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Abstract 

 
Purpose of review: To perform a critical assessment of in vitro models of pre-eclampsia using 

complementary human and cell line-based studies. Molecular mechanisms involved in spiral 

uterine artery (SUA) remodelling and trophoblast functionality will also be discussed.   

Recent findings: A number of proteins and micro-RNAs have been implicated as key in SUA 

remodelling, which could be explored as early biomarkers or therapeutic targets for prevention 

of pre-eclampsia.  

Summary: Various 2D and 3D in vitro models involving trophoblast cells, endothelial cells, 

immune cells and placental tissue have been utilised to elucidate the pathogenesis of pre-

eclampsia. Nevertheless, pre-eclampsia is a multifactorial disease and the mechanisms 

involved in its pathogenesis are complex and still largely unknown. Further studies are 

required to provide better understanding of the key processes leading to inappropriate 

placental development which is the root cause of pre-eclampsia. This new knowledge could 

identify novel biomarkers and treatment strategies. 
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Introduction 

Pre-eclampsia occurs in pregnancy and it is characterised by new onset of hypertension with 

proteinuria or other organ dysfunction after 20 weeks’ gestation (1). Pre-eclampsia is the 

leading cause of maternal and foetal morbidity and mortality worldwide (2). Pre-eclampsia 

occurs in 4-6% of pregnancies (3,4). Certain pre-existing conditions such as type 1 and type 

2 diabetes mellitus (DM) can increase the risk of pre-eclampsia up to four-fold (5).  

Pre-eclampsia does not only have short-term risks, but long-term can lead to cardiovascular 

disease and/or Type 2 DM in both mothers and their offspring. Currently there are no reliable 

and early predicative biomarkers, preventative measures, or treatment strategies, other than 

delivery. The mechanistic data related to the development of pre-eclampsia is lacking, and, 

as a result, the pathogenesis of pre-eclampsia is poorly understood. Some of the processes 

which appear to be involved in the development of pre-eclampsia include inappropriate 

remodelling of spiral uterine artery (SUA) likely caused by inadequate function of trophoblast 

cells (6). Inadequate remodelling of SUA leads to restricted supply of oxygen and nutrients to 

placenta and, therefore, placental hypoxia (4). 

 

Spiral uterine artery remodelling by trophoblast cells: physiological processes 

In the early stages of embryogenesis (five days after fertilization), the mammalian blastula is 

referred to as a blastocyst, a hollow bundle of cells that has undergone minor cell 

differentiation. The outermost layer of the blastocyst is called the trophectoderm, which 

comprises of trophoblast cells. The blastocyst, following various morphogenetic events, 

undergoes implantation in the decidua, a membrane lining the uterus. Subsequently, 

trophoblast cells from the blastocyst start to migrate towards the SUA and remodelling process 

begins (7). Chorionic villi sprouting from the blastocyst are involved in invading the 

endometrium of the mother. This placental villous growth occurs under  hypoxic conditions, 

aiding the proliferation of certain trophoblast cell types (8,9). The established oxygen gradient 

during placental development determines the action of the trophoblast cells, whether they 

migrate or proliferate (10); this is because a change from low to high placental oxygen causes 
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trophoblasts to develop an invasive nature, instead of proliferating (11). Once dilation of SUA 

occurs by invasive trophoblasts, the change is irreversible, ensuring a constant blood flow to 

the developing foetus (12). However, placental hypoxia beyond the first trimester is associated 

with pregnancy pathologies such as pre-eclampsia (13).  

The multifaceted progression of blastocyst implantation into the decidua is governed by an 

array of timed mechanisms and a variety of key molecules. Human chorionic gonadotrophin 

(hCG) is highly expressed by the blastocyst prior to implantation (14), and hyperglycosylated 

hCG (hCG-H) is continually produced by the syncytiotrophoblasts subsequent to implantation 

(15) which, then, leads to  invasion of trophoblasts (16). Cytotrophoblasts are constantly 

undergoing differentiation into syncytiotrophoblasts in the floating villus to enable expansion. 

