
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



  

Test Adequacy Assessment Using Test-Defect 

Coverage Analytic Model 
 

Sharifah Mashita Syed-Mohamad1, Nur Hafizah Haron1 and Tom McBride2
 

1School of Computer Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia. 
2Faculty of Information Technology, University of Technology, Sydney, 15 Broadway, Ultimo NSW 2007. 

mashita@usm.my 

 

 
Abstract—Software testing is an essential activity in software 

development process that has been widely used as a means of 

achieving software reliability and quality. The emergence of 

incremental development in its various forms required a 

different approach to determining the readiness of the software 

for release. This approach needs to determine how reliable the 

software is likely to be based on planned tests, not defect growth 

and decline as typically shown in reliability growth models. A 

combination of information from a number of sources into an 

easily understood dashboard is expected to provide both 

qualitative and quantitative analyses of test and defect coverage 

properties. Hence, Test-Defect Coverage Analytic Model 

(TDCAM) is proposed which combines test and defect coverage 

information presented in a dashboard to help deciding whether 

there are enough tests planned. A case study has been conducted 

to demonstrate the usage of the proposed model. The visual 

representations and results gained from the case study show the 

benefits of TDCAM in assisting practitioners making informed 

test adequacy-related decisions. 

 

Index Terms—Defect Coverage; Iterative and Incremental 

Development; Software Analytics; Software Testing. 

 

 

I. INTRODUCTION 

 

Software testing is a process by which quality of the software 

under test can be identified. Information collected during 

testing such as defect based indicators is used to decide 

whether a piece of software is ready to be released. An early 

process was to freeze the software code to prevent further 

additions to the software functionality and then test it. Any 

defects revealed by the testing process were then fixed and 

retested. The rate of detection and fixing of outstanding 

defects and the overall decline in the number of outstanding 

defects with respect to time or testing effort indicates the level 

of reliability and this has led to various software reliability 

growth models [1-3]. However, these depended on being able 

to hold the code steady for a fixed period in order to observe 

the growing reliability. The emergence of incremental 

development in its various forms required a different 

approach to determining the readiness of the software for 

release [4]. This approach needs to predict how reliable the 

software is likely to be based on planned tests, not defect 

growth and decline. 

Researchers in the field of software testing often focus on 

defining meaningful test coverage as measures which are 

frequently used interchangeably with the notion of test 

adequacy criteria. Test coverage is a measure of how well a 

test suite tests a program in order to gauge the effectiveness 

and completeness of testing [5-6]. Many studies suggest that 

higher test coverage correlates with higher probability of 

 

detecting more defects. However, it is often found that defects 

are not uniformly distributed across modules but typically 

clustered in large areas. It seems that a method that can 

furnish several information simultaneously is needed to help 

one determine the adequacy of tests. In light of this, this paper 

proposes an integrated model of test adequacy assessment in 

which results of testing are displayed graphically using 

bubble charts. And deciding quickly whether there are 

enough tests planned can be aided by presenting various 

factors or measure visually in some form of dashboard. 

The rest of the paper is organized as follows: Section II 

describes the related works. Section III presents our proposed 

work. This is then followed by a case study to validate our 

proposed model presented in Section IV and Section V 

concludes the paper. 

 

II. RELATED WORK 

 

Software testing is an important indicator of software 

reliability and quality. The main problem of testing is to 

ascertain the adequacy of tests that is typically judged when 

enough coverage and effective tests are performed. There are 

two main approaches to deciding whether software is ready 

for release; test based indicators [7] and defect based 

indicators [8-10]. Defect based indicators such as reliability 

growth models and defect occurrence patterns in one 

circumstance predicting defect occurrence in other 

circumstances. Growth in reliability usually happens through 

freezing the functionality at a certain stage during system 

testing, and then fixing defects as they are detected. A growth 

in reliability indicates the readiness of the software to be 

released. However, this is observed during a stabilization 

phase in which a time period where the software does not 

have any more features added [4]. Software that is rapidly 

evolving undergoes continuous changes and modifications 

[11]. Rapidly evolving software projects (such as agile) might 

not have a definitive stabilization phase during which 

reliability can be examined. Therefore, there is a need to 

predict how reliable the software is likely to be based on 

planned tests, not defect growth and decline. 

