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Abstract—This paper presents an economic optimization case
study for a medium-scale hybrid PV-battery system. PV energy
yield and battery operation models based on hourly satellite
insolation and daily temperature data form the basis of an
underlying objective function aiming to maximize the net present
value of potential energy cost savings. Forecasted system prices
and energy tariffs over a nine-year period are considered enabling
the opportune year to invest and the characteristics of the
corresponding optimal system to be determined.

Index Terms—Economic analysis, Energy storage, Particle
swarm optimization, Photovoltaic systems

I. INTRODUCTION

Despite significant cost reductions in recent years, hybrid

PV-battery solutions are still burdened by the significant

capital outlay required and rapidly changing regulatory condi-

tions and incentive schemes. Consequently the optimization of

system characteristics including power and energy ratings is

necessary to establish the most economically efficient system

for a particular application.

The economic performance of a hybrid PV-battery sys-

tem is primarily dependent on the prevailing environmental

conditions under which the proposed system is intended to

operate and the underlying load which it is intended to

supply. In an Australian context, PV systems contribute to the

Australian Government’s Renewable Energy Target (RET) and

are therefore eligible for certain incentives depending on the

size of the system installed. For systems of 100 kW or less, PV

systems are deemed to be part of the Small-scale Renewable

Energy Scheme (SRES) and receive incentives in the form

of upfront Small-scale Technology Certificates (STC) [1] and

may be eligible to receive feed-in tariffs from an energy

retailer. However from 2017 to 2030, STCs are scheduled to

be phased out complicating the investment decision process.

For PV systems larger than 100 kW, incentives are provided

through Large-scale Generation Certificates (LGC) [1]. PV

system developers and owners enter into a negotiated Power

Purchase Agreement (PPA), most commonly with energy re-

tailers. Under a PPA, the price to purchase LGCs from the PV
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Fig. 1. TransGrid iDemand AC system.

installation is typically built into the total price paid for grid-

exported energy. In the analysis presented later in this paper,

PPA prices from $60/MWh to $140/MWh are considered to

determine the effect on the economic viability of hybrid PV-

battery systems.

A case study based on TransGrids iDemand project, featur-

ing a 53 kW polycrystalline PV array combined with a 400

kWh lithium polymer battery system [2], is presented in the

proposed paper. Operational data from the iDemand system is

first used to validate the accuracy of the adopted PV energy

yield model and then applied to hypothetical installations over

a nine-year period to enable the determination of the opportune

investment year and the characteristics and performance of the

corresponding optimized system, including whether to install a

small-scale or large-scale system given the different incentive

schemes on offer. A block diagram of the TransGrid iDemand

AC system is shown in Fig. 2. For a description of the energy

flow terms refer to Section II.
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In this paper, PV energy yield and battery lifetime operation

models based on hourly satellite insolation and daily tempera-

ture data are considered. The objective function of the underly-

ing optimization problem is formulated as a net present value

(NPV) maximization of energy cost savings achieved through

the introduction of an optimally sized and oriented PV-battery

system. Consideration is given to forecasted technology cost

reductions and electricity tariff increases.

II. METHODOLOGY

A. Hourly Insolation and Temperature Models

The Bureau of Meteorology (BOM) for the Australian

Government maintains a database of hourly and daily inso-

lation data from satellite observations. While direct access to

the hourly data is available subject to a fee, the Australian

Renewable Energy Agency (ARENA) has made hourly data

from 1990 to 2015 available via the Australian Renewable

Energy Mapping Infrastructure (AREMI) spatial data platform

[3]. The data includes Global Horizontal Insolation (GHI) and

Direct Normal Insolation (DNI) which are related through the

following equation:

GHI = DNI × cos(θz) +DHI (1)

where DHI is the Diffuse Horizontal Insolation and θz is

the solar zenith angle (an equation for which is established

in [4]). Consequently through rearranging (1), DHI can be

found from the AREMI data.

After obtaining the required insolation components based

on satellite data, a transposition model is required to estimate

the insolation on the plane-of-array (POA) of a PV system.