However these cells also give rise to the extravillous trophoblast cells (EVTs). In relation to 

the villous stroma, proximal cytotrophoblast cells are differentiating, whereas distal 

cytotrophoblast cells are deemed column cytotrophoblasts that no longer proliferate. Hypoxic 

conditions have been shown to prevent the differentiation of cytotrophoblasts in vitro (8). The 

differentiated syncytiotrophoblasts, which form a continuous and multinucleated syncytium, 

line the outer layer of the villi, whereas the undifferentiated cytotrophoblasts form the inner 

layer and give rise to a variety of different trophoblast cells, such as syncytiotrophoblasts (11) 

or column cytotrophoblasts (17).  

Syncytiotrophoblasts are in direct contact with maternal blood and thus provide the 

biochemical barrier between the mother and developing foetus. Within the anchoring villous 

tips, cytotrophoblasts differentiate into EVTs, which emerge from the cell column and migrate 

through the maternal decidua with the intention of remodelling the SUA (18,19). Endovascular 

trophoblasts, as their name suggests, enter through the distal lumen of the SUA, whereas 

interstitial trophoblasts enter via the decidua (20) where they begin the process of remodelling 

(Figure 1). Arrival of endovascular trophoblasts leads to the removal of maternal endothelial 

cells (21). Invasion of the SUA results in the loss of endothelial lining and elastic tissue. The 

increase in width of these vessels is partly due to the loss of elasticity, which, in turn, provides 
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a lower resistance vessel enabling blood supply to the developing foetus. Invading trophoblast 

cells in the SUA replace the original maternal cells (20). 

Despite substantial knowledge in relation to the physiological processes involved in SUA 

remodelling by trophoblasts, aberrant mechanisms impeding these processes are not well 

established. Therefore, there is an urgent need for effective experimental models which will 

help elucidate many of the unknown aspects of inappropriate SUA remodelling leading to pre-

eclampsia and aid the development of effective preventive and therapeutic strategies. In this 

review we will critically assess existing complementary human and cell line-based in vitro 

models used to elucidate various mechanisms involved in SUA remodelling, which could be 

relevant to the pathogenesis of pre-eclampsia.  

 

Two-Dimensional cell migration and invasion assays 

The invasion assay is a high throughput method which assesses cellular motility through a 

permeable membrane therefore representing trophoblast migration through the endometrium.  

Within the Rho family of GTPases, Rac1 has been shown to act as a regulator of many 

important cellular processes, such as migration and invasion (22). HTR-8/SV.neo trophoblast 

cells were originally derived from chorionic villi explants, and were transfected with the simian 

virus 40 large T antigen (23). Fan and colleagues used short hairpin (sh) RNA to silence Rac1 

expression in HTR-8/SV.neo cells before performing a transwell Matrigel invasion assay. 

Following the knockdown of Rac1, HTR-8/SV.neo cells were allowed to grow for an additional 

24 hours in transwell inserts, before the invading cells were fixed in paraformaldehyde and 

stained with crystal violet. By counting cells in ten random fields of view, it was shown that 

Rac1 knockdown significantly reduced migration of HTR-8/SV.neo cells in comparison to the 

control (24). 

Another important regulator of cell migration, elastin derived peptides (EDPs) have been 

implicated in the conversion of the SUA into a low resistance vessel (25). Using this 

knowledge, Desforges et al. (2014) modelled functional aspects of SUA by exposing 

trophoblast cells, SGHPL-4, to an elastin derived matrikine, VGVAPG. SGHPL-4 cells are 
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EVTs derived from the first trimester of pregnancy. The invasion of SGHPL-4 cells through a 

transwell plate was increased when exposed to VGVAPG for 24 hours (26). 