Test based indicators such as test coverage indicate the 

thoroughness of testing. Some common test coverage criteria 

include statement coverage,  branch coverage, 

condition/decision coverage, and path coverage. Mala et al. 

[12] for example, used path, state and branch coverage to 

define software test adequacy. Although some studies argue 

that the effectiveness of defect detection does not correlate to 

test coverage [13-14], other studies have presented evidence 

that higher test coverage correlates with higher probability of 

detecting more defects. Malaiya et al. [15] showed that the 
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growth in the number of defects detected was almost linearly 

correlated with the growth in test coverage. Their finding 

supports existing view that 80% branch coverage is often 

adequate [16]. Mockus et al. [16] conducted case studies on 

two industrial projects and concluded that increase in test 

coverage is associated with decrease in post-released reported 

defects. 

Cai & Lyu [17] employs test coverage and mutation 

analysis to investigate the relation between test coverage and 

defects detecting capability for different testing profiles. He 

found that test coverage contributes to noticeable amount of 

defect coverage. However in both cases it is possible that the 

indicators do not reflect reality or are impractical. Defect 

based indicators are limited by the extent to which the future 

mimics the past or, in the case of reliability growth measures, 

the amount of time available to establish a measure. Test 

coverage based measures do not, by themselves, draw 

attention to defect prone code. Several studies show that 

software defects are not randomly and uniformly distributed 

throughout the software under test. Rather defects tend to be 

found in clusters. A positive relationship between code 

complexity and defects has been shown by a number of 

studies [18-19]. These and, possibly other factors can be used 

to predict differing levels of test coverage for different parts 

of software under test. Therefore, we need a way to combine 

the two measures that will better indicate the true state of the 

software. More insights can be derived by combining 

different kinds of analysis and  metrics, summarizing, 

filtering, modeling and experimenting the value of data and 

information [20]. 

A bubble chart can be used to visualize several factors 

simultaneously. Bubble chart is an extension of scatter chart 

where instead of having two dimensions, it has the third 

dimension (of the data point that can represent another set of 

data by its size). Bubble charts have been used extensively to 

represent and visualize data in various fields such as health, 

information technology and finance [21]. 

Deciding quickly whether there are enough tests planned 

can be aided by presenting various factors or measures 

visually in some form of dashboard. Most software analytics 

approaches focus on quantitative historical analysis, often 

using dashboards [20]. Dashboards will help managers to 

consistently monitor and measure certain aspect of the 

software project such as its quality, reliability, maintainability 

and complexity. 

Clover is a commercial test coverage tool by Atlassian. 

Features that are supported by Clover includes test coverage 

by statement, branch, methods and complexity, identification 

of the riskiest code in the software under test, and calculation 

of other code metrics such as lines of codes (LOC) and class 

complexity. Clover uses tree map to represent the relation of 

code complexity of each component to the test coverage 

percentage. With this, modules that are not fairly covered will 

be highlighted in red to indicate to the user to focus on that 

particular component. Components with more complex code 

will be drawn using bigger rectangle. Hence, component with 

more complex code that are poorly tested will be visually 

clearer to the test managers as the size of the rectangle is 

bigger and it is colored in red. However, Clover is not free 

and seems to be for Java only. 

eclEmma and SonarQube are examples of open source test 

coverage tools that use JaCoCo (an open source test coverage 

API) as its test coverage engine. It integrates test coverage 

analysis into Eclipse IDE. eclEmma provides features such as 

source code highlighting (according to coverage percentage) 

and coverage dashboard. eclEmma coverage dashboard lists 

out coverage summaries for the software under test, allowing 

drill-down to method level. 