Numerous transposition models have been developed however

no universal model has been shown to be the most accurate.

Consequently for the purposes of this research, the Hay-

Davies-Klucher-Reindl (HDKR) model, defined in (2), is used.

IT = (Ib +AiId)Rb

+ Id(1−Ai)

(

1 + cosβ

2

)[

1 + f sin3
(

β

2

)]

+ Iρg

(

1− cosβ

2

)

(2)

In (2), Ib and Id are the hourly direct and diffuse insolation

on the horizontal plane respectively, Ai = Ib/Io, f =
√

Ib/I ,

I is the hourly global horizontal insolation, Io is the hourly

extraterrestrial insolation, ρg is the ground reflectance and Rb

is the ratio of tilted to horizontal direct insolation. Importantly,

Rb is a function of panel tilt β and panel azimuth γ, equations

for which can be found in [4].

An Incident Angle Modifier (IAM), as defined by De Soto

et al. [5], was also modelled to account for reflected radiation

off the PV panel glass surface.

Hourly temperature data is typically unavailable for the

vast majority of locations. Numerous empirical models have

been developed to estimate hourly temperatures from daily

minimum and maximum data. The hourly model defined by

de Wit [6], constructed from piecewise sine functions has

been shown to be one of the more accurate methods [7]

and is therefore considered in the analysis presented in this

paper. The model assumes the maximum and minimum daily

temperatures (Tmax and Tmin) occur at 2 pm and sunrise

respectively [7]. The ambient temperature Ta at each hour

based on the de Wit model is defined as follows:

Ta =


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π(h−hrise)
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]

otherwise

(3)

where a = (Tmax +Tmin)/2, b = (Tmax−Tmin)/2, h is hour

of the day, hrise is the sunrise hour angle and h′ = h+ 10 if

h < hrise and h′ = h− 14 if h > 14. It should be noted that

for h > 14, Tmin of the next day is used to determine Ta for

the remaining hours of each day.

The BOM Climate Data Online (CDO) database contains

daily maximum and minimum temperature data for thousands

of weather locations within Australia. Data for the station

closest to TransGrid’s iDemand site (less than 4.5 km away)

is applied to (3) to estimate hourly ambient temperature.

B. PV Energy Yield Model

The PV energy yield model as defined in [4] is considered in

this research. Efficieny factors similar to the ones considered

by Copper et al. [8] are also applied.

The DC generated energy is defined as follow:

Epv,dc = AcZIT ηmppζpvηsoilηmmηdc,wire (4)

where Ac is the area of each PV module, Z is the number

of PV modules, IT is the insolation incident on the tilted

plane, ηmpp is the module efficiency at the maximum power

point and ζpv is the PV module degradation factor (according

to the module datasheet). ηsoil, ηmm and ηdc,wire are the

efficiencies due to panel soiling, module mismatch and DC

wiring losses, assumed to be 99%, 98% and 98% respectively

in this research. The PV module efficiency ηmpp is defined as

follows:

ηmpp = ηmpp,STC + µmpp(Tc − Ta) (5)

where ηmpp,STC is the efficiency at standard test conditions,

µmpp is the the power temperature coefficient and Tc is the

module operating temperature. Ta is the ambient temperature

determined through (3). The equation for panel degradation

factor has been previously defined in [9].

The total energy generated by the PV system as AC power

is defined as:

Epv,ac = Epv,dcηinvηac,wire (6)

where ηac,wire is efficiency due to AC wiring losses assumed

to be 99% and ηinv is the inverter losses. For this research,

the inverter losses are assumed to be in accordance with the

SMA STP17000TL model inverters installed in the iDemand

system. The characteristics of the PV modules considered in

this analysis are shown in Table III in the Appendix.



C. Battery Model

The battery model assumed in this research is based on

the model previously developed by Every et al. [10], detail

of which is excluded for brevity. The model assumes battery

operation in line with the manufacturer’s warranted perfor-

mance. Furthermore, the battery operational characteristics are

limited to the continuous operation ratings prescribed on the

manufacturer’s datasheets.