MicroRNAs are small non-coding RNA molecules that regulate gene expression, through 

silencing or post-transcriptional regulation therefore affecting stability and translation of 

mRNA. Tamaru et al. (2015) demonstrated that overexpression of miR-135b significantly 

reduced the invasive capacity of HTR-8/SV.neo cells, by causing a decrease in the mRNA 

expression of CXCL12 by approximately 50%, in low oxygen conditions (27). The CXCL12 

gene plays a role in placentation (28) and is linked to the development of pre-eclampsia (29) 

whereas miR-135b is expressed in trophoblast cells (27). The functional role of miR-93 has 

yet to be elucidated in pre-eclampsia, however the levels of this microRNA are increased 

within the plasma of patients who developed pre-eclampsia. SOLiD sequencing revealed a 

total of twenty downregulated microRNAs in plasma samples obtained from five patients, of 

which four had developed pre-eclampsia (30). Furthermore, Pan et al. (2017) have shown that 

miR-93 inhibitors can stimulate trophoblast migration and invasion (31). Choriocarcinoma is a 

rapidly growing cancer of the placenta, in particular the chorion. Placental choriocarcinoma 

derived cell lines, BeWo and JAR cells, in a transwell chamber also displayed reduced motility 

when transfected with miR-93-mimetics (31).  

As mentioned above, hCG-H is secreted by syncytiotrophoblasts during early placentation 

(32), however it is also secreted by choriocarcinoma cells. Using xCelligence (ACEA, San 

Diego) real-time cell analysis system, Evans et al. (2015) performed migration and invasion 

assays using JEG-3 cells. Cell invasion was inhibited following a reduction of hCG-H by hCG-

H neutralizing antibody, whereas there was no effect on cell migration (16).  

Metastasis associated protein-3 (MTA-3) can regulate cell migration. In pre-eclampsia, the 

levels of MTA-3 appear to be reduced (33). Therefore, when Horii et al. (2015) generated 

MTA-3 stable knockdown in JEG-3 cells using shRNA there was a 60% decrease in hCG 

secretion in the knockdown models compared to control and migration was increased by 1.8 

fold (34).  



6 
 

Moreover, Liu et al. (2015) have implicated that ephrin-B2 could play an important role in the 

remodelling of SUA due to its influence on trophoblast cell functionality (35). Ephrin-B2 is a 

transmembrane ligand of Eph receptors, and it belongs to the largest family of receptor 

tyrosine kinases (36). It regulates embryonic vascular development and postnatal 

angiogenesis (37). Ephrin-B2 and its role in SUA remodelling was analysed using a number 

of functional assays with HTR-8/SV.neo cells. The migration, invasion and tube formation of 

HTR-8/SV.neo cells were diminished when ephrin-B2 was knocked down using sh-ephrin-B2. 

The expression of MMP-2 and MMP-9, key proteins involved in the breakdown of the 

extracellular matrix and remodelling, was also decreased in the transfected cells (38). 

The Notch pathway, a regulator of ephrin-B2 expression (35), is one of the key angiogenic 

and cell fate pathways (39). It is a canonical pathway where ligands such as Delta-like (DLL) 

1, 3, and 4 on one cell activate notch receptors (1-4) on the neighbouring cells. Inhibition of 

DLL4 has been shown to promote endothelial cell proliferation but it leads to irregular pro-

angiogenic phenotype and therefore it is likely to be implicated in endothelial dysfunction (40). 

Protein or RNA expression of DLL4 and other members of the Notch pathways such as Notch-

2, Notch-3, DLL3, JAG1, JAG2, Hey-1 and Hey-2 were all downregulated in cell lysates from 

placental samples collected from women with pre-eclampsia compared to healthy control 

placentae (41). The shRNA downregulation of Notch-2 receptor led to a decrease in BeWo 

cell migration and invasion, whereas overexpression of Notch-2 led to an increase in the 

migration and invasion of JAR cells (42). Conversely to Notch, other stem cell markers, CD44 

and CD34, have shown higher expression in placental samples collected from women with 

pre-eclampsia (n=21) vs. normotensive controls (n=20) (43).  

Endothelial progenitor cells (EPCs) are essential in vascular remodelling and endothelial 

homeostasis (44). EPCs are able to form new blood vessels, and therefore have a key role in 

vascular repair (45). Blood samples from thirteen women with pre-eclampsia demonstrated a 

lower number of EPCs compared to healthy controls. A reduction in EPC number was 

demonstrated before pre-eclampsia developed clinically (46). Similarly, a reduced number of 

endothelial colony forming cells (ECFCs), which are a subclass of EPCs(47), was also 
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demonstrated within umbilical cord blood from women with pre-eclampsia (48), suggesting 

that the reduction in EPCs is present both prior and after pre-eclampsia develop. The reduction 

and dysfunction of EPCs reflects the lack of endothelial repair capacity in pre-eclampsia (49). 

