
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.”

Test Adequacy Assessment Using Test-Defect

Coverage Analytic Model

Sharifah Mashita Syed-Mohamad1, Nur Hafizah Haron1 and Tom McBride2

1School of Computer Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia.
2Faculty of Information Technology, University of Technology, Sydney, 15 Broadway, Ultimo NSW 2007.

mashita@usm.my

Abstract—Software testing is an essential activity in software

development process that has been widely used as a means of

achieving software reliability and quality. The emergence of

incremental development in its various forms required a

different approach to determining the readiness of the software

for release. This approach needs to determine how reliable the

software is likely to be based on planned tests, not defect growth

and decline as typically shown in reliability growth models. A

combination of information from a number of sources into an

easily understood dashboard is expected to provide both

qualitative and quantitative analyses of test and defect coverage

properties. Hence, Test-Defect Coverage Analytic Model

(TDCAM) is proposed which combines test and defect coverage

information presented in a dashboard to help deciding whether

there are enough tests planned. A case study has been conducted

to demonstrate the usage of the proposed model. The visual

representations and results gained from the case study show the

benefits of TDCAM in assisting practitioners making informed

test adequacy-related decisions.

Index Terms—Defect Coverage; Iterative and Incremental

Development; Software Analytics; Software Testing.

I. INTRODUCTION

Software testing is a process by which quality of the software

under test can be identified. Information collected during

testing such as defect based indicators is used to decide

whether a piece of software is ready to be released. An early

process was to freeze the software code to prevent further

additions to the software functionality and then test it. Any

defects revealed by the testing process were then fixed and

retested. The rate of detection and fixing of outstanding

defects and the overall decline in the number of outstanding

defects with respect to time or testing effort indicates the level

of reliability and this has led to various software reliability

growth models [1-3]. However, these depended on being able

to hold the code steady for a fixed period in order to observe

the growing reliability. The emergence of incremental

development in its various forms required a different

approach to determining the readiness of the software for

release [4]. This approach needs to predict how reliable the

software is likely to be based on planned tests, not defect

growth and decline.

Researchers in the field of software testing often focus on

defining meaningful test coverage as measures which are

frequently used interchangeably with the notion of test

adequacy criteria. Test coverage is a measure of how well a

test suite tests a program in order to gauge the effectiveness

and completeness of testing [5-6]. Many studies suggest that

higher test coverage correlates with higher probability of

detecting more defects. However, it is often found that defects

are not uniformly distributed across modules but typically

clustered in large areas. It seems that a method that can

furnish several information simultaneously is needed to help

one determine the adequacy of tests. In light of this, this paper

proposes an integrated model of test adequacy assessment in

which results of testing are displayed graphically using

bubble charts. And deciding quickly whether there are

enough tests planned can be aided by presenting various

factors or measure visually in some form of dashboard.

The rest of the paper is organized as follows: Section II

describes the related works. Section III presents our proposed

work. This is then followed by a case study to validate our

proposed model presented in Section IV and Section V

concludes the paper.

II. RELATED WORK

Software testing is an important indicator of software

reliability and quality. The main problem of testing is to

ascertain the adequacy of tests that is typically judged when

enough coverage and effective tests are performed. There are

two main approaches to deciding whether software is ready

for release; test based indicators [7] and defect based

indicators [8-10]. Defect based indicators such as reliability

growth models and defect occurrence patterns in one

circumstance predicting defect occurrence in other

circumstances. Growth in reliability usually happens through

freezing the functionality at a certain stage during system

testing, and then fixing defects as they are detected. A growth

in reliability indicates the readiness of the software to be

released. However, this is observed during a stabilization

phase in which a time period where the software does not

have any more features added [4]. Software that is rapidly

evolving undergoes continuous changes and modifications

[11]. Rapidly evolving software projects (such as agile) might

not have a definitive stabilization phase during which

reliability can be examined. Therefore, there is a need to

predict how reliable the software is likely to be based on

planned tests, not defect growth and decline.

