© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Static Var Compensator Allocation Considering Transient Stability, Voltage Profile and Losses

Sahand Ghavidel^{1*}, Ali Azizivahed², Mostafa Barani², Jamshid Aghaei², Li Li¹, and Jiangfeng Zhang¹

¹Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia

²Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, Iran

^{1*}Email: sahand.ghavideljirsaraie@student.uts.edu.au

Abstract--The purpose of this paper is to determine the optimal location, size and controller parameters of Static Var Compensator (SVC) to simultaneously improve static and dynamic objectives in a power system. Four goals are considered in this paper including transient stability, voltage profile, SVC investment cost and power loss reduction. Along with the SVC allocation for improving the system transient stability, an additional controller is used and adjusted to improve the SVC performance. Also, an estimated annual load profile including three load levels is utilized to accurately find the optimal location and capacity of SVC. By considering three load levels, the cost of power losses in the power system is decreased significantly. The combination of the active power loss cost and SVC investment cost is considered as a single objective to obtain an accurate and practical solution, while the improvement of transient stability and voltage profile of the system are considered as two separate objectives. The problem is therefore formulated as a multi-objective optimization problem, and Multi Objective Particle Swarm Optimization (MOPSO) algorithm is utilized to find the best solutions. The suggested technique is verified on a 10-generator 39-bus New England test system. The results of the nonlinear simulation indicate that the optimal sizing, location and controller parameters setting of SVC can improve significantly both static and dynamic performance of the system.

Index Terms-- Static Var Compensator (SVC), Transient stability, Multi Objective Particle Swarm Optimization (MOPSO), Voltage profile.

I. INTRODUCTION

A. Aims and Scope

In recent years, Flexible AC Transmission Systems (FACTS) devices have been utilized for various objectives to improve the power system operation [1]. The main objectives which are essential for the operation and security of power systems include: i) voltage profile, ii) power loss, and iii) transient stability [1]. Among the mentioned objectives, transient stability is an increasingly important issue in the power system, e.g., a weak transient stability may frequently cause the blackout during the system fault, and it can extremely damage the rotor of generators. In order to mitigate these difficulties, FACTS devices, which are fast responsive, can be utilized. In addition, FACTS devices can improve the voltage profile in the power system [2]. Electrical devices are designed to work within a specific range of voltage. Therefore, the deviation from this range reduces the efficiency of devices and can deteriorate their operation or even damage them. In this regard, FACTS devices can be used to provide voltage security constraints in the power systems under normal conditions. Consequently, the FACTS devices can improve the mentioned objectives in the power system. However, the effectiveness of the FACTS controllers is mainly dependent on their locations and capacity. Therefore, it is essential to propose practical method for determining the allocation and capacity of these devices in the power system.

B. Literature Review and Approach

A considerable amount of literature has been published to evaluate the impacts of FACTS devices in the power system and determine their optimal allocations. To this end, different criteria have been proposed in the literature for the allocation problem. For example, Ref. [3] considers the static voltage stability enhancement as an objective for the allocation problem. Loss reduction is the main criterion which is considered for the allocation problem in [4]. Power plants fuel cost reduction using optimal power flow and voltage profile improvement are the other objectives proposed in [2]. In order to cope with the small signal stability problem, Ref. [5] proposes the best assignment and parameter setting of FACTS devices. In [6], the Static Var Compensator (SVC) has been allocated to enhance the first swing stability boundary of the power system. In order to advance the transient stability of the system and SVC cost, the optimal location, size and setting parameters of SVC controller are evaluated in [7]. Also, Ref. [8] determines the optimal location, size and parameter setting of SVC in long transmission lines to improve transient stability of the system and reduce the SVC cost. It should be noted that each of the mentioned objectives improves the power system network operation, but improvement in one objective does not guarantee the same improvement in others.

In addition, some assumptions, e.g., using single objective optimization, ignoring the investment budget as a part of the objective function, and allocation in the presence of a multi-objective function [9], have been considered in the literature to implement these objectives. These assumptions can result in some problems such as, an inability to use the powerful advantages of FACTS devices in the static and dynamic conditions and impractical allocation results. Note that, each of the mentioned objectives can enhance the operation of the power system from its own viewpoint and therefore, none of them can be neglected for allocation of FACTS devices. Furthermore, It is essential to consider the cost of devices since neglecting it cannot be justified in the allocation of FACTS devices [7, 9]. The current paper considers the transient stability improvement, power loss reduction, voltage profile, and the investment costs of FACTS devices to improve previous researches in the field of FACTS devices allocation in the power systems. Despite previous studies, the alleviation of both cost factors is considered in the proposed model. In an effort to approach a practical solution, an estimated annual load profile has been considered. It should be mentioned that, in this study, the FACTS device is assumed to be SVC.

One additional controller is required, when a SVC is utilized to improve the voltage of buses in a power system. This kind of controller can be used to adjust the bus voltage of SVC to improve the damping procedure of the system oscillations [7-9]. In this situation, the interaction between the power system and this controller (SVC-based controller) can affect the system oscillations. Accordingly, the optimum parameter setting of this kind of controller is essential and it should be selected properly. A lot of approaches, for example stochastic exploration, have been proposed and advanced to find global optimization solutions [10, 11]. In order to improve the system transient stability, this paper determines the optimal location of the SVC by considering and adjusting an extra controller to enhance its performance.

Considering more than one objective function increases complexity of the optimization model [12-14]. In order to solve this kind of problems, multi-objective optimization methods can be employed. In the Multi-Objective Problem (MOP) unlike the single one, a set of solutions obtained instead of only one answer. In this paper, Pareto method has been used to solve the mentioned problem. The Pareto optimal solution is the solution that improvement in one of the objective function begins to deteriorate its performance in at least one of the rest. The Pareto method allows the system designer to choose among the available solutions with respect to the network's conditions and requirements for determining the placement and capacity of SVC. Due to the simple concept, easy implementation, modifiable parameters and rapid convergence, Multi-Objective Particle Swarm Optimization (MOPSO) algorithm has been utilized for solving various optimization problems [15-17]. In order to solve the mentioned MOP, this paper employs MOPSO as a promising evolutionary technique. In addition, a Sequential Quadratic Programming (SQP) optimization sub-problem has been utilized to implement an estimated annual load profile to accurately find the optimum location and capacity of SVC.

C. Paper Organization

The remainder of the paper is organized as follows. Section II formulates the optimal location and size of SVC as a multi-objective optimization problem. Next, a brief overview of SVC-based controller is presented in Section III. Section VI provides results for a case study. Finally, Section V summarizes the results of this work and draws conclusions.

II. PROBLEM FORMULATION AND OBJECTIVE FUNCTION

The first objective function in this paper is related to minimization of the investment cost of SVC and active power loss. This objective function is as follows [7],

$$f_{1}(x, u, w) = K_{i} C_{investment}(w) + K_{e} \sum_{i} (P_{loss i}(x, u, w)T_{i})$$
(1)

where K_e is the active power cost in \$/kWh; T_i represents the time length of the i^{th} load level in hours; $P_{lossi}(x,u,w)$ is the active power loss of i^{th} load level; $C_{investment}(w)$ can be written as follows [7]:

$$C_{investment}(w) = C_{M \text{ var}_SVC} S_{SVC}$$
(2)

where S_{SVC} represents the apparent power of SVC; $C_{M \text{ var}_SVC}$ is the MVar cost of SVC [7].

$$C_{M \text{ var}_SVC} = 0.3S_{SVC}^2 - 305S_{SVC} + 127380(\$/\text{MVar})$$
(3)

Note that, the investment cost needs to be accomplished in the same year of the allocation study. After calculating the investment cost of SVC based on the interest rate, the life time of SVC can be combined in a single objective function. The following K_i factor can be defined to do this [7].

$$K_{i} = \frac{(1+B)^{n_{SVC}} B}{(1+B)^{n_{SVC}} - 1}$$
(4)

where *B* presents the refundable investment rate in percentage; n_{SVC} is the SVC life time. *B* and n_{SVC} are assumed to be 15 percent and 30 years, respectively.

