitic) and are primarily made up of SP2 hybridisation 

and carbon atoms densely packed in a hexagonal honeycomb crystal lattice (Wang et al., 

2017).  Hence, graphitic properties of MWCNT and SP2 structure suggest that hydrophobic 

and π-π may occur between the graphitic surface and DOM hydrophobic fractions.  On the 

other hand, the introduction of O-containing functional groups (e.g. –COOH & -OH) into 

MWCNTs (e.g. MWCNT-COOH & MWCNT-OH) disrupted the π-electronic system of the 

graphitic layer of MWCNTs as a result of SP2 
 SP3 rehybridization, leading to breaks up the 

delocalized π-band structure of graphitic structure and act as a scattering center in the 

graphene lattice also associated with their adsorption capacity (Wang et al., 2017).  

The hydrophobic fraction of DOM consists of high amount of aromatic carbon, phenolic 

structures and conjugated double bond compounds (Fu et al., 2017). This aromatic carbon 

conjugated double bonds and phenolic structures in DOM may interact with sorbent graphitic 

sites i.e. carbon-carbon double bonds by hydrophobic effect, π-π interactions and also by π-

hydrogen bond formation. Figure 2 shows the hydrophobic DOM removal by different CMs. 
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For fBC sorbent, the results show that fBC adsorbs slightly higher amount of hydrophobic 

fraction than hydrophilic fraction of DOM. This can be explained by its hydrophobicity and 

hydrophilicity of fBC. fBC contains 57% graphitic carbon which might be responsible for 

hydrophobic part of DOM adsorption through interaction via hydrophobic effect and π-π 

interactions with π-electron systems of an aromatic carbon, phenolic structure and conjugated 

double bonds π-systems of DOM. On the other hand, MWCNT has slightly higher sorption 

capacity of hydrophobic fraction than MWCNT-COOH and MWCNT-OH. This indicates that 

presence of different atoms in MWCNT change the properties of graphitic carbon so-called 

rehybridization (Wang et al., 2017). The adsorption of hydrophobic fraction of DOM can be 

explained by hydrophobic effect and π-π interactions among graphitic carbon of MWCNTs 

and aromatic carbon, phenolic ring and conjugated double bonds of DOM. The main reason 

for the slight decrease of sorption capacity of MWCNT-COOH and MWCNT-OH was due to 

the presence of oxygenated functional groups in MWCNT (Wang et al., 2017; Wang et al., 

2013). However, one might assume that there was no significance difference on sorption 

performance of hydrophobic fraction of MBR effluent among MWCNTs. This can be 

explained by the degree of surface functionality in MWCNT. For example, MWCNT-COOH 

contains~1.28% (wt) of –COOH functional group and MWCNT-OH contains ~1.85% (wt) of 

hydroxyl functional group. This data clearly indicate the role of surface functionality of 

MWCNTs. Therefore, due to the surface functionality of MWCNT-COOH and MWCNT-OH, 

sorption of hydrophobic fraction of DOM was reduced to few extend (10.4%) as hydrophobic 

interaction sites were occupied by other functional groups, thereby reducing the sorption 

capacity of hydrophobic DOM fraction.  

The effect of hydrophilicity and hydrophobicity of sorbent is further examined by the 

adsorption of a hydrophobic organic compound such as pyrene (PYE) onto fBC, MWCNT, 

MWCNT-COOH and MWCNT-OH. The result is shown in Figure 2. PYE is a π-electron 

donor by virtue of its π-electron donor ability. The previous study showed that PYE was able 
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to form a π-π complex between the π-electrons of benzene rings of PYE and active graphene 

layers on activated carbon due to electron-donor-acceptor (EDA) mechanism (Xiao et al., 

2015). Our study shows that adsorption of PYE was  maximum for MWCNT followed by 

MWCNT-COOH, MWCNT-OH and fBC (Figure 2). This can be explained by the graphene 

layer of MWCNT which is hydrophobic moiety and PYE is also hydrophobic properties. 