Test based indicators such as test coverage indicate the

thoroughness of testing. Some common test coverage criteria

include statement coverage, branch coverage,

condition/decision coverage, and path coverage. Mala et al.

[12] for example, used path, state and branch coverage to

define software test adequacy. Although some studies argue

that the effectiveness of defect detection does not correlate to

test coverage [13-14], other studies have presented evidence

that higher test coverage correlates with higher probability of

detecting more defects. Malaiya et al. [15] showed that the

mailto:mashita@usm.my
mailto:mashita@usm.my

192

Journal of Telecommunication, Electronic and Computer Engineering

growth in the number of defects detected was almost linearly

correlated with the growth in test coverage. Their finding

supports existing view that 80% branch coverage is often

adequate [16]. Mockus et al. [16] conducted case studies on

two industrial projects and concluded that increase in test

coverage is associated with decrease in post-released reported

defects.

Cai & Lyu [17] employs test coverage and mutation

analysis to investigate the relation between test coverage and

defects detecting capability for different testing profiles. He

found that test coverage contributes to noticeable amount of

defect coverage. However in both cases it is possible that the

indicators do not reflect reality or are impractical. Defect

based indicators are limited by the extent to which the future

mimics the past or, in the case of reliability growth measures,

the amount of time available to establish a measure. Test

coverage based measures do not, by themselves, draw

attention to defect prone code. Several studies show that

software defects are not randomly and uniformly distributed

throughout the software under test. Rather defects tend to be

found in clusters. A positive relationship between code

complexity and defects has been shown by a number of

studies [18-19]. These and, possibly other factors can be used

to predict differing levels of test coverage for different parts

of software under test. Therefore, we need a way to combine

the two measures that will better indicate the true state of the

software. More insights can be derived by combining

different kinds of analysis and metrics, summarizing,

filtering, modeling and experimenting the value of data and

information [20].

A bubble chart can be used to visualize several factors

simultaneously. Bubble chart is an extension of scatter chart

where instead of having two dimensions, it has the third

dimension (of the data point that can represent another set of

data by its size). Bubble charts have been used extensively to

represent and visualize data in various fields such as health,

information technology and finance [21].

Deciding quickly whether there are enough tests planned

can be aided by presenting various factors or measures

visually in some form of dashboard. Most software analytics

approaches focus on quantitative historical analysis, often

using dashboards [20]. Dashboards will help managers to

consistently monitor and measure certain aspect of the

software project such as its quality, reliability, maintainability

and complexity.

Clover is a commercial test coverage tool by Atlassian.

Features that are supported by Clover includes test coverage

by statement, branch, methods and complexity, identification

of the riskiest code in the software under test, and calculation

of other code metrics such as lines of codes (LOC) and class

complexity. Clover uses tree map to represent the relation of

code complexity of each component to the test coverage

percentage. With this, modules that are not fairly covered will

be highlighted in red to indicate to the user to focus on that

particular component. Components with more complex code

will be drawn using bigger rectangle. Hence, component with

more complex code that are poorly tested will be visually

clearer to the test managers as the size of the rectangle is

bigger and it is colored in red. However, Clover is not free

and seems to be for Java only.

eclEmma and SonarQube are examples of open source test

coverage tools that use JaCoCo (an open source test coverage

API) as its test coverage engine. It integrates test coverage

analysis into Eclipse IDE. eclEmma provides features such as

source code highlighting (according to coverage percentage)

and coverage dashboard. eclEmma coverage dashboard lists

out coverage summaries for the software under test, allowing

drill-down to method level.

SonarQube employs several other open source tools such

as GitHub for revision control and source code management,

and FindBugs for bugs prediction. SonarQube covers seven

axes of code quality: unit tests, test coverage, complexity of

the source code, bugs prediction, coding rules, duplicate

code, and complexity of the code. The dashboard is an

aggregation of more detailed metrics of the software under

test. Metrics such as lines of codes, number of files, test

coverage results and technical debt can be analyzed by this

tool. However, there seems to be lack of connection and

reasoning between test based indicators and defect based

indicators.