Liu and colleagues isolated and cultured EPCs from umbilical blood cord and placentae from 

twelve women with pre-eclampsia and twelve healthy pregnant women at delivery (35). 

Western blotting and RT-PCR results using isolated EPCs demonstrated higher ephrin-B2 

mRNA and protein levels in women with pre-eclampsia. This was also true within placental 

samples. Furthermore, the numbers of EPCs isolated from umbilical cord were negatively 

correlated with the expression of ephrin-B2 levels in placentae. A small molecule based 

activation of DLL4 and Notch pathway, led to activation of ephrin-B2 in EPCs and inhibition of 

EPCs activity (50). In conclusion, Notch or ephrin-B2 could be potential targets capable of 

repairing angiogenesis in patients with pre-eclampsia (35). 

Two-dimensional cell culture assays, such as the migration or invasion assay, provide a useful 

tool to study the functionality of trophoblast cells. Despite their importance, it is necessary to 

conduct further three-dimensional assays to better mimic human environment. 

 

Three-Dimensional cell culture-based models 

Time-lapse microscopy, three-dimensional (3D) invasion and tube formation assays were all 

used by Wallace et al. (2014) to assess trophoblast functionality in the presence of increasing 

concentrations of angiogenin or endostatin. Invasion and tube formation were reduced 

significantly in the presence of endostatin, whereas angiogenin decreased invasion but 

increased tube formation. Similarly, when fibrin gel assay was used to determine the volume 

of invading trophoblast cells from a 3D spheroid induced by endothelial growth factor, and in 

the presence of endostatin, the invasion ability of SGHPL-4 trophoblast cells was decreased 

considerably. On the other hand, there was no change in cell motility by endostatin or 

angiogenin (51). 
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Moreover, Buck et al. (2015) used a 3D co-culture model to analyse the invasive nature of 

trophoblast cells, AC-1M88. Three different endometrial adenocarcinoma cell lines were used 

to emulate epithelial cells of the endometrium; the HEC-1-A cell line, the RL95-2 cell line, and 

the Ishikawa cell line. Endometrial epithelial cells (EECs) were mixed with Matrigel, and once 

solidified, media containing the same cell line was added to the chamber slide. Following four-

day incubation, the EECs formed spheroids; trophoblast cells were, then, added to EEC 

spheroids. Trophoblast cells attached to the EECs forming a cell monolayer. Out of three 

endometrial cell lines, trophoblast cells were able to invade RL9-2 cells the most effectively. 

Interestingly, the RL9-2 spheroids formed in the Matrigel showed the least polarization out of 

the three endometrial cell lines. A higher extent of differentiation and polarization decreased 

trophoblast invasion (52). 

In co-culture experiments by Virtanen and colleagues (2016), human CRL-2522 fibroblasts 

and HUVEC displayed a pro-angiogenic phenotype. Similarly, a co-culture of human adipose 

stem cells (hASC) and HUVEC demonstrated activation of angiogenesis and vasculogenesis. 

However when cord blood serum from women with pre-eclampsia was added to these co-

culture models, tubule formation was inhibited in both models compared to when serum from 

normotensive cord blood was added; this reflects the anti-angiogenic state that is present in 

pre-eclampsia (53). 

Women with gestational diabetes mellitus (GDM) have increased risk of developing pre-

eclampsia, up to 10% (54,55). Therefore when feto-placental endothelial cells were cultured 

with conditioned media derived from trophoblasts isolated from patients with GDM, the cells 

migrated slower in a wound scrape assay, and showed reduced chemo-attraction/migration 

through chamber pores (56). Furthermore, when Loegl et al. (2017) investigated feto-placental 

angiogenesis in women with GDM, primary trophoblast conditioned media from women with 

GDM led to increased tube formation but reduced wound healing and chemo-attraction 

ability(56). GDM also altered expression and secretion of pro-angiogenic and anti-angiogenic 

factors therefore leading to changes in placental angiogenesis and vascular structure, which 

is common in GDM pregnancies (56). Other nutrient-sensing pathways relevant to DM, such 
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as AMPK, the main target of metformin, has been implicated in trophoblast functionality and 

endothelial function and, hence, it could be a relevant target for prevention of pre-eclampsia 

(57–59). 