SonarQube employs several other open source tools such 

as GitHub for revision control and source code management, 

and FindBugs for bugs prediction. SonarQube covers seven 

axes of code quality: unit tests, test coverage, complexity of 

the source code, bugs prediction, coding rules, duplicate 

code, and complexity of the code. The dashboard is an 

aggregation of more detailed metrics of the software under 

test. Metrics such as lines of codes, number of files, test 

coverage results and technical debt can be analyzed by this 

tool. However, there seems to be lack of connection and 

reasoning between test based indicators and defect based 

indicators. 

In summary, the emergence of incremental development in 

its various forms demands an applicable means to 

determining the readiness of software for release. We have to 

predict how many test needed during planning and cannot 

afford to wait then react to the number of defects one may 

find during testing. We have knowledge of defect occurrence 

in software that can predict what level of coverage is needed 

for different parts of the software. We do not have a readily 

available easily understood means to combine information 

from a number of sources into an easily understood dashboard 

that can help decision making about test coverage. Hence, 

there is a need to combine the two indicators that will better 

indicate the true state of the software. 

 

III. TEST-DEFECT COVERAGE ANALYTIC MODEL 

(TDCAM) 

 

Test-Defect Coverage Analytic model (TDCAM) is 

proposed that integrates test coverage and defect coverage 

information into an easily understood dashboard to assist 

decision making about test adequacy. Figure 1 depicts the 

overview of our proposed model in the form of input, process 

and output. The processes involved are data extraction, data 

parsing and filtering, test analytics module and analytics 

dashboard. 

 

 
 

Figure 1: An overview of TDCAM model 

 

The data acquisition/extraction process involves extracting 

both test coverage and defect coverage datasets from test 

coverage and defect tracking tools. The test coverage 

indicator provides related test-based metrics such code 

coverage. The defect coverage indicator provides defect 

related metrics such as types and severity of defects. The data 

parsing and filtering process involves filtering and removing 

redundant and trivial data of our concerns, and selecting data 

of our concern from the datasets extracted in the previous 



Test Adequacy Assessment Using Test-Defect Coverage Analytic Model 
 

  

 

process. In this process, data extracted from both datasets will 

be aggregated into component level. 

Three main steps involved in Data Analytics stage; metrics 

calculation, data aggregation and data relation evaluation. 

The first step involves calculating relevant metrics derived 

from the two coverages. The metrics are aggregated to source 

code components (units of implementation). Examples of the 

metrics are shown in Table 1. 
 

Table 1 

Suite of Test Adequacy Metrics calculated by data analytics module 

 

Name Metrics 

DAR Defect Arrival Rate 
DFR Defect Fixed Rate 

NDC Total number of defects per component 

NUDC Number of unresolved defects per component 

BCC Branch coverage percentage per Component 

  CCC   Code Complexity   

 

In order to support managers in making informed test 

adequacy decision, we proposed both  qualitative and 

quantitative representations for the analytical view which is 

in a dashboard form. The quantitative analytics approach 

highlights high-level data trends thru statistical summaries of 

various metrics. On the other hand, the qualitative analytics 

approach emphasizes on the attributes and relationship of a 

set of software artifacts and metrics of interest. As discussed 

earlier, the bubble chart type with three dimensions of data is 

chosen to represent the hybrid indicators of test adequacy 

criteria. Figure 2 shows an example of the adopted bubble 

chart in terms of the number of defects, branch coverage 

measurement and code complexity. 

 

 
 

Figure 2: Test-defect coverage information represented in a bubble chart 

form 

 

The y-axis represents the number of defects and x-axis 

represents the branch coverage percentage. Another 

dimension of data is depicted by the bubble size. The bubble 

size represents a few options of defect-based or test-based 

metrics such as the severity of defects or other useful related 

metrics such as lines of code and complexity, as shown in 

Figure 2. One can reasonably raise his or her concern on the 

test adequacy of those components, or decide to put less 

emphasis on components with low number of defects and 

high branch coverage. To further indicate how complex the 

code of each component is can be illustrated by the bubble’s 

size and color. The bigger bubble size indicates a higher 

complexity of a component. The bubble can be color-coded 

with different colors according to its complexity such as red 

for high complexity, orange for moderate and green for low 

complexity code. This highlights which component is the hot 

spot for test inadequacy. 