In summary, the emergence of incremental development in

its various forms demands an applicable means to

determining the readiness of software for release. We have to

predict how many test needed during planning and cannot

afford to wait then react to the number of defects one may

find during testing. We have knowledge of defect occurrence

in software that can predict what level of coverage is needed

for different parts of the software. We do not have a readily

available easily understood means to combine information

from a number of sources into an easily understood dashboard

that can help decision making about test coverage. Hence,

there is a need to combine the two indicators that will better

indicate the true state of the software.

III. TEST-DEFECT COVERAGE ANALYTIC MODEL

(TDCAM)

Test-Defect Coverage Analytic model (TDCAM) is

proposed that integrates test coverage and defect coverage

information into an easily understood dashboard to assist

decision making about test adequacy. Figure 1 depicts the

overview of our proposed model in the form of input, process

and output. The processes involved are data extraction, data

parsing and filtering, test analytics module and analytics

dashboard.

Figure 1: An overview of TDCAM model

The data acquisition/extraction process involves extracting

both test coverage and defect coverage datasets from test

coverage and defect tracking tools. The test coverage

indicator provides related test-based metrics such code

coverage. The defect coverage indicator provides defect

related metrics such as types and severity of defects. The data

parsing and filtering process involves filtering and removing

redundant and trivial data of our concerns, and selecting data

of our concern from the datasets extracted in the previous

Test Adequacy Assessment Using Test-Defect Coverage Analytic Model

process. In this process, data extracted from both datasets will

be aggregated into component level.

Three main steps involved in Data Analytics stage; metrics

calculation, data aggregation and data relation evaluation.

The first step involves calculating relevant metrics derived

from the two coverages. The metrics are aggregated to source

code components (units of implementation). Examples of the

metrics are shown in Table 1.

Table 1

Suite of Test Adequacy Metrics calculated by data analytics module

Name Metrics

DAR Defect Arrival Rate
DFR Defect Fixed Rate

NDC Total number of defects per component

NUDC Number of unresolved defects per component

BCC Branch coverage percentage per Component

 CCC Code Complexity

In order to support managers in making informed test

adequacy decision, we proposed both qualitative and

quantitative representations for the analytical view which is

in a dashboard form. The quantitative analytics approach

highlights high-level data trends thru statistical summaries of

various metrics. On the other hand, the qualitative analytics

approach emphasizes on the attributes and relationship of a

set of software artifacts and metrics of interest. As discussed

earlier, the bubble chart type with three dimensions of data is

chosen to represent the hybrid indicators of test adequacy

criteria. Figure 2 shows an example of the adopted bubble

chart in terms of the number of defects, branch coverage

measurement and code complexity.

Figure 2: Test-defect coverage information represented in a bubble chart

form

The y-axis represents the number of defects and x-axis

represents the branch coverage percentage. Another

dimension of data is depicted by the bubble size. The bubble

size represents a few options of defect-based or test-based

metrics such as the severity of defects or other useful related

metrics such as lines of code and complexity, as shown in

Figure 2. One can reasonably raise his or her concern on the

test adequacy of those components, or decide to put less

emphasis on components with low number of defects and

high branch coverage. To further indicate how complex the

code of each component is can be illustrated by the bubble’s

size and color. The bigger bubble size indicates a higher

complexity of a component. The bubble can be color-coded

with different colors according to its complexity such as red

for high complexity, orange for moderate and green for low

complexity code. This highlights which component is the hot

spot for test inadequacy.

A. Implementation

This paper serves as a proof of concept meant to

demonstrate how the model can be implemented. Apache POI

project was selected in which both defect and test coverage

data sets were extracted from open source repositories. Defect

datasets were retrieved from Bugzilla defect tracking system.