 

Cell Survival and Proliferation 

As previously explained, the cytotrophoblast cells undergo proliferation during hypoxic 

conditions; survival and proliferation is essential for appropriate and efficient remodelling of 

SUA. Following invasion of the SUA lumen, EVTs must survive long enough to carry out 

remodelling functions.  

Preimplantation factor (PIF) is a peptide secreted by embryos, which has been implicated in 

trophoblast invasion of SUA  (60,61). Placentae stained for cytokeratin, a marker of 

trophoblast cells, displayed reduced PIF protein levels in pre-eclampsia, in comparison to 

healthy placentae collected on delivery (60). Moindjie et al. (2016) used a synthetic PIF 

analogue (sPIF) to elucidate its role in early stage trophoblast apoptosis. Using an annexin V-

FITC staining assay by flow cytometry, the number of apoptotic HTR-8/SV.neo cells was 

reduced in the presence of 50 or 100 nM sPIF by 26.3% and 39.6%, respectively (62). 

Furthermore, in a late stage apoptosis (DNA fragmentation) assay, sPIF treatment showed a 

significantly lower apoptotic index when assessed by a terminal deoxynucleotidyl transferase-

mediated dUTP-biotin DNA-nick end labeling (TUNEL) (62).  

In relation to ephrin-B and Notch signalling, in addition to their role in migration and invasion, 

the knockdown of ephrin-B2 showed a small reduction in cell proliferation, assessed by the 

CCK-8 assay. Similarly, a higher number of apoptotic cells was observed via Hoechst 33258 

staining following a knockdown of ephrin-B2 (38). In relation to Notch receptors, proliferation 

of JAR cells was decreased when Notch-2 was overexpressed, however the knockdown of 

Notch-3 led to an increase in proliferation. Notch-2 knockdown increased the volume of BeWo 

cells undergoing the S phase of the cell cycle, effectively increasing proliferation (42).  
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Matricellular proteins of the CCN family also play a role in trophoblast proliferation and 

migration (63). Within this family of proteins, CCN1 and CCN3 are known to affect cell growth, 

as well as cell migration (64). Following the treatment with recombinant CCN1 and CCN3 

proliferation of SGHPL-5 trophoblast cells proliferation was reduced and the cell cycle 

progression arrested (64). 

In summary, 3D cell culture models have an advantage over 2D models because these 

resemble the human environment better, enabling assessment of direct and indirect cell-cell 

interactions as well as interactions between the cells and the surrounding environment. 

Overall, 3D models are more effectively used with primary cells and tissues explants than with 

cell lines. 

 

In vitro models with placental explants or primary trophoblast cells 

The role of EDPs has already been discussed above in relation to their stimulatory effect on 

migration and invasion using cell lines. Here, the effect of EDPs was also investigated using 

placental explants. Following the removal of villous tips from the first trimester placental tissue, 

extravillous trophoblast outgrowths were derived and placed onto collagen. These explants 

were allowed to adhere, before media containing the EDP mimetic, VGVAPG (representing 

bioactive EDP), was added. Villi were imaged at several time points, at each point the area 

covered and the distance of growth travelled was quantified. Outgrowth area and migration 

distance in the presence of the EDP were shown to be significantly larger than that of the 

control (26).   

Key proteins involved in tissue remodelling, MMPs, particularly MMP-14 and MMP-15, appear 

to also play an important role in SUA remodelling (65,66). When culturing first trimester 

chorionic villi in the presence of endothelin-1, a potent vasoconstrictor upregulated in pre-

eclampsia (67), trophoblast outgrowth was decreased by 24% (66). Invasion was also reduced 

by 26% following the treatment with 100 nM of endothelin-1. The mechanism implicated in the 

inhibitory effect of endothelin-1 was linked to downregulation of MMP-14 and MMP-15 (66).  
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Mapsin is an epithelial-specific class II tumour suppressor gene, which has been shown to 

have inhibitory actions on the invasion of breast cancer cells. In addition to this, mapsin’s role 

in placental development and invasion of cytotrophoblasts has also been demonstrated (68). 