The transient stability of the system is considered as the second objective function as follows [7].

$$f_{2}(x, u, w) = \int_{0}^{t=t_{sim}} \left(\sum_{i=1}^{4} \left| J_{i} \right| \right) t dt, \qquad (5)$$

where J_i are chosen as the maximum selected values of speed deviations from the set of J^k as follow [7]:

$$J^{k} = \int_{0}^{t=t_{sim}} \left(\sum_{i=1}^{N_{G}} \sum_{j=i+1}^{N_{G}} (\left| \Delta \omega_{i,j}^{k} \right|) \right) t dt, \qquad (6)$$

where $\Delta \omega_{i,j}$ represents the speed deviation among generators *i* and *j* ($\Delta \omega_i - \Delta \omega_j$); N_G is the total number of generators in the system; t_{sim} is the time of simulation horizon. The J^k set is generated in case that there is no SVC in the system. As the Integral of Time multiple Absolute Error (ITAE) is used to derive the objective, the advantage of the minimal requirements of dynamic plant information can be preserved. Also, to compute this objective function, the time-domain simulation is used. The aim is minimizing the objective function f_2 to improve the overshoots and settling time of the response [7]. The third objective function is the voltage limitations and violations in the system. The voltage violation can be defined as follows for each bus.

$$VD_{i} = \frac{\Phi(V_{i} - V_{i}^{ideal} | -dv_{i})}{v_{i}} , \Phi(x) = \begin{cases} 0 & if \ x < 0\\ x & otherwise \end{cases}$$
(7)

where V_i , V_i^{ideal} are the voltage and ideal voltage (i.e. 1 pu); dv_i represents the maximum voltage deviation tolerance. Accordingly, the third objective function can be written as follows.

$$f_{3}(x, u, w) = \sum_{i \in J_{L}} VD_{i} = \sum_{i \in J_{L}} \frac{\Phi(V_{i} - V_{i}^{ideal} | -dv_{i})}{v_{i}}$$
(8)

where J_L is the number of buses. Note that, by minimizing this objective function, the bus voltages will remain in the specified limits.

To solve the multi-objective optimization problem, some constraints such as the bound of location, capacity of SVC and limits of the controller parameters have been considered. Therefore, the multi-objective optimization problem can be presented as follows:

$$\min_{\substack{u,w\in\chi\\ u,w\in\chi}} f_1(x, u, w)
\min_{\substack{u,w\in\chi\\ u,w\in\chi}} f_2(x, u, w)
\min_{\substack{u,w\in\chi\\ u,w\in\chi}} f_3(x, u, w)$$
(9)

Subject to

$$N_{loc}^{\min} \leq N_{loc} \leq N_{loc}^{\max}$$

$$B_{SVC}^{\min} \leq B_{SVC} \leq B_{SVC}^{\max}$$

$$K_{S}^{\min} \leq K_{S} \leq K_{S}^{\max}$$

$$T_{1S}^{\min} \leq T_{1S} \leq T_{1S}^{\max}$$

$$T_{3S}^{\min} \leq T_{3S} \leq T_{3S}^{\max}$$
(10)

where B_{SVC} and N_{loc} are the capacity and location number the SVC, respectively. K_S , T_{1S} , T_{2S} are the SVC controller parameters. The MOPSO technique is taken from [8] to solve the multi-objective optimization problem in this paper.

III. SVC-BASED CONTROLLER

The structure of the SVC-based controller is shown in Fig. 1. As it can be seen, the common lead-lag structure with gain, washout and two-stage phase-compensation blocks is used.

The washout block, which is a high-pass filter, is used to allow the passing of oscillations in the input signal without variation. This block cannot affect the steady changes in the input. The washout time constant can have a range between 1 to 20 seconds [18]. To provide the phase-lead behavior to compensate the phase-lag between input and output signals, the phase-compensation block is used.

TABLE I INFORMATION FOR ECONOMIC STUDY

Parameter	Values
Factor and duration of load level 1	0.81, 2136 hours
Factor and duration of load level 2	1.00, 2832 hours
Factor and duration of load level 3	0.90, 3792 hours

Fig. 2 Non-dominated and the finest cooperation answers.

Generally, in the SVC-based controller structure the time constants need to be pre-specified. In this paper, $T_W=10s$ and $T_{2S}=T_{4S}=0.3s$ are assumed. To determine the time constants T_{1S} , T_{3S} and the gain K_S , the MOPSO technique is used.

IV. RESULTS AND DISCUSSIONS

The 10-machine 39-bus New England power system is utilized to define the optimum location and size of SVC and determine the parameters of the SVC-based controller [7, 19]. Generator 1 (bus 39) represents parts of the U.S.-Canadian interconnection system [7]. It is expected here that SVC can be installed at all buses excepting bus 39. Table I lists the necessary information for economic study, and the forecasted load curve with three load levels and their durations. The fault is set to happen at 2.0 s from the beginning of the simulation and be cleared after 1.0 s at bus 29 at the end of line 26-29, which is enormously severe from the stability viewpoint [7, 20].

The subsequent objective function is recommended to calculate the transient stability of the system [7]:

$$f_{2}(x, u, w) = \int_{0}^{t=t_{sim}} \left(|J_{1}| + |J_{2}| + |J_{3}| + |J_{4}| \right) t dt, \quad (11)$$

where $j_{1} = \Delta \omega_4 - \Delta \omega_{10}$, $j_{2} = \Delta \omega_6 - \Delta \omega_{10}$, $j_{3} = \Delta \omega_7 - \Delta \omega_{10}$ and $j_{4} = \Delta \omega_8 - \Delta \omega_{10}$. The voltage magnitude of the buses should vary in the band between 0.97 and 1.03 *pu*. The ranges of the optimized parameters are 0.01 - 10 *pu* for B_{SVC} , 0.01 - 1 for T_{1S} and T_{3S} , 0.01 - 200 for K_S and all load bus numbers for N_{loc} . In all MOPSO runs, the number of population is selected to be 100 and the maximum number of iterations is set to 50 [7].

Fig. 2 shows the non-dominated answers of optimum position, size and controller parameters of SVC that are obtained from MOPSO algorithm. Also, Tables II and III show the results acquired by MOPSO and the best compromise solution (Pareto number 43), which are also highlighted in Tables II and III. As it can be seen in these tables, there are 50 responses for the problem. All responses find the installation place of SVC between buses 25 to 29 with different sizes. 70% of all found responses specify the installation place of SVC at bus 25, and also 18% at bus 26, 8% at bus 27, and 4% at bus 29. It can be seen in these tables that the obtained optimal installation place of SVC varies upon different objective functions. For example, the best place for the objective function involving transient stability is bus 25 while for the one involving voltage deviation is buses 26 and 29. The best installation place of SVC for the total cost objective function is bus 27. Also, Table III indicates the comparison of the cost of power losses in two modes: considering three load levels and one load level. This table shows that with considering three load levels, the power losses in power system are significantly reduced.

TABLE II NON –DOMINATED SOLUTIONS ACQUIRED BY MEANS OF MOPSO (OPTIMAL POSITION, SIZE, AND CONTROLLER PARAMETERS OF SVC, SVC COST AND THE FIRST OBJECTIVE).