 
A. Implementation 

This  paper  serves  as  a  proof  of  concept  meant  to 

demonstrate how the model can be implemented. Apache POI 

project was selected in which both defect and test coverage 

data sets were extracted from open source repositories. Defect 

datasets were retrieved from Bugzilla defect tracking system. 

The extracted data are saved in xml (eXtensible Markup 

Language) file format. Test coverage measurement datasets 

were generated by running JUnit test cases provided in the 

source code. JaCoCo test coverage library and API are used 

to execute the JUnit test. JaCoCo provides a lightweight and 

flexible library for integration with various build and 

development tools. The API also supports complexity of the 

code measurement as defined by McCabe. Results of the test 

coverage are generated in csv (Comma-Separated Value) file 

format. 

In data filtering and analysis process, the Data Filter 

Module filters and removes unwanted raw data from Data 

Acquisition Module. This module employs XMLParser and 

CSVParser API integrated into the eclipse IDE to extract and 

filter needed data from the raw data extracted. Next is the 

execution of the calculation module to calculate and analyze 

metrics. The last process is the visualization of the results in 

a dashboard. 

Eclipse Birt is adopted and integrated into Eclipse IDE as a 

reporting tool. It has the capability of reporting and charting 

features much like Microsoft Excel but with capabilities to be 

extended with user-defined analysis algorithm through Java 

Objects and Classes. Design Report, Chart and Engine Report 

API are provided by Eclipse Birt in order to support this 

functionality. 

Software test adequacy metrics calculated by the Data 

Analytics Module are converted to Java objects through 

classes and variables. These Java objects are the input for the 

Eclipse Birt. The TDCAM tool has been implemented as an 

Eclipse plugin. Figures 3 and Figure 4 depict the overall 

implementation process mapped against open source tools 

employed in our model, and the TDCAM drop-down menu 

for users, respectively. 

Users can choose to either extract or display Test Coverage 

data in TDCAM Test Coverage view, extract and display 

Defect Coverage data in TDCAM Defect Coverage view, run 

data analysis or lastly to view data analysis result through a 

dashboard. 

 

 
 

Figure 3: Implementation overview of TDCAM 
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Figure 4: Drop-down menu for TDCAM tool 

 

Mylyn connector was used to connect Eclipse IDE and the 

defects tracking database. Mylyn is a task-focused interface 

that can extends Eclipse capabilities to keep track of users’ 

tasks. A task is defined as any unit of work that users want to 

retrieve or share with others, such as a bug reported by a user. 

These tasks can be stored locally or in a task repository (such 

as Bugzilla). Defects dataset extracted from the database are 

saved into a text-based file format. TDCAM tool further 

processes this extracted data and displays it in the Defect 

Coverage view of TDCAM tool. The tool extracts relevant 

attributes of each defect from the database such as BugID, 

product name, component name, status, date reported, date 

fixed, version number, severity and priority of the defects. 

Results of the analysis are presented in a dashboard view, as 

shown in Figure 5. TDCAM dashboard can be used to 

visualize both quantitative and qualitative analyses. 

 

 

Figure 5: TDCAM dashboard 

 

IV. CASE STUDY 

 

As mentioned earlier, Apache POI, an open source 

software was selected to demonstrate the proposed work. 

Apache POI is used to create and maintain Java APIs for 

manipulating various Microsoft file formats such as 

Microsoft Words, PowerPoint and Excel. It is chosen as our 

case study based on the following criteria: 

i. A number of literatures adopted Apache POI as their 

case study. For example, Marian [22] proposed defect 

prediction model and Inozemtseva & Holmes [13] 

studied the relationship between test coverage, test 

suite size and test effectiveness. 

ii. Apache POI is actively being developed and 

supported. Its first version was released in August 

2003 and its latest release, version 3.11-beta3 was on 

Nov 2014. 

iii. 7 active developers are currently working on this 

project. Number of defects reported and fixes can also 

be an indicator of the collective effort of the team in 

developing and maintaining the source codes. 179 

defects are reported for Apache POI version 3.9 

(which is the latest stable version at the time of our 

implementation). 

iv. Sufficient data for valid empirical analysis. Apache 

POI source code is of reasonable size (>100,000 

LOC). It also comes with extensive unit test. Its 

defects database can also be publicly accessed via 

Bugzilla. This allows us to run test coverage and 

extract defect information from the database. 