The extracted data are saved in xml (eXtensible Markup

Language) file format. Test coverage measurement datasets

were generated by running JUnit test cases provided in the

source code. JaCoCo test coverage library and API are used

to execute the JUnit test. JaCoCo provides a lightweight and

flexible library for integration with various build and

development tools. The API also supports complexity of the

code measurement as defined by McCabe. Results of the test

coverage are generated in csv (Comma-Separated Value) file

format.

In data filtering and analysis process, the Data Filter

Module filters and removes unwanted raw data from Data

Acquisition Module. This module employs XMLParser and

CSVParser API integrated into the eclipse IDE to extract and

filter needed data from the raw data extracted. Next is the

execution of the calculation module to calculate and analyze

metrics. The last process is the visualization of the results in

a dashboard.

Eclipse Birt is adopted and integrated into Eclipse IDE as a

reporting tool. It has the capability of reporting and charting

features much like Microsoft Excel but with capabilities to be

extended with user-defined analysis algorithm through Java

Objects and Classes. Design Report, Chart and Engine Report

API are provided by Eclipse Birt in order to support this

functionality.

Software test adequacy metrics calculated by the Data

Analytics Module are converted to Java objects through

classes and variables. These Java objects are the input for the

Eclipse Birt. The TDCAM tool has been implemented as an

Eclipse plugin. Figures 3 and Figure 4 depict the overall

implementation process mapped against open source tools

employed in our model, and the TDCAM drop-down menu

for users, respectively.

Users can choose to either extract or display Test Coverage

data in TDCAM Test Coverage view, extract and display

Defect Coverage data in TDCAM Defect Coverage view, run

data analysis or lastly to view data analysis result through a

dashboard.

Figure 3: Implementation overview of TDCAM

194

Journal of Telecommunication, Electronic and Computer Engineering

Figure 4: Drop-down menu for TDCAM tool

Mylyn connector was used to connect Eclipse IDE and the

defects tracking database. Mylyn is a task-focused interface

that can extends Eclipse capabilities to keep track of users’

tasks. A task is defined as any unit of work that users want to

retrieve or share with others, such as a bug reported by a user.

These tasks can be stored locally or in a task repository (such

as Bugzilla). Defects dataset extracted from the database are

saved into a text-based file format. TDCAM tool further

processes this extracted data and displays it in the Defect

Coverage view of TDCAM tool. The tool extracts relevant

attributes of each defect from the database such as BugID,

product name, component name, status, date reported, date

fixed, version number, severity and priority of the defects.

Results of the analysis are presented in a dashboard view, as

shown in Figure 5. TDCAM dashboard can be used to

visualize both quantitative and qualitative analyses.

Figure 5: TDCAM dashboard

IV. CASE STUDY

As mentioned earlier, Apache POI, an open source

software was selected to demonstrate the proposed work.

Apache POI is used to create and maintain Java APIs for

manipulating various Microsoft file formats such as

Microsoft Words, PowerPoint and Excel. It is chosen as our

case study based on the following criteria:

i. A number of literatures adopted Apache POI as their

case study. For example, Marian [22] proposed defect

prediction model and Inozemtseva & Holmes [13]

studied the relationship between test coverage, test

suite size and test effectiveness.

ii. Apache POI is actively being developed and

supported. Its first version was released in August

2003 and its latest release, version 3.11-beta3 was on

Nov 2014.

iii. 7 active developers are currently working on this

project. Number of defects reported and fixes can also

be an indicator of the collective effort of the team in

developing and maintaining the source codes. 179

defects are reported for Apache POI version 3.9

(which is the latest stable version at the time of our

implementation).

iv. Sufficient data for valid empirical analysis. Apache

POI source code is of reasonable size (>100,000

LOC). It also comes with extensive unit test. Its

defects database can also be publicly accessed via

Bugzilla. This allows us to run test coverage and

extract defect information from the database.

A. Data Analysis and Results

We extracted two artifacts which are software defects data

from the defects tracking system and test coverage

measurement results. At the time of our implementation,

version 3.9 is the latest stable release version for Apache POI.