Pareto Solutions	N_{loc}	B (pu)	K_S	T_{IS}	T_{3S}	SVC cost (M\$)	<i>f1</i> (M\$)
1	25	3.395	192.66	1.0000	0.010	3.042	60.663
2	25	3.693	196.21	0.9701	0.107	3.074	60.840
3	25	3.778	200.00	0.8535	0.134	3.113	61.057
4	26	0.327	199.12	1.0000	0.076	0.682	55.103
5	25	2.170	200.00	1.0000	0.010	2.077	58.975
07	25	0.404	190.27	1.0000	0.010	0.858	59.041
/ e	29	1.580	200.00	0.7950	0.064	2.373	57.055
0	29	1.456	200.00	1.0000	0.198	2.339	58 358
10	25	1.610	200.00	0.8853	0.010	2.469	58 216
11	26	0.971	199.01	0.8161	0.100	1 573	56 478
12	25	0.470	198.12	1 0000	0.154	0.892	55 519
13	26	0.498	195.12	0.1207	0.010	0.893	55.521
14	26	1.022	200.00	1.0000	0.010	2.064	57.341
15	26	0.257	198.98	0.0382	0.977	0.491	54.932
16	25	0.532	200.00	1.0000	0.320	1.056	55.734
17	25	3.259	199.10	1.0000	0.295	3.039	60.651
18	25	2.431	197.53	0.4083	1.000	2.876	59.810
19	26	0.215	196.23	0.9361	0.010	0.380	54.822
20	25	1.812	200.00	0.5487	0.010	2.519	58.447
21	25	3.238	200.00	1.0000	0.010	3.013	60.509
22	25	3.816	195.64	0.2050	0.924	3.221	61.668
23	25	3.696	198.03	1.0000	0.010	3.093	60.947
24	25	3.202	200.00	0.1030	0.939	2.999	60.433
25	25	4.000	198.23	1.0000	0.010	3.251	61.835
26	25	2.258	194.45	0.0100	1.000	2.684	58.998
27	25	3.807	200.00	1.0000	0.103	3.16/	61.366
20	25	2.040	106.12	0.9127	0.010	2.064	60.250
30	25	0.010	190.12	0.4900	0.504	2.904	54 473
31	23	0.010	161.13	1 0000	0.010	0.019	54 476
32	25	1 969	198 21	1.0000	0.643	2 641	58 842
33	25	0.738	200.00	0.7242	0.010	1 549	56.081
34	25	1.238	196.98	1.0000	0.675	2.237	57.712
35	25	2.927	198.33	0.8209	0.010	2.877	59.815
36	25	2.311	200.00	0.7276	0.180	2.761	59.298
37	27	0.251	150.12	1.0000	0.010	0.486	55.016
38	25	0.992	200.00	1.0000	0.098	2.025	57.264
39	25	1.197	198.19	1.0000	0.010	2.132	57.481
40	25	3.531	199.21	1.0000	0.010	3.042	60.667
41	26	0.010	193.20	0.9635	0.084	0.019	54.476
42	26	0.585	193.12	0.6186	0.178	1.235	55.979
43	26	0.500	197.23	1.0000	0.028	0.901	55.530
44	25	4.000	200.00	0.8294	0.010	3.251	61.835
45	25	4.000	200.00	1.0000	0.359	3.251	61.835
46	25	5.031	196.52	1.0000	0.010	2.884	59.847
47	27	0.010	156.13	1.0000	0.426	0.219	54.704
4ð 70	21 25	1.007	108.21	0.9389	0.105	1.411	57.232
49	23 25	0.355	196.21	0.8122	0.344	2.028	55 139
30	23	0.333	177.34	0.0/00	0.387	0.090	55.158

Fig. 3 displays the comparison of the transient stability objective over the SVC locations at the entire buses by using the values of the 43^{rd} Pareto answer in Tables II and III. In this figure, the black line indicates the transient stability index when there is no SVC. As shown in this figure, the SVC location to attain the minimum transient stability objective is the bus number 25.

The other significant point is related to the responses with the weak transient stability of power system such as responses with Pareto solution number 31, 37, 47, 48. In these responses, the SVC installation place is at bus 27, and the gain of SVC controller has lower amount. These values of gain can help the SVC controller not to deteriorate the transient stability of the system. Fig. 4 to Fig. 7 show the speed deviation and the variation of rotor angle deviations of generators 8 and 5 (generator 10 is the reference), respectively. In these figures, the dash line displays the result without SVC, the spotted line indicates the result using SVC without optimized position and the solid line demonstrates the result using SVC with optimized position.

Fig. 4 Generator 8 speed deviation considering both controller and location.

Fig. 5 Generator 8 variation of rotor angle difference considering both controller and location.

Note that, in the case without of the optimized position, the SVC is located at bus 17, and in the case without enhanced controller, the SVC has no controller and its V_{ref} is 1 pu. These figures verify the results obtained from MOPSO method. Fig. 8 and Fig. 9 show the change of rotor angle deviations and speed deviation of generator 8 for optimal location and size of SVC with and without using the best controller based on the 43rd Pareto solution. It is evident that using SVC with enhanced controller can settle down faster and have more damping.

TABLE III NON –DOMINATED SOLUTION OBTAINED USING MOPSO (THE SECOND AND THIRD OBJECTIVES VALUES, POWER LOSSES IN THREE INDIVIDUAL LOAD LEVELS AND POWER LOSS COST USING 1 AND 3 LOAD LEVELS)