In Liu et al. (2014), placental tissues were collected after delivery from twelve women with pre-

eclampsia and twelve healthy controls. Western blotting, RT-PCR, and immunohistochemistry 

(IHC) were conducted to assess mapsin expression in placentae from women with pre-

eclampsia and matched group of healthy controls. The degree of methylation in the promoter 

regions of mapsin in each of the study groups was assessed. The patients were matched in 

terms of age, body mass index (BMI), gestational age and parity. They found mapsin mRNA 

and protein levels to be significantly higher in pre-eclampsia group compared to healthy 

controls. IHC of placental tissue showed an increased and more diffuse staining of mapsin in 

pre-eclampsia (69). 

Moreover, calcyclin or S100A6 protein, a Ca2+ channel-binding protein which belongs to the 

S100 family of proteins, is upregulated with the cellular stress response (70). It is differentially 

expressed in trophoblast cells isolated from pregnancies complicated by pre-eclampsia 

compared to healthy controls (71). Schol et al. (2014) investigated biomarker potential of 

calcyclin in formalin-fixed and paraffin embedded placental tissue collected from seventy-five 

women with pre-eclampsia and the same number of healthy controls who delivered between 

20 and 34 weeks of gestation. IHC analysis showed a significantly more intense staining of 

calcyclin in the trophoblasts from women with pre-eclampsia compared to healthy controls 

(72). Determining expression of trophoblasts’ calcyclin early in pregnancy could be useful to 

investigate its role in the pathogenesis of pre-eclampsia. However obtaining placental samples 

early in pregnancy through chorionic villus sampling is associated with a high incidence of 

miscarriage; if calcyclin’s role in the pathogenesis of pre-eclampsia is further validated, the 

most convenient method to measure its levels early in pregnancy would be by using peripheral 

blood. Whether peripheral blood corresponds to the placental levels needs to be investigated. 

Other important proteins and potential markers of pre-eclampsia identified by IHC of the 

placental tissues are included in Table 2 (60,69,73–87).  
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In addition to trophoblasts, other groups of cells, which are important for appropriate SUA 

remodelling and placental development, include immune cells. 

 

In vitro immune cell-based models 

Adequate signalling between foetal and maternal immune cells is an essential requisite to 

achieve early pregnancy placentation, vasculogenesis, and immune tolerance of the foetus 

(88). Natural killer (NK) cells are a major source of angiogenic growth factors and cytokines 

that ensure the transformation of the SUA, foetal implantation and placentation (89–91). 

Abnormal NK cell receptors and cytokine production profile is associated with pregnancy 

disorders, such as pre-eclampsia (92). Interferon gamma secretion by NK cells is an essential 

regulator of vascular remodelling and EVTs migration. Lowered levels of interferon-gamma 

were observed in decidual NK (dNK) cells from pregnant women with hypertensive disorders 

(93). 

Major histocompatibility complex class I related chain (MIC) genes are stress-inducible 

proteins modulating the function of immune NK cells. Engagement of NKG2D receptor by MIC 

genes have been shown to stimulate NK cell-mediated cytokine production, and the release 

of soluble MIC proteins was also suggested to modulate NK cell function during pregnancy 

(94,95). 

Sphingosine-1-phosphate has (S1P) been shown to regulate numerous functions of NK cells 

therefore having a potential role in SUA remodelling. Therefore, when Zhang et al. (2013) 

cultured HTR-8/SV.neo cells overnight in serum free media, before wounding a confluent 

monolayer of cells and adding leukocytes pre-treated with FTY720, an S1P analogue, the 

migration was considerably reduced (96). The extent of migration was analysed by 

photographing ten randomly chosen areas of the wound scrape. This way of assessing 

migration could lead to inconsistencies due to moderate variations in the wounding process. 