Thus, this version was chosen as our basis for the data

analysis. We further filtered the defects by its resolution

status of “DUPLICATE”, “WORKSFORME”, “INVALID”

and “ENHANCEMENT”. Total number of defects remains

after filtering the defects is 144. We then categorized the

software defects according to its respective software

component name. Table 2 provides the information of test

and defect coverage metrics used in this study.

Based on the table, there are 4 components that have no

reported defects; hpbf, hmef, hdf and hdgf. It is found that

these components are legacy code from the earlier version of

the software under reviewed. Based on our observation of the

project’s change requests, the components have stabilized

over time.

Table 2

Apache Poi’s Test Adequacy Metrics for each component

Components
Code

lines

Defect

numbers

Defect

Density

Branch

Cov (%)

Code

Complexity

poifs 8703 4 0.5 47 18
hpsf 4500 1 0.25 62 20

hdgf 1209 0 0 38 7

hdf 15119 0 0 98 11

xslf 8224 8 1 34 22

xwpf 5809 12 2.4 60 17

hssf 44880 41 0.93 46 10

hwpf 34757 7 0.2 75 12

hslf 13736 8 0.61 63 10

hsmf 2877 1 0.5 38 6

hmef 996 0 0 60 9

xssf 41636 64 1.56 36 8

 hpbf 788 0 0 80 23

In this paper, we plotted 3 bubble charts to visualize several

defect-based and test-based metrics simultaneously, as shown

in Figures 6, Figure 7 and Figure 8. Based on Figure 6, two

components that should be of concern to developers or testers

are xssf and hssf components, as the number of defects is

relatively high compared to other components. The

percentages of branch coverage for those two components are

also less than 60% which should alarm them on the

thoroughness of tests. The bubble chart also shows a

distribution of test-defect metrics against lines of code (LOC)

for each component. LOC has been shown to have correlation

Test Adequacy Assessment Using Test-Defect Coverage Analytic Model

with other quality metrics such as number of defects and

defect density. Many defect-free components tend to be small

in size [23] and our result appears to be consistent with the

existing findings.

Figure 6: Combination of test-defect coverage and lines of code metrics

Figure 7: Test-defect coverage metrics mapped against severity of defects

Figure 8: Test-defect coverage metrics mapped against number of

unresolved defects

Figure 7 displays the information of test-defect coverage

metrics mapped against severity of defects, in which the

severity information is represented by the size of the bubble.

We determined the bubble size by calculating the ratio of high

severity defects for the component over the total number of

high severity defects for all components. Thus, the bubble

with the biggest size represents the component with the most

number of high severity defects compared to other

components. The hwpf component has relatively large lines

of codes, yet small number of high severity defects. One of

the possible reasons to this exception is that this component

is thoroughly tested as indicated by the branch coverage

percentage. The branch coverage measurement for this

component is high (around 80%) compared to other

components with large lines of codes (refer to component xssf

and hssf). This finding is supported by the works of Mockus

et al. [16] and Cai & Lyu [17] in which higher test coverage

relates to lower number of reported software defects.

Another criterion to determine if the software has been

adequately tested is by observing the number of remaining

defects (as shown in Figure 8). Due to certain limitation such

as time and cost, testers may decide that it is not necessary to

resolve all reported defects. Apart from highlighting which

component has the high number of defects but low branch

coverage, the chart also visualizes which component with the

most number of unresolved defects thru the bubble size. It

also shows certain components that are more prone to defects.

Hence, more resources and test should be focusing on these

defect-prone components.

B. Survey

As part of the evaluation, a short survey was developed to

get feedbacks pertaining to the usefulness of the model. Five

participants consist of four developers/testers and one

manager were asked to rate three questions by using five-

point Likert scale (5 – Strongly agree, 4 – Agree, 3 – Normal,

2 – Disagree and 1 – Strongly disagree). All of the

participants are actively being involved in development,

testing and maintaining various software projects at the

Centre for Knowledge, Communication and Technology and

School of Computer Sciences, Universiti Sains Malaysia

(USM).