1 28.13 0.0177 13.029 19.910 24.683 57.621 63.083 2 27.79 0.0180 13.064 19.957 24.746 57.766 63.486 3 27.59 0.0182 13.107 20.015 24.823 57.944 64.444 4 30.43 0.0172 12.261 18.859 23.301 54.420 58.667 5 28.80 0.0172 12.268 18.866 23.312 54.447 59.002 7 30.41 0.0167 12.545 19.255 23.816 55.668 60.620 8 30.41 0.0167 12.545 19.255 23.816 55.467 60.889 10 29.19 0.0170 12.606 19.338 23.900 54.627 58.861 13 30.50 0.0167 12.309 18.928 23.300 54.627 58.881 14 30.18 0.0173 12.266 18.865 23.310 54.440 58.628	Pareto Solutions	f2	£	P _{loss} cost in 1 ^s load level	P _{loss} cost in 2 nd load level	P _{loss} cost in 3 rd load level	All P _{loss} cost using 3 load levels (M\$)	All P _{loss} cost using 1 load level (M\$)
2 27.79 0.0180 13.064 19.957 24.746 57.766 63.486 3 27.59 0.0182 13.107 20.015 24.823 57.944 64.444 4 30.43 0.0172 12.268 18.859 23.301 54.420 58.6677 5 28.80 0.0177 12.268 18.866 23.312 54.447 59.002 7 30.47 0.0167 12.557 19.272 23.839 55.616 60.376 9 29.17 0.0170 12.583 19.308 23.886 55.717 60.314 11 30.23 0.0172 12.309 18.928 23.390 54.627 58.886 13 30.50 0.0167 12.309 18.928 23.310 54.440 58.628 14 30.18 0.0173 12.463 19.412 23.476 59.140 17 28.01 0.0177 12.201 18.855 23.310 54.422 58.886	1	28.13	0.0177	13.029	19.910	24.683	57.621	63.083
3 27.59 0.0182 13.107 20.015 24.823 57.944 64.444 4 30.43 0.0172 12.261 18.859 23.301 54.420 58.677 5 28.80 0.0177 12.268 18.866 23.312 54.447 59.002 7 30.47 0.0167 12.557 19.272 23.839 55.668 60.620 8 30.41 0.0167 12.545 19.255 23.816 55.616 60.376 9 29.17 0.0170 12.635 19.308 23.890 54.627 58.886 10 29.19 0.0177 12.309 18.928 23.390 54.627 58.886 13 30.50 0.0167 12.266 18.865 23.310 54.420 58.886 13 30.45 0.0173 12.266 18.865 23.310 54.420 58.886 14 30.16 0.0177 12.282 19.478 54.440 54.529	2	27.79	0.0180	13.064	19.957	24.746	57.766	63.486
4 30.43 0.0172 12.261 18.859 23.301 54.420 58.677 5 28.80 0.0172 12.708 19.477 24.110 56.296 60.691 6 30.29 0.0177 12.268 18.866 23.312 54.447 59.002 7 30.47 0.0167 12.557 19.272 23.839 55.668 60.620 8 30.41 0.0167 12.545 19.255 23.816 55.616 60.376 9 29.17 0.0170 12.583 19.308 23.886 55.777 60.314 11 30.23 0.0172 12.309 18.928 23.390 54.627 58.886 13 30.50 0.0173 12.266 18.865 23.310 54.440 58.628 16 30.06 0.0173 12.261 18.865 23.310 54.420 58.386 20 2.0178 1.0171 12.620 19.365 6.6933 61.751	3	27.59	0.0182	13.107	20.015	24.823	57.944	64.444
5 28.80 0.0172 12.708 19.477 24.110 56.296 60.691 7 30.47 0.0167 12.557 19.272 23.839 55.668 60.620 8 30.41 0.0167 12.545 19.255 23.816 55.616 60.376 9 29.17 0.0170 12.606 19.338 23.826 55.777 60.314 11 30.23 0.0177 12.309 18.928 23.390 54.627 58.886 13 30.50 0.0167 12.309 18.928 23.390 54.627 58.886 13 30.50 0.0173 12.266 18.865 23.310 54.440 58.628 16 30.06 0.0177 12.321 18.945 23.412 54.678 57.611 62.999 18 28.69 0.0177 12.260 18.865 23.310 54.442 58.386 20 9.01 17.1 12.620 19.848 4.602 57.435	4	30.43	0.0172	12.261	18.859	23.301	54.420	58.677
6 30.29 0.0177 12.268 18.866 23.312 54.447 59.002 7 30.47 0.0167 12.557 19.272 23.839 55.668 60.620 8 30.41 0.0167 12.545 19.255 23.816 55.616 60.376 9 29.17 0.0170 12.606 19.338 23.926 55.869 60.889 10 29.19 0.0170 12.334 19.0021 23.510 54.047 58.981 13 30.50 0.0167 12.309 18.928 23.390 54.627 58.981 14 30.18 0.0173 12.266 18.865 23.310 54.440 58.628 15 30.45 0.0173 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0171 13.262 19.686 24.386 56.933 61.751 19 30.56 0.0174 12.266 18.865 23.310 54.442 58.386 <th>5</th> <th>28.80</th> <th>0.0172</th> <th>12.708</th> <th>19.477</th> <th>24.110</th> <th>56.296</th> <th>60.691</th>	5	28.80	0.0172	12.708	19.477	24.110	56.296	60.691
7 30.47 0.0167 12.557 19.272 23.839 55.668 60.620 8 30.41 0.0167 12.545 19.255 23.816 55.616 60.376 9 29.17 0.0170 12.583 19.308 23.926 55.869 60.889 10 29.19 0.0170 12.583 19.308 23.926 55.677 60.314 11 30.23 0.0172 12.374 19.021 23.510 54.627 58.886 13 30.50 0.0167 12.309 18.928 23.390 54.627 58.881 14 30.18 0.0173 12.266 18.865 23.310 54.440 58.628 16 30.06 0.0173 12.826 19.686 24.386 56.933 61.751 19 30.56 0.0174 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0171 12.620 19.357 23.951 55.928 60.4655 21 27.99 0.0177 12.998 19.869 24.629	6	30.29	0.0177	12.268	18.866	23.312	54.447	59.002
8 30.41 0.0167 12.545 19.255 23.816 55.616 60.376 9 29.17 0.0170 12.606 19.338 23.926 55.869 60.889 10 29.19 0.0170 12.533 19.308 23.886 55.777 60.314 11 30.23 0.0177 12.309 18.928 23.390 54.627 58.886 13 30.50 0.0167 12.309 18.928 23.390 54.627 58.981 14 30.18 0.0173 12.266 18.865 23.310 54.440 58.628 15 30.45 0.0177 12.321 18.945 23.412 54.678 59.140 17 28.01 0.0174 12.260 19.357 23.951 55.928 60.465 20 29.07 0.0171 12.660 19.357 23.951 55.928 60.465 21 27.73 0.0180 13.048 19.986 24.629 57.495 62.951 </th <th>7</th> <th>30.47</th> <th>0.0167</th> <th>12.557</th> <th>19.272</th> <th>23.839</th> <th>55.668</th> <th>60.620</th>	7	30.47	0.0167	12.557	19.272	23.839	55.668	60.620
9 29.17 0.0170 12.606 19.338 23.826 55.869 60.889 10 29.19 0.0170 12.583 19.308 23.886 55.777 60.314 11 30.23 0.0177 12.309 18.928 23.390 54.627 58.886 13 30.50 0.0167 12.309 18.928 23.390 54.627 58.981 14 30.18 0.0173 12.463 19.143 23.670 55.277 59.882 15 30.45 0.0177 12.321 18.945 23.412 54.440 58.628 16 30.06 0.0174 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0171 12.620 19.357 23.951 55.928 60.465 21 27.99 0.0177 12.998 19.869 24.629 57.495 62.951 22 27.71 0.0183 13.228 20.178 25.040 58.446 64.685<	8	30.41	0.0167	12.545	19.255	23.816	55.616	60.376
10 29.19 0.0170 12.583 19.308 23.886 55.777 60.314 11 30.23 0.0172 12.374 19.021 23.510 54.904 59.608 12 30.18 0.0177 12.309 18.928 23.390 54.627 58.886 13 30.50 0.0167 12.309 18.928 23.390 54.627 58.981 14 30.18 0.0173 12.266 18.865 23.310 54.440 58.628 15 30.45 0.0177 12.362 19.686 24.386 56.933 61.751 19 30.56 0.0174 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0177 12.998 19.869 24.629 57.495 62.951 21 27.71 0.0180 13.084 19.986 24.783 57.853 63.671 22 27.71 0.0180 13.282 0.0172 12.713 19.483 24.118	9	29.17	0.0170	12.606	19.338	23.926	55.869	60.889
11 30.23 0.0172 12.374 19.021 23.510 54.627 58.886 13 30.50 0.0167 12.309 18.928 23.390 54.627 58.981 14 30.18 0.0173 12.463 19.143 23.670 55.277 59.882 15 30.45 0.0173 12.266 18.865 23.310 54.440 58.628 16 30.06 0.0177 12.321 18.945 23.412 54.678 59.140 17 28.01 0.0177 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0171 12.660 18.865 23.310 54.442 58.386 21 27.99 0.0177 12.998 19.869 24.629 57.495 62.951 22 27.71 0.0180 13.044 19.986 24.783 57.853 63.671 24 28.01 0.0177 12.983 19.848 24.002 57.433 62.922	10	29.19	0.0170	12.583	19.308	23.886	55.777	60.314