Wound sizes can be variable, and, as a result, this only provides a rough basis for migration 

with reduced reproducibility. The use of culture inserts with a defined free cell gap can provide 

a standardised wound size, avoiding any cell damage. Using live cell microscopy imaging with 
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a Mark & Find/Tile Scan feature allows for identical sections of a well to be imaged, with the 

use of pre-defined co-ordinates. 

When primary trophoblast cell from villous tips were added to Matrigel-coated inserts, in the 

presence of NK cells pre-treated with FTY720, a reduction in trophoblasts migration was 

observed. When NK cells pre-treated with FTY720 were cultured with HUVEC, inhibition of 

tubule formation was also observed. These results stipulate an important role of NK cells and 

S1P in the process of SUA remodelling and developmental angiogenesis (96). 

In the study by Haumonte et al (2014), peripheral blood was collected from a cohort of eighty-

one pregnant women diagnosed with vascular pregnancy diseases including forty women with 

pre-eclampsia and sixty-three healthy pregnancies matched for age, BMI and parity. Plasma 

levels of soluble MIC (sMIC), NKG2D, and interferon-gamma were measured using ELISA, 

flow cytometry and RT-PCR. Plasma samples, which were positive for sMIC demonstrated 

higher incidence of pre-eclampsia and proteinuria, and lower levels of NKG2D and interferon-

gamma. Therefore, the presence of sMIC molecules in maternal plasma may play a critical 

role in altering maternal immune functions which is essential for appropriate vascular 

remodelling during pregnancy (97). 

Furthermore, placental growth is facilitated by the interaction between trophoblast and 

immune cells (98). The importance of the immune system is further confirmed by the fact that 

inflammatory markers are raised in pre-eclampsia (99). Hofbauer cells are placental 

macrophages of fetal origin and play a direct role in early placental development (98). These 

cells are associated with several pregnancy complications, such as chorioamnionitis, 

spontaneous abortion, and fetal metabolic storage disease. They contribute to the placental 

expression of anti-angiogenic factors and they appeared to be aberrant in placentae from 

women with pre-eclampsia (100). The human leukocyte antigen class II histocompatibility 

antigen-gamma chain, also known as cluster of differentiation 74 (CD74), when expressed on 

cell surfaces, is the major histocompatibility complex (MHC) II invariant chain protein that is 

involved in antigen presentation and crucial for biogenesis (101). CD74 is also a high affinity 

binding protein for the pleiotropic inflammatory cytokine macrophage migration inhibitory 
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factor (MIF). Przbyl et al (2016) hypothesised that CD74 has an important role in aberrant 

placentation in pre-eclampsia. Indeed, the number of CD74-positive macrophages was 

significantly lower in placental samples collected from women with pre-eclampsia (n=50) 

compared to healthy controls (n=28)(98). When CD74 was silenced by siRNA, macrophages 

displayed a reduced ability to adhere to trophoblast cells in comparison to the control. The 

ingenuity Pathway Analysis Tool determined that the gene expression levels of activated 

leukocyte cell adhesion molecule (ALCAM), intracellular adhesion molecule 4 (ICAM4), and 

Syndecan-2 (SDC-2), known to be involved in cell adhesion, were considerably reduced (98). 

Within the decidua during early pregnancy, NK cell population is abundant, making up 50-90% 

of the total lymphocyte count (102). Although dNK cells are present during SUA remodelling, 

their function has not yet been fully elucidated in relation to endothelial remodelling and 

integrity. Fraser et al. (2015) attempted to address this question by isolating dNK cells at 9-14 

weeks of gestation from healthy pregnancies and pregnancies that showed abnormal uterine 

artery Doppler results as per resistance indices. The decidua was processed and CD56+ cells 

were selected and cultured as dNK cells for 24 hours before conditioned growth media was 

removed and pooled together. SV40 transfected human umbilical vein endothelial cells 