We first conducted a demo session on how to use the tool

and then distributed the questionnaire to each participant after

the demo session. Participants were asked to try the tool and

answer the given questions. The first question concerns with

the usefulness of the tool in providing insight into software

under test based on test-defect coverage metrics. The result

shows 60% of the participants strongly agree that the bubble

chart is able to provide meaningful information about the

status of the software under test.

The participants were also asked to rate how easy for them

to use the tool. 80% of the participants agree that the tool is

easy to use while another 20% of the participants strongly

agree that the tool is indeed easy to use. The third question

concerns with whether the tool can be used to assist them in

making informed test adequacy-related decisions. 60% of the

participants strongly agree that the tool can help them in

making such decision, while the rest agree.

C. Discussion

1) Threats to validity.

This section concerns the possible construct and external

validity threats related to this study. The theoretical construct

is software test adequacy. The main variable we used to

assess software test adequacy is based on the number of

software defects. This is where the test adequacy and to be

exact, reliability of a software system is indicated by the

absence of failure, which in turn, is indicated by the presence

of defects. All measures used are justified and defined in this

paper to remove the risk to construct validity.

Our sampling includes five practitioners from two software

development centers. The small number of participants can

potentially introduce biases in the survey results. However,

the analysis on their responses suggests a similarly positive

response.

2) Lessons learned

Based on our case study results, it is observed that a

component with low branch coverage percentage tends to

have high number of detected defects. In addition, if the

196

Journal of Telecommunication, Electronic and Computer Engineering

component has low branch coverage and low number of

defects detected, the component either has small LOC or low

code complexity. It is therefore, advisable for test managers

to focus on the large components that are high in code

complexity.

Although, five responses are not enough to form any sort

of conclusion, but one can reasonably gain the benefits of

TDCAM in assisting practitioners making informed test

adequacy-related decisions, in particular for on-going

projects that are actively being developed. One can

continually assess the current state of the software on day-to-

day or week-to-week basis as needed. For instance, in agile

development projects, where the project cycle is faster and

shorter, monitoring the two main metrics of software test

adequacy can immediately alert managers on components

that are inadequately tested in any iteration.

V. CONCLUSION

The emergence of incremental development in its various

forms required a different approach to determining the

readiness of software for release. Test-Defect Coverage

Analytic Model (TDCAM) has been proposed to predict how

reliable the software is likely to be based on planned tests, not

defect growth and decline as typically shown in reliability

growth models.

TDCM combines two important metrics of test adequacy

criteria; test and defect coverage, to better indicate the true

state of the software. A bubble chart presented in a form of

dashboard is used to visualize several metrics on software

defects and test coverage simultaneously. The purpose is to

guide decision makers in testing to take informed decisions

on test readiness. One of the findings shows that a component

with high branch coverage and high number of defects

detected indicates that it either has a large number of LOC or

high in code complexity. So, practitioners can make better-

informed decisions about their tests.

It has been our aim to extend TDCAM to become a suite of

business analytics tool for software practitioners by

incorporating the elements of artificial intelligence where a

human’s intervention can be minimized.

ACKNOWLEDGMENT

This research is partly funded by the Short-Term Grant

(304/PKOMP/6312090) of the Universiti Sains Malaysia and

by Exploratory Research Grant Scheme

(203/PKOMP/673140) from the Ministry of Education of

Malaysia.

REFERENCES

[1] S. Yamada, J. Hishitasni, and S. Osaki, “Software-reliability growth

with a Weibull test-effort: a model and application,” IEEE

Transactions on Reliability, vol. 42, no. 1, pp. 100-106, 1993.

[2] A. Wood, “Software reliability growth models: assumptions vs.

reality,” in Proceedings of the Eighth International Symposium On

Software Reliability Engineering, 1997, pp. 136-141.

[3] M. R. Lyu, “Software reliability engineering: a roadmap,” in 2007

Future of Software Engineering IEEE Computer Society, 2007, pp.

153-170.

[4] S. M. Syed-Mohamad, An Empirical Investigation of Software

Reliability Indicators. University of Technology, Sydney, 2012.