Therefore, one possible explanation for maximum sorption of PYE by MWCNT can be 

hydrophobic interaction due to their hydrophobicity (PYE and MWCNT hydrophobic). π-π 

interactions between electrons reach benzene ring of PYE which could act as electron-donor 

site and negative surface of MWCNT (zeta potential is negative) which could act as the 

electron-acceptor site might also responsible for higher sorption of hydrophobic fraction of 

DOM. Thereby, apart from hydrophobic interaction, π-π electron donor-acceptor (EDA) 

interactions played a vital role in adsorption of PYE onto MWCNT. However, this tendency 

was significantly reduced when introduced hydrophilic character onto MWCNT, i.e. 

functionalization of MWCNT. Lower adsorption of PYE by functionalized MWCNTs was 

expected due to the introduction of oxygen atoms in MWCNT which reduce the 

hydrophobicity of MWCNT. Thence, the lower adsorption capacity of hydrophobic 

compound (PYE) onto relatively lower hydrophobic MWCNTs (i.e. MWCNT-COOH and 

MWCNT-OH) indicated the insignificant role of other interactions such as hydrogen bond 

formations. 

Hence, sorption of hydrophobic fraction of DOM mainly occured due to hydrophobic 

effects (between DOM and sorbent) and π-π EDA interactions. Slight reduction of graphitic 

carbon percentage in MWCNT (i.e. reduced hydrophobicity of MWCNT) led to decrease in 

sorption capacity. Therefore, hydrophobic fraction adsorption onto CMs can be significantly 

changed with the change of surface functionality of CMs. However, the relative lower 

percentage of surface functionalization of MWCNT would only cause insignificant adsorption 

difference of hydrophobic DOM. 
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3.5. Hydrophilic DOM removal by sorbents 

Hydrophilic DOM fraction (79.6%) usually has more aliphatic carbon and nitrogenous 

compounds, such as carbohydrates, sugars and amino acids (Fu et al., 2017).  The hydrophilic 

fraction is generally humic substances (57.2%, MW ~1000), comprised of humic acids (HA), 

fulvic acids (FA) and humin, which make up more than 50% of the total organic carbon  in 

water (Cornelissen et al., 2008). Apart from humic substances, other hydrophilic fractions of 

MBR effluent in DOM consisted of biopolymers (0.7%), building blocks (8.6%), and low 

molecular weight neutrals (12.7%). 

The removal of hydrophilic fraction of DOM by different CMs was of opposite trend to 

that of hydrophobic fraction of DOM. Overall, among CMs, MWCNT-OH showed the 

highest removal of hydrophilic fractions of DOM followed by MWCNT-COOH, MWCNT 

and fBC (Figure 3). Functionalized MWCNT (e.g. –OH functionalized) showed 37.35% 

higher adsorption capacity of hydrophilic DOM fraction over graphitized MWCNT. This 

primarily represents that the functionalization of MWCNT increase the adsorption of 

hydrophilic DOM. The presence of the oxygen-containing groups (more hydrophilic in 

nature) on the surface of MWCNT caused a reduction of their adsorption capacities of 

hydrophobic compounds, but the adsorption of  hydrophilic organic contaminants may 

increase or decrease depending on each other’s polarity (Ateia et al., 2017). The oxygen 

content in the functionalized MWCNTs, used in this study, were in the range of 1.28-1.85% 

(wt % of graphitized MWCNT). The higher removal of hydrophilic fraction by MWCNT-OH 

over graphitized MWCNT can be explained by the presence of more oxygen content (~1.85 

wt. %) in MWCNT. Therefore, along with hydrophobic interactions non-hydrophobic 

interactions such as π-π interactions, hydrogen bond formation, and electrostatic interactions 

between functional groups of functionalized MWCNTs and with hydrophilic groups of DOM 

(e.g., COOH and –OH) were also played a vital role for adsorption of hydrophilic DOM 

fraction. In addition, the BET results showed that the MWCNTs had different surface areas 
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(90-117 m2 g-1) and thus pore filling mechanism might also be a responsible mechanism. 

Therefore, O-containing functional groups can alter the adsorption of MWCNTs by reducing 

the hydrophobicity of functionalized MWCNTs and weakening the hydrophobic effects.  