(SGHEC-7) were plated in Angiogenesis ibiTreat chamber slides containing Matrigel, and 

allowed to form tube-like structures. Standard culture media was then replaced with dNK-

conditioned media. Prior to invasion of SUA by trophoblasts, the SUA must undergo various 

physiological changes in their structure including forming gaps in the endothelial layer to 

promote invasion (Figure 1). SGHEC-7 cells cultured with dNK conditioned media from 

pregnancies with abnormal Doppler results did not show endothelial cell destabilisation to the 

same extent as those cultured in dNK conditioned media from healthy pregnancies. This 

implies that dNK have a role in disruption of endothelial structure, and that a reduction in this 

disruption may be a contributing factor to the inadequate SUA remodelling. The likely 

mechanism of this effect is not apoptotic but rather pro-inflammatory involving TNF-α 

signalling (103).   
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Similar to Fraser et al. (2015), another group isolated dNK cells from healthy pregnancies and 

pregnancies with abnormal uterine artery Doppler or high-resistance index, with an aim of 

profiling cytokines and angiogenic factors secreted in the culture media of dNK cells. Both 

angiogenin and endostatin were produced at a higher level by dNK cells from pregnancies 

with high resistance index. Endostatin inhibited trophoblast invasion and endothelial-like 

trophoblast tube formation, while angiogenin inhibited trophoblast invasion but promoted tube 

formation. In summary, altered expression of angiogenin and endostatin which are secreted 

by dNK cells may contribute to pregnancy complication associated with SUA remodelling (51).  

 

Conclusion  

The current available models used to emulate pre-eclampsia have so far helped to elucidate 

numerous key proteins in the development of this condition (Table 1, Table 2). However, there 

are still many aspects of the pathogenesis of pre-eclampsia that remain unknown. Although 

cell culture models remain essential to study the mechanisms of diseases, pre-eclampsia is a 

complex and multifactorial disease of unknown aetiology, and, as such, it is important to 

appreciate the limitations of these models. Selecting appropriate assays to elucidate key 

features of the pathophysiology of pre-eclampsia is necessary to ensure the generation of 

robust results. Currently there is notable variation between experimental designs of the same 

assays so perhaps standardization of the methodology may attempt to address this, leading 

to greater reproducibility. Co-culture and 3D in vitro models, particularly with primary cells, 

help to mimic a more realistic cellular environment, and provide preliminary data important for 

the development of future or repurposed therapies. Nevertheless, propagation of cells and 

manipulation of expression of various key proteins is only possible with cell lines. Furthermore, 

in vivo animal models have the advantage of pre-clinical testing of a therapeutic; however 

initial in vitro work precedes in vivo testing stage. Even though ex vivo assays only partly 

emulating an in vivo setting, they allow us to underpin key molecules or pathways in a disease.  



16 
 

 

In summary, despite a substantial progress which has been made in the field of  pre-eclampsia 

and in relation to understanding the function and key signalling mechanisms of trophoblast 

cells and SUA remodelling, further studies are required to fully elucidate the mechanisms 

involved in the pathogenesis of pre-eclampsia. Identification of the key pathways involved in 

placental dysfunction, which is the root cause of pre-eclampsia, can lead to the development 

of reliable and early biomarkers of pre-eclampsia and effective preventative treatment 

strategies 

Figure 1. Schematic diagram of spiral uterine artery remodelling by trophoblasts and in 
vitro assays used to represent different stages in this process. Chorionic villi sprouting 
from the blastocyst consist of two distinct villous trophoblast cell types, syncytiotrophoblasts 
and cytotrophoblasts. The syncytiotrophoblasts forms the outer layer of the chorionic villi 
whereas cytotrophoblast layer is considered stem-like. Column trophoblasts are found in the 
anchoring villi where they form partially complete shell facilitating movement of extravillous 
trophoblasts through the maternal decidua (migration). Interstitial trophoblasts, upon entry of 
the decidua, gather and destroy arterial media (invasion); endothelial cells undergo apoptosis, 
which allows for their replacement by endovascular trophoblasts (co-culture). The most 
commonly found lymphocytes in the decidua during pregnancy are NK cells (co-culture). 

Table 1. Summary table of the molecular mechanisms implicated in trophoblast or 
placental functionality. 

Table 2. Important cell markers within placental tissue and their relevance in pre-
eclampsia. SUA, spiral uterine artery; PMC, Placental Mesenchimal Cells; CVT, chorionic 
villous trophoblast; EVT, Extravillous Trophoblast; dNK, decidual natural killer 
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