12 30.18 0.0177 12.309 18.928 23.390 54.627 58.886 13 30.50 0.0167 12.309 18.928 23.390 54.627 58.886 14 30.18 0.0173 12.463 19.143 23.670 55.277 59.882 15 30.45 0.0177 12.321 18.945 23.412 54.678 59.140 17 28.01 0.0177 12.321 18.945 23.412 54.678 59.140 17 28.01 0.0177 12.321 18.945 23.412 54.678 59.140 17 28.01 0.0177 12.321 18.945 23.412 54.678 57.611 62.999 18 28.69 0.0171 12.620 19.357 23.951 55.928 60.465 21 27.73 0.0180 13.084 19.986 24.783 57.853 63.671 22 27.71 0.0181 13.261 20.223 25.099 58.583	11	30.23	0.0172	12.374	19.021	23.510	54.904	59.608
13 30.50 0.0167 12.309 18.928 23.390 54.627 58.981 14 30.18 0.0173 12.266 18.865 23.310 54.440 58.628 15 30.45 0.0177 12.321 18.945 23.112 54.678 59.140 17 28.01 0.0177 13.026 19.907 24.678 57.611 62.999 18 28.69 0.0174 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0171 12.266 18.865 23.310 54.442 58.386 21 27.99 0.0177 12.998 19.869 24.629 57.495 62.951 22 27.71 0.0180 13.084 19.986 24.783 57.853 63.671 24 28.01 0.0172 12.913 19.483 24.102 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.127	12	30.18	0.0177	12.309	18.928	23.390	54.627	58.886
14 30.18 0.0173 12.463 19.143 23.670 55.277 59.882 15 30.45 0.0173 12.266 18.865 23.310 54.440 58.628 16 30.06 0.0177 12.321 18.945 23.412 54.678 59.140 17 28.01 0.0177 12.326 19.907 24.678 57.611 62.999 18 28.69 0.0171 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0171 12.266 19.357 23.951 55.928 60.465 21 27.99 0.0177 12.983 19.869 24.629 57.495 62.951 22 27.71 0.0180 13.024 19.986 24.783 57.853 63.671 24 28.01 0.0177 12.983 19.848 24.602 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.129 26 28.93 0.0176 12.947 19.800 24.538 <th>13</th> <th>30.50</th> <th>0.016/</th> <th>12.309</th> <th>18.928</th> <th>23.390</th> <th>54.627</th> <th>58.981</th>	13	30.50	0.016/	12.309	18.928	23.390	54.627	58.981
15 30.45 0.0175 12.266 18.865 23.310 54.440 58.628 16 30.06 0.0177 12.321 18.945 23.412 54.678 59.140 17 28.01 0.0173 12.862 19.686 24.386 56.933 61.751 19 30.56 0.0174 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0171 12.620 19.357 23.951 55.928 60.465 21 27.79 0.0180 13.028 20.178 25.040 58.446 64.685 23 27.73 0.0180 13.084 19.986 24.783 57.853 63.671 24 28.01 0.0177 12.983 19.848 24.602 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.129 26 28.93 0.0176 12.947 19.800 24.538 57.285 62.801	14	30.18	0.0173	12.463	19.143	23.670	55.277	59.882
16 50.06 0.0177 12.321 18.943 23.412 54.678 57.611 62.999 17 28.01 0.0177 13.026 19.907 24.678 57.611 62.999 18 28.69 0.0174 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0171 12.620 19.357 23.951 55.928 60.465 21 27.99 0.0177 12.998 19.869 24.629 57.495 62.951 22 27.71 0.0180 13.028 20.178 25.040 58.446 64.685 23 27.73 0.0180 13.084 19.986 24.783 57.853 63.671 24 28.01 0.0177 12.983 19.848 24.602 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.657 29 28.26 0.0176 12.2471 19.800 24.538 57.28	15	30.45	0.0173	12.200	18.805	23.310	54.440	50.140
17 28.01 0.0177 13.026 19.907 24.078 56.933 61.751 19 30.56 0.0174 12.266 18.865 23.310 54.442 58.386 20 29.07 0.0171 12.620 19.357 23.951 55.928 60.465 21 27.99 0.0177 12.998 19.869 24.629 57.495 62.951 22 27.71 0.0180 13.228 20.178 25.040 58.446 64.685 23 27.73 0.0180 13.084 19.986 24.783 57.853 65.129 26 28.93 0.0172 12.713 19.483 24.118 56.314 60.749 27 27.57 0.0184 13.168 20.097 24.932 58.198 64.639 28 27.42 0.0191 13.261 20.223 25.099 58.583 65.567 29 28.26 0.0176 12.947 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.270 18.870 23.316 <th>10</th> <th>28.01</th> <th>0.0177</th> <th>12.321</th> <th>10.007</th> <th>23.412</th> <th>57.611</th> <th>59.140 62.000</th>	10	28.01	0.0177	12.321	10.007	23.412	57.611	59.140 62.000
10 26.05 0.0173 12.802 19.866 24.386 50.333 0.01731 19 30.56 0.0174 12.262 19.357 23.951 55.928 60.465 20 29.07 0.0177 12.998 19.869 24.629 57.495 62.951 22 27.71 0.0180 13.024 19.986 24.783 57.853 63.671 24 28.01 0.0177 12.983 19.848 24.602 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.129 26 28.93 0.0172 12.713 19.483 24.118 56.314 60.749 27 27.57 0.0184 13.168 20.097 24.932 58.198 64.639 28 27.42 0.0191 13.261 20.223 25.099 58.583 65.567 29 28.26 0.0176 12.947 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.270 18.870 23.316 <th>17</th> <th>28.60</th> <th>0.0177</th> <th>12.862</th> <th>19.907</th> <th>24.076</th> <th>56.023</th> <th>61 751</th>	17	28.60	0.0177	12.862	19.907	24.076	56.023	61 751
20 29.07 0.0171 12.260 19.357 23.510 55.928 60.465 21 27.99 0.0177 12.998 19.869 24.629 57.495 62.951 22 27.71 0.0183 13.228 20.178 25.040 58.446 64.685 23 27.73 0.0180 13.084 19.986 24.783 57.853 63.671 24 28.01 0.0177 12.998 19.848 24.602 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.129 26 28.93 0.0172 12.713 19.483 24.118 56.314 60.749 27 27.57 0.0184 13.168 20.097 24.932 58.198 64.639 28 27.42 0.0191 13.261 20.223 25.099 58.583 65.567 29 28.26 0.0176 12.947 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.269 18.869 23.316 <th>10</th> <th>20.09</th> <th>0.0173</th> <th>12.802</th> <th>18 865</th> <th>24.380</th> <th>54 442</th> <th>58 386</th>	10	20.09	0.0173	12.802	18 865	24.380	54 442	58 386
21 27.99 0.0177 12.998 19.869 24.629 57.495 62.951 22 27.71 0.0183 13.228 20.178 25.040 58.446 64.685 23 27.73 0.0180 13.084 19.986 24.629 57.433 63.671 24 28.01 0.0177 12.983 19.848 24.602 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.129 26 28.93 0.0172 12.713 19.483 24.118 56.314 60.749 27 27.57 0.0184 13.168 20.097 24.932 58.198 64.639 28 27.42 0.0171 12.647 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.269 18.869 23.316 54.454 58.386 31 31.84 0.0179 12.270 18.870 23.317 54.454 58.386 32 29.01 0.0171 12.685 19.447 24.069 <th>20</th> <th>29.07</th> <th>0.0174</th> <th>12.200</th> <th>19 357</th> <th>23.910</th> <th>55 928</th> <th>50.500 60.465</th>	20	29.07	0.0174	12.200	19 357	23.910	55 928	50.500 60.465
22 27.71 0.0183 13.228 20.178 21.020 58.446 64.685 23 27.73 0.0180 13.084 19.986 24.783 57.853 63.671 24 28.01 0.0177 12.983 19.848 24.602 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.129 26 28.93 0.0172 12.713 19.483 24.118 56.314 60.749 27 27.57 0.0184 13.168 20.097 24.932 58.198 64.639 28 27.42 0.0191 13.261 20.223 25.099 58.583 65.567 29 28.26 0.0176 12.947 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.269 18.869 23.317 54.457 58.386 31 31.84 0.0173 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0175 12.280 18.892 23.497 <th>21</th> <th>27.99</th> <th>0.0177</th> <th>12.020</th> <th>19.869</th> <th>23.551</th> <th>57 495</th> <th>62 951</th>	21	27.99	0.0177	12.020	19.869	23.551	57 495	62 951