The effect of hydrophilicity and hydrophobicity is further examined by the adsorption of a 

model hydrophilic organic compound such as 1,3-dinitrobenzene (DNB) onto fBC, MWCNT, 

MWCNT-COOH and MWCNT-OH (Figure 3). DNB is a strong π-electron acceptor by 

viture of its π-electron acceptability (Chen et al., 2008). On the other hand, increasing pH 

facilities deprotonation of the acidic functional groups such as –COOH and –OH of 

MWCNTs, which can promote the π-electron donor ability of the graphene surface of 

MWCNTs compared to MWCNT. Therefore, EDA interactions between DNB and 

deprotonated graphene surface of functionalized MWCNTs is responsible for higher 

adsorption of DNB than MWCNT (Chen et al., 2008). However, the maximum adsorption 

capacity of DNB was observed for fBC. This was due to the presence of a lower degree of 

graphitic carbon (57%) and higher degree oxygen-containing surface functional groups. 

Therefore, adsorption of the hydrophilic organic compound on the graphene surfaces of fBC 

and MWCNTs was mainly due to account for the stronger non-hydrophobic adsorptive 

interactions. Such interactions might include hydrogen bond formation and electrostatic 

interactions.    

Hence, the oxygen content of MWCNTs was responsible for the adsorption behaviour 

indicating the role of functional groups for sorption of hydrophilic moiety of DOM (Wang et 

al., 2017). Overall, surface functionality has significant influence in the sorption of 

hydrophilic DOM in MBR effluent. 

3.5.1. Humic substance removal by sorption 

The number-average molecular weight (Mw, 734) and number-average molecular number (Mn, 

378) of humic substances changed with sorbent type. Among different sorbents, MWCNT 

caused the largest reduction of Mn from 378 to 309, more than other adsorbents such as fBC 
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(from 378 to 377), MWCNT-COOH (from 378 to 331) and MWCNT-OH (from 378 to 330). 

The ratio of Mw to Mn (i.e. Mw/Mn) also changed simultaneously.  

Figure 4 shows the removal of humic substances (2nd column) by CMs, demonstrating 

that functionalized MWCNTs had higher sorption capacity of humic substances than graphitic 

MWCNT. MWCNT-OH showed highest sorbed capacity (~8.00 mg g-1) followed by 

MWCNT-COOH (~6.40mg g-1), MWCNT (~6.10 mg g-1) and fBC (1.15 mg g-1). Higher 

sorption of humic substances by functionalized MWCNTs primarily indicated the role of 

surface functionalization over non-functionalized graphitic MWCNT. Therefore, the role of 

non-hydrophobic interactions such as hydrogen bond formations and π-π interactions along 

with hydrophobic interactions could also contribute to the overall sorption of humic 

substances. Humic substances such as humic acid, fulvic acid and humins have different 

functional groups such as –COOH; -OH; C=O; -O-; -COO-.  Protonated functional groups 

(i.e. –COOH and -OH) could get deprotonated at used pH (i.e. 7.94). The initial pH of MBR 

effluent was 7.94, at which point those functional groups could deprotonate and the 

deprotonated surface of humic substances could act either as π-electron acceptor site and π-

electron donor site. For example, -OH groups in CMs could act as π-electron donor site and –

COOH groups in CMs could act as π-electron acceptor site in the used condition (Ahmed et 

al., 2017c). On the other hand, the MWCNT surface could act as π-electron donor site while 

functionalized MWCNTs deprotonated at this pH and could act as the π-acceptor site. 

Therefore, opposite pair of EDA interactions were played a vital role in adsorption of humic 

substances. Other non-hydrophobic interactions such as hydrogen bond between oxygenated 

functional groups of adsorbent and adsorbate also played a role in overall adsorption.  

Figure 5a shows the removal of humic acid (HA synthetic, measured in terms of 

DOM) by CMs. Functionalized MWCNTs obtained maximum adsorption of humic acid. 

Higher adsorption of humic acid by MWCNTs than fBC was due to the mainly higher surface 

area of MWCNTs. However, maximum sorption capacity of MWCNT-OH and MWCNT-



  

18 
 

COOH should be due to EDA interactions and hydrogen bonds formation by the oxygenated 

functional groups. The absence of oxygenated functional groups in MWCNT did not facilitate 

the formation of hydrogen bond, hence leading to lower adsorption capacity of humic acid by 

MWCNT.  