 

A. Data Analysis and Results 

We extracted two artifacts which are software defects data 

from the defects tracking system and test coverage 

measurement results. At the time of our implementation, 

version 3.9 is the latest stable release version for Apache POI. 

Thus, this version was chosen as our basis for  the data 

analysis. We further filtered the defects by its resolution 

status of “DUPLICATE”, “WORKSFORME”, “INVALID” 

and “ENHANCEMENT”. Total number of defects remains 

after filtering the defects is 144. We then categorized the 

software defects according to its respective software 

component name. Table 2 provides the information of test 

and defect coverage metrics used in this study. 

Based on the table, there are 4 components that have no 

reported defects; hpbf, hmef, hdf and hdgf. It is found that 

these components are legacy code from the earlier version of 

the software under reviewed. Based on our observation of the 

project’s change requests, the components have stabilized 

over time. 
 

Table 2 

Apache Poi’s Test Adequacy Metrics for each component 

 

Components 
Code 

lines 

Defect 

numbers 

Defect 

Density 

Branch 

Cov (%) 

Code 

Complexity 

poifs 8703 4 0.5 47 18 
hpsf 4500 1 0.25 62 20 

hdgf 1209 0 0 38 7 

hdf 15119 0 0 98 11 

xslf 8224 8 1 34 22 

xwpf 5809 12 2.4 60 17 

hssf 44880 41 0.93 46 10 

hwpf 34757 7 0.2 75 12 

hslf 13736 8 0.61 63 10 

hsmf 2877 1 0.5 38 6 

hmef 996 0 0 60 9 

xssf 41636 64 1.56 36 8 

   hpbf   788   0   0   80   23   

In this paper, we plotted 3 bubble charts to visualize several 

defect-based and test-based metrics simultaneously, as shown 

in Figures 6, Figure 7 and Figure 8. Based on Figure 6, two 

components that should be of concern to developers or testers 

are xssf and hssf components, as the number of defects is 

relatively high compared to other components. The 

percentages of branch coverage for those two components are 

also less than 60% which should alarm them on the 

thoroughness of tests. The bubble chart also shows a 

distribution of test-defect metrics against lines of code (LOC) 

for each component. LOC has been shown to have correlation 
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with other quality metrics such as number of defects and 

defect density. Many defect-free components tend to be small 

in size [23] and our result appears to be consistent with the 

existing findings. 

 

 

Figure 6: Combination of test-defect coverage and lines of code metrics 

 

 
Figure 7: Test-defect coverage metrics mapped against severity of defects 

 

 
 

Figure 8: Test-defect coverage metrics mapped against number of 

unresolved defects 

 

Figure 7 displays the information of test-defect coverage 

metrics mapped against severity of defects, in which the 

severity information is represented by the size of the bubble. 

We determined the bubble size by calculating the ratio of high 

severity defects for the component over the total number of 

high severity defects for all components. Thus, the bubble 

with the biggest size represents the component with the most 

number of high severity defects compared to other 

components. The hwpf component has relatively large lines 

of codes, yet small number of high severity defects. One of 

the possible reasons to this exception is that this component 

is thoroughly tested as indicated by the branch coverage 

percentage. The branch coverage measurement for this 

component is  high (around 80%) compared to other 

components with large lines of codes (refer to component xssf 

and hssf). This finding is supported by the works of Mockus 

et al. [16] and Cai & Lyu [17] in which higher test coverage 

relates to lower number of reported software defects. 

Another criterion to determine if the software has been 

adequately tested is by observing the number of remaining 

defects (as shown in Figure 8). Due to certain limitation such 

as time and cost, testers may decide that it is not necessary to 

resolve all reported defects. Apart from highlighting which 

component has the high number of defects but low branch 

coverage, the chart also visualizes which component with the 

most number of unresolved defects thru the bubble size. It 

also shows certain components that are more prone to defects. 