23 27.73 0.0180 13.084 19.986 24.783 57.853 63.671 24 28.01 0.0177 12.983 19.848 24.602 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.129 26 28.93 0.0172 12.713 19.483 24.118 56.314 60.749 27 27.57 0.0184 13.168 20.097 24.932 55.8198 64.639 28 27.42 0.0191 13.261 20.223 25.099 58.583 65.657 29 28.26 0.0176 12.947 19.800 24.538 57.285 62.801 30 30.50 0.0176 12.290 18.869 23.316 54.457 58.386 31 31.84 0.0179 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0175 12.269 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.266 19.687 24.387 <th>22</th> <th>27.71</th> <th>0.0183</th> <th>13 228</th> <th>20 178</th> <th>25.040</th> <th>58 446</th> <th>64 685</th>	22	27.71	0.0183	13 228	20 178	25.040	58 446	64 685
24 28.01 0.0177 12.983 19.848 24.602 57.433 62.922 25 27.49 0.0191 13.261 20.223 25.099 58.583 65.129 26 28.93 0.0172 12.713 19.483 24.118 56.314 60.749 27 27.57 0.0184 13.168 20.097 24.932 58.198 64.639 28 27.42 0.0191 13.261 20.223 25.099 58.583 65.567 29 28.26 0.0176 12.249 18.869 23.316 54.454 58.386 30 30.50 0.0180 12.269 18.869 23.317 54.457 58.386 31 31.84 0.0173 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0173 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.266 19.687 24.387 56.937 61.924	23	27.73	0.0180	13.084	19.986	24.783	57.853	63.671
25 27.49 0.0191 13.261 20.223 25.099 58.583 65.129 26 28.93 0.0172 12.713 19.483 24.118 56.314 60.749 27 27.57 0.0184 13.168 20.097 24.932 58.198 64.639 28 27.42 0.0191 13.261 20.223 25.099 58.583 65.567 29 28.26 0.0176 12.247 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.269 18.869 23.316 54.454 58.386 31 31.84 0.0179 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0175 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0175 12.286 18.895 23.348 54.530 58.477	24	28.01	0.0177	12.983	19.848	24.602	57.433	62.922
26 28.93 0.0172 12.713 19.483 24.118 56.314 60.749 27 27.57 0.0184 13.168 20.097 24.932 58.198 64.639 28 27.42 0.0191 13.261 20.223 25.099 58.583 65.567 29 28.26 0.0176 12.947 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.269 18.869 23.316 54.454 58.386 31 31.84 0.0179 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0175 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0175 12.2861 19.687 24.387 56.937 61.924 36 28.68 0.0170 12.286 18.895 23.348 54.530 58.47	25	27.49	0.0191	13.261	20.223	25.099	58.583	65.129
27 27.57 0.0184 13.168 20.097 24.932 58.198 64.639 28 27.42 0.0191 13.261 20.223 25.099 58.583 65.567 29 28.26 0.0176 12.947 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.269 18.869 23.316 54.454 58.386 31 31.84 0.0179 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0175 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0170 12.2863 19.687 24.387 56.937 61.924 36 28.68 0.0173 12.766 19.556 42.14 56.537 61.698 37 2.16 0.0174 12.454 19.131 23.654 55.239 59.627<	26	28.93	0.0172	12.713	19.483	24.118	56.314	60.749
28 27.42 0.0191 13.261 20.223 25.099 58.583 65.567 29 28.26 0.0176 12.947 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.269 18.869 23.316 54.454 58.386 31 31.84 0.0179 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0171 12.685 19.447 24.069 56.201 60.643 33 29.91 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0173 12.766 19.556 24.214 56.537 61.924 36 28.68 0.0173 12.2481 19.167 23.701 55.349 69.271 37 32.16 0.0174 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0178 13.029 19.911 24.684 57.625 63.22	27	27.57	0.0184	13.168	20.097	24.932	58.198	64.639
29 28.26 0.0176 12.947 19.800 24.538 57.285 62.801 30 30.50 0.0180 12.269 18.869 23.316 54.454 58.386 31 31.84 0.0179 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0171 12.685 19.447 24.069 56.201 60.643 33 29.91 0.0175 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0175 12.863 19.687 24.387 56.937 61.924 36 28.68 0.0173 12.766 19.556 24.214 56.537 61.698 37 32.16 0.0174 12.454 19.131 23.654 55.239 59.627 39 29.60 0.0178 13.029 19.911 24.684 57.625 63.220	28	27.42	0.0191	13.261	20.223	25.099	58.583	65.567
30 30.50 0.0180 12.269 18.869 23.316 54.454 58.386 31 31.84 0.0179 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0171 12.685 19.447 24.069 56.201 60.643 33 29.91 0.0175 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0175 12.863 19.687 24.387 56.537 61.698 37 32.16 0.0170 12.286 18.895 23.348 54.530 58.477 38 29.71 0.0174 12.454 19.131 23.654 55.239 59.627 39 29.60 0.0178 13.029 19.911 24.684 57.625 63.220 41 30.72 0.0168 12.336 18.867 23.317 54.457 58.386	29	28.26	0.0176	12.947	19.800	24.538	57.285	62.801
31 31.84 0.0179 12.270 18.870 23.317 54.457 58.386 32 29.01 0.0171 12.685 19.447 24.069 56.201 60.643 33 29.91 0.0175 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0175 12.863 19.687 24.387 56.937 61.924 36 28.68 0.0170 12.286 18.895 23.348 54.530 58.477 38 29.71 0.0174 12.454 19.131 23.654 55.239 59.627 39 29.60 0.0173 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0178 13.029 19.911 24.684 57.625 63.220 41 30.72 0.0168 12.336 18.967 23.317 54.457 58.386	30	30.50	0.0180	12.269	18.869	23.316	54.454	58.386
32 29.01 0.0171 12.685 19.447 24.069 56.201 60.643 33 29.91 0.0175 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0175 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0175 12.863 19.687 24.387 56.937 61.924 36 28.68 0.0170 12.286 18.895 23.348 54.530 58.477 38 29.71 0.0174 12.454 19.131 23.654 55.239 59.627 39 29.60 0.0173 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0168 12.336 18.967 23.317 54.457 58.884 42 30.55 0.0168 12.336 18.967 23.391 54.629 59.007	31	31.84	0.0179	12.270	18.870	23.317	54.457	58.386
33 29.91 0.0175 12.290 18.892 23.349 54.531 59.584 34 29.61 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0175 12.863 19.687 24.387 56.937 61.924 36 28.68 0.0173 12.766 19.556 24.214 56.537 61.698 37 32.16 0.0170 12.2861 18.895 23.348 54.530 58.477 38 29.71 0.0174 12.454 19.131 23.654 55.239 59.627 39 29.60 0.0173 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0178 13.029 19.911 24.684 57.625 63.220 41 30.72 0.0180 12.230 18.870 23.317 54.457 58.386 42 30.43 0.0167 12.309 18.929 23.391 54.629 59.00	32	29.01	0.0171	12.685	19.447	24.069	56.201	60.643
34 29.61 0.0173 12.511 19.208 23.755 55.474 60.304 35 28.29 0.0175 12.863 19.687 24.387 56.937 61.924 36 28.68 0.0173 12.766 19.556 24.214 56.537 61.924 37 32.16 0.0170 12.2861 18.895 23.348 54.530 58.477 38 29.71 0.0174 12.454 19.131 23.654 55.239 59.627 39 29.60 0.0173 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0178 13.029 19.911 24.684 57.625 63.220 41 30.72 0.0180 12.270 18.870 23.317 54.457 58.386 42 30.55 0.0168 12.336 18.929 23.391 54.629 59.007 43 30.43 0.0167 12.309 18.929 23.391 54.842 58.96	33	29.91	0.0175	12.290	18.892	23.349	54.531	59.584