Figure 5b shows the removal of dissolved organic nitrogen (DON) present in humic acid. 

It was found that functionalized MWCNTs had higher sorption of DON than MWCNT. The 

presence of (hetero)aromatic amine cations can act as π acceptors in forming π+–π electron 

donor-acceptor (EDA) interactions with the π electron-rich, the polyaromatic surface of CMs 

(Xiao and Pignatello, 2015). Therefore, due to EDA interactions and hydrogen bonding 

capability of functionalized MWCNTs they can adsorb higher amount of DON. 

3.5.2. Removal of LMW neutral compound by sorbents 

MWCNT showed highest sorption of LMW neutral (2.16 mg g-1) followed by MWCNT-OH 

(1.93mg g-1), MWCNT (1.77 mg g-1) and fBC (0.61 mg g-1) (Figure 4). Slightly higher 

sorption of LMW neutral by MWCNT also indicated that the adsorption was similar to the 

adsorption of the hydrophobic compound. Therefore, the hydrophobicity and the 

hydrophilicity of surface functional groups in both adsorbent and adsorbate play a vital role in 

their sorption behaviour. 

3.5.3. Removal of biopolymer and building block by sorbents 

The removal of biopolymer and building blockers also followed the same trend as observed 

for humic substances removal, i.e. MWCNT-OH > MWCNT-COOH > MWCNT. However, 

sorption of biopolymers was found minimum compared to humic substances, LMW neutrals 

and building blockers. This might be due to their large molecular structure and their 

adsorption onto CMs requires greater potential and molecular arrangement toward the specific 

direction of CMs and on its functional groups. Moreover, CMs and their functional groups 

were unable to interact with biopolymer molecules therefore showing lower adsorption. 
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Among fractionations of hydrophilic DOM showed the general tread of humic substances > 

building blockers > LMW neutral substances > biopolymers. 

3.6. Simultaneous removal of metal ions 

Table 4 shows the removal of metal ions by different CMs. It can be observed that all the 

CMs could remove different metal ions to some extent. This is desirable as MBR effluent had 

an initial pH of 7.94 and the iso-electric values of fBC and all MWCNTs were below 5.14. It 

is common that oppositely charged ions (i.e. negative surface of CMs and the positive surface 

of heavy metal ions) can interact together due to electrostatic interaction. Hence, the 

electrostatic interaction was the main cause for competitive adsorption of metal ions. 

 

4. Conclusions 

The maximum DOM sorption capacity was observed for functionalized sorbent MWCNT-OH 

followed by MWCNT-COOH, MWCNT and fBC. Sorbent hydrophobicity and hydrophilicity 

greatly affected DOM adsorption. MWCNT adsorbed slightly higher amount (10.4%) of 

hydrophobic DOM fraction than functionalized MWCNTs, whereas functionalized MWCNTs 

adsorbed higher amount (~37.35%) of hydrophilic DOM fraction. These findings were 

confirmed by separate sorption experiments using model hydrophobic, hydrophilic and humic 

acid compounds. Different hydrophobic and non-hydrophobic interaction such as EDA 

interactions, hydrogen-bond formation and electrostatic interactions were key adsorption 

mechanisms. The results provide guidance for selecting the correct sorbents for the removal 

of specific DOM fractions. 
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Figure 1: Iso-electric points of multiwalled carbon nanotubes (MWCNTs). 

 

Figure 2: Adsorption of hydrophobic fraction of dissolved organic matter (DOM) and a 

model hydrophilic compound pyrene (PYE) by functionalized biochar (fBC) and multiwalled 

carbon nanotubes (MWCNTs). 

 

Figure 3: Adsorption of hydrophilic fraction of dissolved organic matter (DOM) and a model 

hydrophilic compound dinitrobenzene (DNB) by functionalized biochar (fBC) and 

multiwalled carbon nanotubes (MWCNTs). 