Hence, more resources and test should be focusing on these 

defect-prone components. 

 

B. Survey 

As part of the evaluation, a short survey was developed to 

get feedbacks pertaining to the usefulness of the model. Five 

participants consist of four developers/testers and one 

manager were asked to rate three questions by using five- 

point Likert scale (5 – Strongly agree, 4 – Agree, 3 – Normal, 

2 – Disagree and 1 – Strongly disagree). All of the 

participants are actively being involved in development, 

testing and maintaining various software projects at the 

Centre for Knowledge, Communication and Technology and 

School of Computer  Sciences, Universiti Sains Malaysia 

(USM). 

We first conducted a demo session on how to use the tool 

and then distributed the questionnaire to each participant after 

the demo session. Participants were asked to try the tool and 

answer the given questions. The first question concerns with 

the usefulness of the tool in providing insight into software 

under test based on test-defect coverage metrics. The result 

shows 60% of the participants strongly agree that the bubble 

chart is able to provide meaningful information about the 

status of the software under test. 

The participants were also asked to rate how easy for them 

to use the tool. 80% of the participants agree that the tool is 

easy to use while another 20% of the participants strongly 

agree that the tool is indeed easy to use. The third question 

concerns with whether the tool can be used to assist them in 

making informed test adequacy-related decisions. 60% of the 

participants strongly agree that the tool can help them in 

making such decision, while the rest agree. 

 

C. Discussion 

 

1) Threats to validity. 

This section concerns the possible construct and external 

validity threats related to this study. The theoretical construct 

is software test adequacy. The main variable we used to 

assess software test adequacy is based on the number of 

software defects. This is where the test adequacy and to be 

exact, reliability of a software system is indicated by the 

absence of failure, which in turn, is indicated by the presence 

of defects. All measures used are justified and defined in this 

paper to remove the risk to construct validity. 

Our sampling includes five practitioners from two software 

development centers. The small number of participants can 

potentially introduce biases in the survey results. However, 

the analysis on their responses suggests a similarly positive 

response. 

 

2) Lessons learned 

Based on our case  study results,  it is observed that  a 

component with low branch coverage percentage tends to 

have high number of detected defects. In addition, if the 
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component has low branch coverage and low number of 

defects detected, the component either has small LOC or low 

code complexity. It is therefore, advisable for test managers 

to focus on the large components that are high in code 

complexity. 

Although, five responses are not enough to form any sort 

of conclusion, but one can reasonably gain the benefits of 

TDCAM in assisting practitioners making informed test 

adequacy-related decisions, in particular for on-going 

projects that are actively being developed. One can 

continually assess the current state of the software on day-to- 

day or week-to-week basis as needed. For instance, in agile 

development projects, where the project cycle is faster and 

shorter, monitoring the two main metrics of software test 

adequacy can immediately alert managers on components 

that are inadequately tested in any iteration. 

 

V. CONCLUSION 

 
The emergence of incremental development in its various 

forms required a different approach to determining the 

readiness of software for release. Test-Defect Coverage 

Analytic Model (TDCAM) has been proposed to predict how 

reliable the software is likely to be based on planned tests, not 

defect growth and decline as typically shown in reliability 

growth models. 

TDCM combines two important metrics of test adequacy 

criteria; test and defect coverage, to better indicate the true 

state of the software. A bubble chart presented in a form of 

dashboard is used to visualize several metrics on software 

defects and test coverage simultaneously. The purpose is to 

guide decision makers in testing to take informed decisions 

on test readiness. One of the findings shows that a component 

with high branch coverage and high number of defects 

detected indicates that it either has a large number of LOC or 

high in code complexity. So, practitioners can make better- 

informed decisions about their tests. 

It has been our aim to extend TDCAM to become a suite of 

business analytics tool for software practitioners by 

incorporating the elements of artificial intelligence where a 

human’s intervention can be minimized. 
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