35 28.29 0.0175 12.863 19.687 24.387 56.937 61.924 36 28.68 0.0173 12.766 19.556 24.214 56.537 61.924 37 32.16 0.0170 12.286 18.895 23.348 54.530 58.477 38 29.71 0.0174 12.454 19.131 23.654 55.239 59.627 39 29.60 0.0173 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0178 13.029 19.911 24.684 57.625 63.220 41 30.72 0.0180 12.270 18.870 23.317 54.457 58.386 42 30.55 0.0168 12.336 18.967 23.440 54.744 59.050 43 30.43 0.0167 12.306 20.223 25.099 58.583 65.806 45 27.42 0.0174 12.469 19.695 24.398 56.962 62.475	34	29.61	0.0173	12.511	19.208	23.755	55.474	60.304
36 28.68 0.0173 12.766 19.556 24.214 56.537 61.698 37 32.16 0.0170 12.286 18.895 23.348 54.530 58.477 38 29.71 0.0174 12.286 18.895 23.348 54.530 58.477 39 29.60 0.0173 12.481 19.131 23.654 55.239 59.627 39 29.60 0.0173 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0178 13.029 19.911 24.684 57.625 63.220 41 30.72 0.0180 12.270 18.870 23.317 54.457 58.386 42 30.55 0.0168 12.336 18.967 23.440 54.744 59.050 43 30.43 0.0167 12.309 18.929 23.391 54.629 59.007 44 27.42 0.0191 13.261 20.223 25.099 58.583 65.806	35	28.29	0.0175	12.863	19.687	24.387	56.937	61.924
37 32.16 0.0170 12.286 18.895 23.348 54.530 58.477 38 29.71 0.0174 12.2454 19.131 23.654 55.239 59.627 39 29.60 0.0173 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0178 13.029 19.911 24.684 57.625 63.220 41 30.72 0.0180 12.270 18.870 23.317 54.457 58.386 42 30.55 0.0168 12.309 18.929 23.391 54.629 59.007 44 27.42 0.0191 13.261 20.223 25.099 58.583 65.806 45 27.42 0.0179 12.276 18.880 23.329 54.484 58.806 45 27.42 0.0179 12.267 18.880 23.329 54.843 65.806 46 28.27 0.0179 12.255 18.993 23.473 54.821 59.281 47 32.02 0.0179 12.255 18.840 23.329 <th>36</th> <th>28.68</th> <th>0.0173</th> <th>12.766</th> <th>19.556</th> <th>24.214</th> <th>56.537</th> <th>61.698</th>	36	28.68	0.0173	12.766	19.556	24.214	56.537	61.698
38 29.71 0.0174 12.454 19.151 23.654 55.239 59.627 39 29.60 0.0173 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0178 13.029 19.911 24.684 57.625 63.220 41 30.72 0.0180 12.270 18.870 23.317 54.457 58.386 42 30.55 0.0168 12.336 18.967 23.440 54.744 59.050 43 30.43 0.0167 12.309 18.929 23.391 54.629 59.007 44 27.42 0.0191 13.261 20.223 25.099 58.583 65.806 45 27.42 0.0179 12.276 18.880 23.329 54.484 58.906 46 28.27 0.0179 12.276 18.880 23.329 54.484 58.9281 47 32.02 0.0173 12.355 18.993 23.473 54.821 59.28	37	32.16	0.0170	12.286	18.895	23.348	54.530	58.477
39 29.60 0.0173 12.481 19.167 23.701 55.349 60.271 40 27.80 0.0178 13.029 19.911 24.684 57.625 63.220 41 30.72 0.0178 13.029 19.911 24.684 57.625 63.220 42 30.72 0.0180 12.270 18.870 23.317 54.457 58.386 42 30.55 0.0168 12.336 18.967 23.391 54.629 59.007 44 27.42 0.0191 13.261 20.223 25.099 58.583 65.806 45 27.42 0.0179 12.276 18.880 23.329 54.484 58.900 46 28.27 0.0179 12.276 18.880 23.329 54.484 58.90 47 32.02 0.0173 12.355 18.993 23.473 54.821 59.281 48 31.84 0.0173 12.355 18.913 23.473 54.482 59.281<	38	29.71	0.0174	12.454	19.131	23.654	55.239	59.627
40 27.80 0.0178 13.029 19.911 24.084 57.625 65.220 41 30.72 0.0180 12.270 18.870 23.317 54.457 58.386 42 30.55 0.0168 12.336 18.967 23.340 54.457 58.386 43 30.43 0.0167 12.309 18.929 23.391 54.629 59.007 44 27.42 0.0191 13.261 20.223 25.099 58.583 65.806 45 27.42 0.0179 12.276 18.880 23.329 54.424 58.983 46 28.27 0.0179 12.276 18.880 23.329 54.484 58.390 48 31.84 0.0173 12.355 18.993 23.473 54.821 59.281 49 29.75 0.0174 12.455 19.132 23.655 55.242 59.717 50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	39	29.60	0.0173	12.481	19.16/	23.701	55.349	60.271
41 50.72 0.0180 12.270 18.870 25.317 54.437 58.380 42 30.55 0.0168 12.326 18.967 23.440 54.744 59.050 43 30.43 0.0167 12.309 18.929 23.391 54.629 59.007 44 27.42 0.0191 13.261 20.223 25.099 58.583 65.806 45 27.42 0.0176 12.869 19.695 24.398 56.962 62.475 46 28.27 0.0176 12.869 19.695 24.398 56.962 62.475 47 32.02 0.0179 12.276 18.880 23.329 54.484 58.390 48 31.84 0.0173 12.355 18.993 23.473 54.821 59.281 49 29.75 0.0174 12.455 19.132 23.655 55.242 59.779 50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	40	27.80	0.0178	13.029	19.911	24.684	57.625	63.220 59.296
42 50.53 0.0166 12.536 18.907 23.440 34.744 59.007 43 30.43 0.0167 12.309 18.929 23.391 54.629 59.007 44 27.42 0.0191 13.261 20.223 25.099 58.583 65.806 45 27.42 0.0171 13.261 20.223 25.099 58.583 65.806 46 28.27 0.0176 12.869 19.695 24.398 56.962 62.475 47 32.02 0.0179 12.276 18.880 23.329 54.484 58.390 48 31.84 0.0173 12.355 18.993 23.473 54.821 59.281 49 29.75 0.0174 12.455 19.132 23.655 55.242 59.791 50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	41	30.72	0.0160	12.270	18.8/0	23.317	54.457	28.280 50.050
4.5 50.43 0.0167 12.305 13.262 23.351 54.025 53.077 44 27.42 0.0191 13.261 20.223 25.099 58.583 65.806 45 27.42 0.0191 13.261 20.223 25.099 58.583 65.806 46 28.27 0.0176 12.869 19.695 24.398 56.962 62.475 47 32.02 0.0179 12.276 18.880 23.329 54.484 58.390 48 31.84 0.0173 12.355 18.993 23.473 54.821 59.281 49 29.75 0.0174 12.455 19.132 23.655 55.242 59.779 50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	42	30.33	0.0108	12.330	18.020	23.440	54.744	59.030
45 27.42 0.0191 13.261 20.223 25.099 58.583 65.806 46 28.27 0.0176 12.869 19.695 24.398 56.962 62.475 47 32.02 0.0173 12.355 18.880 23.329 54.484 58.390 48 31.84 0.0173 12.355 18.993 23.473 54.821 59.281 49 29.75 0.0174 12.455 19.132 23.655 55.242 59.779 50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	44	27.42	0.0107	13 261	20 223	25.571	58 583	65 806
46 28.27 0.0176 12.869 19.695 24.398 56.962 62.475 47 32.02 0.0179 12.276 18.880 23.329 54.484 58.390 48 31.84 0.0173 12.355 18.993 23.473 54.821 59.281 49 29.75 0.0174 12.455 19.132 23.655 55.242 59.779 50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	45	27.42	0.0191	13.201	20.223	25.099	58 583	65.806
47 32.02 0.0179 12.276 18.880 23.329 54.484 58.390 48 31.84 0.0173 12.355 18.993 23.473 54.821 59.281 49 29.75 0.0174 12.455 19.132 23.655 55.242 59.779 50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	46	28.27	0.0176	12.869	19.695	24.398	56,962	62.475
48 31.84 0.0173 12.355 18.993 23.473 54.821 59.281 49 29.75 0.0174 12.455 19.132 23.655 55.242 59.779 50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	47	32.02	0.0179	12.276	18.880	23.329	54.484	58.390
49 29.75 0.0174 12.455 19.132 23.655 55.242 59.779 50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	48	31.84	0.0173	12.355	18,993	23,473	54.821	59,281
50 30.24 0.0178 12.267 18.865 23.310 54.442 58.813	49	29.75	0.0174	12.455	19.132	23.655	55.242	59.779
	50	30.24	0.0178	12.267	18.865	23.310	54.442	58.813