 

Figure 4: Insight into the removal of hydrophilic fractions (biopolymers, humic substances, 

building blockers and LMW neutrals) by functionalized biochar (fBC) (a), multiwalled carbon 

nanotube (MWCNT) (b), carboxylic functionalized multiwalled carbon nanotube (MWCNT-

COOH) (c), and hydroxyl group functionalized multiwalled carbon nanotube (MWCNT-OH) 

(d). 

 

Figure 5: Removal of humic acid (a) and dissolved organic nitrogen (DON) fraction (b) by 

sorbent multiwalled carbon nanotubes (MWCNTs) and functionalized biochar (fBC). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Table 1 

Physicochemical characteristics of MBR sewage effluent. 

Parameter Value 

pH 7.94±0.06 

Conductivity (μS cm-1) 795±5 

Dissolved organic matter, DOM (mg L-1) 8.63 

Inorganic carbon (mg L-1) 48.15 

Turbidity (NTU) 0.42 

UV254 (cm-1) 0.269±0.02 

Alkalinity (mg CaCO3 L
-1) 29.5 

Chemical oxygen demand, COD (mg L-1) 28.3 

Dissolved oxygen, DO (mg L-1) 5.39 

Cl- (mg L-1) 20.56 

Br- (mg L-1) 0.067 

NO3
- (mg L-1) 35.97 

NO2
- (mg L-1) 0.637 

PO4
3- (as P) (mg L-1) 12.67 

SO4
2- (mg L-1) 33.02 

Na+ (mg L-1) 198.96 

K+ (mg L-1) 31.42 

Ca2+ (mg L-1) 12.90 

Mg2+ (mg L-1) 4.72 

Fe3+ (mg L-1) 0.10 

Al3+ (mg L-1) 0.49 
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Table 2 

UV254 values and SUVA values after adsorption with different CMs. Initial MBR effluent 

UV254 value and SUVA were 0.269 and 3.26, respectively. 

Material UV254 (cm-1) SUVA (L mg-1 m-1) 

fBC 0.203 2.99 

MWCNT 0.138 2.35 

MWCNT-COOH 0.132 2.15 

MWCNT-OH 0.138 2.22 
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Table 3 

Summary of the Langmuir and Freundlich isotherm parameters for DOM adsorption at 25±0.5 0C. 

 Langmuir Isotherm Freundlich Isotherm 

Sorbent qmax (g g-1) KL r2 Adjr2 KF n r2 Adjr2 

fBC 7.81±0.61 0.151±0.02 0.997 0.994 1.32±0.002 0.58±0.001 0.996 0.996 

MWCNT 39.29±6.13 0.098±0.02 0.996 0.992 4.11±0.005 0.71±0.006 0.998 0.998 

MWCNT-COOH 36.23±6.55 0.140±0.04 0.990 0.981 5.32±0.008 0.64±0.001 0.997 0.997 

MWCNT-OH 40.68±7.64 0.152±0.06 0.981 0.962 6.50±0.01 0.63±0.001 0.997 0.997 
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Table 4 

Concentration of metal ions (ppm) in MBR effluents (pH 7.94±0.06) before and after sorption 

by different sorbents. 

Material Ca2+ Mg2+ Fe2+ Al3+ Cu2+ Pb2+ Ni2+ Mn2+ 

Before treatment 62.55 22.33 0.082 0.246 0.146 0.00164 0.0065 0.02314 

fBC sorption 46.36 19.19 0.042 0.109 0.139 0.00108 0.0055 0.01175 

MWCNT sorption 60.02 22.33 0.040 0.127 0.058 0.00141 0.0334 0.01985 

MWCNT-COOH sorption 61.22 22.18 0.033 0.095 0.057 0.00073 0.0054 0.02156 

MWCNT-OH sorption 57.61 21.81 0.082 0.148 0.090 0.00099 0.0047 0.02296 
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Highlights  

 Sorption of DOM from MBR effluent by carbon materials was investigated. 

 Sorbent functionality had great influence on sorption of DOM fractions. 

 Hydrophobic fraction was better removed by MWCNT than functionalized sorbents. 

 Hydrophilic fraction was better removed by functionalized MWCNTs than MWCNT. 

 EDA, H-bond and hydrophobic interactions were the main sorption mechanism. 
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