[5] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage

and adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366-427,

1997.

[6] P. G. Frankl, R. G. Hamlet, B. Littlewood, and L. Strigini, “Evaluating

testing methods by delivered reliability,” IEEE Trans. On Soft. Eng.,

vol. 24, no. 8, pp. 586-601, 1998.

[7] L. Jihyun, S. Kang and D. Lee, “Survey on software testing practices,”

IET Soft., vol. 6, no. 3, pp. 275-282, 2012.

[8] T. L. Graves, A. F. Karr, J. S. Marron, H. Siy, “Predicting fault

incidence using software change history,” IEEE Trans. on Soft. Eng.

vol. 26, no. 7, pp. 653–661, 2000.

[9] N. Fenton, and O. Niclas, “Quantitative analysis of faults and failures

in a complex software system,” IEEE Trans on Soft. Eng., vol. 26, no.

8, pp. 797-814, 2000.

[10] N. Nagappan and T. Ball, “Use of relative code churn measures to

predict system defect density,” in Proceedings of the 27th IEEE

International Conference on Software Engineering (ICSE 2005), 2005,

pp. 284 – 292.

[11] S. M. Syed-Mohamad, and T. McBride, “Open source, agile and

reliability measures,” in Proceedings of the 12th International

Conference on Quality Engineering in Software Technology

(CONQUEST), Nuremberg, Germany: International Software Quality

Institute. 2009, pp. 103-118.

[12] J. D. Mala, V. Mohan and M. Kamalapriya, “Automated software test

optimisation framework-an artificial bee colony optimisation-based

approach,” IET Software, vol. 4, no. 5, pp. 334-348, 2010.

[13] L. Inozemtseva and R. Holmes, “Coverage is not strongly correlated

with test suite effectiveness,” in Proceedings of the 36th International

Conference on Software Engineering, 2014, pp. 435-445.
[14] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size vs.

bias in defect prediction,” in Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering, 2013, pp. 147-157.

[15] Y. K. Malaiya, M. N. Li, and J. M. Bieman, “Software reliability

growth with test coverage,” IEEE Transactions on Reliability, vol. 51,

no. 4, pp. 420-426, 2002.

[16] A. Mockus, N. Nagappan and T. T. Dinh-Trong, “Test coverage and

post-verification defects: A multiple case study,” in Proceedings of the

3rd IEEE International Symposium on Empirical Software Engineering

and Measurement (ESEM 2009), 2009, pp. 291-301.

[17] X. Cai, and M. R. Lyu, “The effect of code coverage on fault detection

under different testing profiles,” in Proceedings of the Workshop on

Advances in Model-Based Software Testing (A-MOST), St. Louis,

Missouri, 2005, pp. 1-7.

[18] E. J. Weyuker, “An empirical study of the complexity of data flow

testing,” in Proceedings of the Second Workshop on Software Testing,

Verification, and Analysis, 1988, pp. 188-195.

[19] T. M. Khoshgoftaar, and J. C. Munson, “Predicting software

development errors using software complexity metrics,” IEEE Journal

on Selected Areas in Communications, vol. 8, no. 2, pp. 253-261, 1990.

[20] O. Baysal, R. Holmes, and M. W. Godfrey, “Developer dashboards: the

need for qualitative analytics,” IEEE Software, vol. 30, no. 4, pp. 46-

52, 2013.

[21] S. Halliday, B. Karin and V. S. Rossouw, “A business approach to

effective information technology risk analysis and management,”

Information Management & Computer Security, vol. 4, no. 1, pp. 19-

31, 1996.

[22] J. Marian, “Significance of different software metrics in defect

prediction,” Software Engineering: An International Journal, vol. 1,

no. 1, pp. 86–95, 2012.

[23] A. Okutan, and O. T. Yildiz, “Software defect prediction using

Bayesian networks,” Empirical Software Engineering. vol. 19, no. 1,
pp. 154-181, 2014.