Fig. 6 Generator 5 speed deviation considering both controller and location.

Fig. 7 Generator 5 variation of rotor angle difference considering both controller and location.

Fig. 10 indicates the voltage profile for the 2nd load level. This figure has three response forms: the response without SVC installation, the best and the worst voltage deviation responses. As it can be seen from this figure, even in the worst voltage deviation response, most bus voltages have been improved; but due to bus voltage limits, they are not noticeable.

Fig. 8 Generator 8 variation of rotor angle difference considering both only controller.

Fig. 9 Generator 8 speed deviation considering both only controller.

Another point is related to bus 19 as indicated in the enlarged insertion in Fig. 10. At this bus, the voltage is significantly increased by using the transformer tap value of 1.06. The MOPSO algorithm tries to find the responses which have no increased voltage at this bus. This bus has no electrical load.

V. CONCLUSION

In this study, the MOPSO has been utilized as a multi objective optimization technique to define the optimum position, size and parameter setting of SVC in a system with multiple machines. In this research, four objectives have been considered to improve both the static and dynamic conditions. The combination of the active power loss cost and SVC investment cost has been considered as an objective to reach an accurate and practical solution. Improvement of the transient stability and voltage profile of the system have been considered as two separate objectives. Also, an additional controller has been utilized and improved to enhance the performance of SVC in refining the power system transient stability. A 10machine 39-bus New England test system has been utilized to validate the efficacy of suggested MOPSOoptimized size, position and controller parameter setting of the SVC. The nonlinear simulations have revealed that the suggested size, position and controller parameter setting of SVC are different in dynamic and static conditions.

REFERENCES

- N. G. Hingorani, L. Gyugyi, and M. El-Hawary, Understanding FACTS: concepts and technology of flexible AC transmission systems vol. 1: IEEE press New York, 2000.
- [2] S. Gerbex, R. Cherkaoui, and A. J. Germond, "Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms," *Power Systems, IEEE Transactions on*, vol. 16, pp. 537-544, 2001.
- [3] Y. Lu and A. Abur, "Static security enhancement via optimal utilization of thyristor-controlled series capacitors," *Power Systems, IEEE Transactions on*, vol. 17, pp. 324-329, 2002.
- [4] S. Singh and A. David, "Congestion management by optimising FACTS device location," in *Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT* 2000. International Conference on, 2000, pp. 23-28.
- [5] D. Mondal, A. Chakrabarti, and A. Sengupta, "Optimal placement and parameter setting of SVC and TCSC using PSO to mitigate small signal stability problem," *International Journal of Electrical Power & Energy Systems*, vol. 42, pp. 334-340, 2012.

- [6] M. Haque, "Best location of SVC to improve first swing stability limit of a power system," *Electric power systems research*, vol. 77, pp. 1402-1409, 2007.
- [7] M. Gitizadeh and S. Ghavidel, "Improving Transient Stability with Multi-objective Allocation and Parameter Setting of SVC in a Multi-machine Power System," *IETE Journal of Research*, vol. 60, pp. 33-41, 2014.
- [8] M. Gitizadeh, S. Ghavidel, and J. Aghaei, "Using SVC to economically improve transient stability in long transmission lines," *IETE Journal of Research*, vol. 60, pp. 319-327, 2014.
- [9] W. Ongsakul and P. Bhasaputra, "Optimal power flow with FACTS devices by hybrid TS/SA approach," *International journal* of electrical power & energy systems, vol. 24, pp. 851-857, 2002.
- [10] S.-K. Wang, J.-P. Chiou, and C.-W. Liu, "Parameters tuning of power system stabilizers using improved ant direction hybrid differential evolution," *International Journal of Electrical Power* & *Energy Systems*, vol. 31, pp. 34-42, 2009.
- [11] H. E. Talaat, A. Abdennour, and A. A. Al-Sulaiman, "Design and experimental investigation of a decentralized GA-optimized neurofuzzy power system stabilizer," *International Journal of Electrical Power & Energy Systems*, vol. 32, pp. 751-759, 2010.
- [12] K. Chandrasekaran, S. P. Simon, and N. P. Padhy, "Cuckoo Search Algorithm for Emission Reliable Economic Multi-objective Dispatch Problem," *IETE Journal of Research*, vol. 60, pp. 128-138, 2014.
- [13] M. Ghasemi, M. Taghizadeh, S. Ghavidel, J. Aghaei, and A. Abbasian, "Solving optimal reactive power dispatch problem using a novel teaching–learning-based optimization algorithm," *Engineering Applications of Artificial Intelligence*, vol. 39, pp. 100-108, 2015.
- [14] M. Ghasemi, M. M. Ghanbarian, S. Ghavidel, S. Rahmani, and E. M. Moghaddam, "Modified teaching learning algorithm and double differential evolution algorithm for optimal reactive power dispatch problem: A comparative study," *Information Sciences*, vol. 278, pp. 231-249, 2014.
- [15] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," *Evolutionary Computation, IEEE Transactions on*, vol. 8, pp. 256-279, 2004.
- [16] P. Ngatchou, A. Zarei, and M. El-Sharkawi, "Pareto multi objective optimization," in *Intelligent Systems Application to Power Systems*, 2005. Proceedings of the 13th International Conference on, 2005, pp. 84-91.
- [17] S. Mostaghim and J. Teich, "Covering pareto-optimal fronts by subswarms in multi-objective particle swarm optimization," in *Evolutionary Computation*, 2004. CEC2004. Congress on, 2004, pp. 1404-1411.
- [18] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control vol. 4: McGraw-hill New York, 1994.
- [19] A. Zamora-Cárdenas and C. R. Fuerte-Esquivel, "Multi-parameter trajectory sensitivity approach for location of series-connected controllers to enhance power system transient stability," *Electric Power Systems Research*, vol. 80, pp. 1096-1103, 2010.
- [20] Y. Abdel-Magid and M. Abido, "Optimal multiobjective design of robust power system stabilizers using genetic algorithms," *Power Systems, IEEE Transactions on*, vol. 18, pp. 1125-1132, 2003.