An energy storage system can also be used to perform

energy arbitrage by charging during low cost off-peak hours

and discharging during peak periods in addition to shifting

PV generated energy to non-generation periods. In this paper,

various battery operating modes are considered in the opti-

mization algorithm to establish the most economically efficient

operating profile. The operating modes considered are defined

as follows:

Mode 1: PV generation shifting. Discharge in peak only.

Mode 2: PV generation shifting. Discharge during shoulder

and peak periods.

Mode 3: Energy arbitrage and PV generation shifting. Dis-

charge in peak only.

Mode 4: Energy arbitrage and PV generation shifting. Dis-

charge during shoulder and peak periods.

The characteristics of the battery modules considered in this

analysis are shown in Table IV in the Appendix.

D. Economic Assumptions

A nominal discount rate of 10% per annum is considered

in this paper, representative of the cost of capital that may be

expected for a large corporation such as TransGrid. Annual

inflation is assumed to be 2.5% while nominal electricity price

growth is taken to be 4.5%.

For larger scale commercial and industrial customers, elec-

tricity charges are typically billed monthly. Consequently

the real discount rate and electricity price growth (taking

inflation into account) converted to monthly effective rates are

rd = 0.59% and re = 0.16% respectively.

The analysis presented in this paper considers forecasted PV

system, battery and battery inverter costs between 2017 and

2025. The forecasted costs are based on three price scenarios

as defined by Brinsmead et al. [11], designated as minimum,

base and maximum price scenarios.

E. Maintenance Model

System maintenance is an essential component of hybrid

PV-battery system operation. While not explicitly defined in

this paper, inverter, battery and PV array maintenance is

assumed to occur once every five years at a cost of $300 for

systems of size less than 1 MWh as previously assumed by

Brinsmead et al. [11]. Inverter replacement is assumed to be

required after 10 years while battery replacement is required

when the end-of-life maximum capacity is reached or after 10

years, whichever occurs first. The replacement cost is assumed

to be the forecasted price for the corresponding year in [11].

F. Optimization Problem

Find: Tilt angle β, azimuth angle γ, number of PV panels Z
and number of batteries X

Objective:

max
β,γ,Z,X

NPV =

Q
∑

q=1

(Cbase,q − Cpvbatt,q) (1 + re)
q

(1 + rd)
q

−

Q
∑

q=1

Wq

(1 + rd)
q −

(

Spvbatt

)

(7)

Subject to:

0 ≤β≤ 180 for β ∈ R (8a)

−180 <γ≤ 180 for γ ∈ R (8b)

0 ≤Z≤ Zmax for Z ∈ Z
+ (8c)

0 ≤X≤ Xmax for X ∈ Z
+ (8d)

In (7), Cpvbatt,q and Cbase,q represent electricity costs in

billing period q with and without a hybrid PV-battery system

respectively, Wq is the maintenance/replacement cost in period

q and Spvbatt is initial hybrid PV-battery system installation

cost.

The terms Cbase,q and Cpvbatt,q are defined as:

Cbase,q =
D
∑

d=1

(

24
∑

h=1

TE,qdhEload,qdh + TD,qd

)

+ TDC,qPmax,q (9)

Cpvbatt,q =
D
∑

d=1

{

24
∑

h=1

[

TE,qdh max (0, Ebal,qdh)

− Tpv,qdh max (0,−Ebal,qdh)
]

+ TD,qd

}

+ TDC,qPmax,q (10)

where TE,qdh is the cumulative energy charge in Table V

(expressed in c/kWh) for the hth hour of day d with D days

in the billing period, TD,qd is the cumulative daily supply

charge, TDC,q is the demand charge for the billing period,

Pmax,q is the maximum demand within the billing period and

Tpv,qdh is the tariff paid to the system owner for surplus energy

generated. For systems of size ≤100 kW, Tpv,qdh is the retailer

PV feed-in tariff (6c/kWh) and for large-scale systems (>100

kW) Tpv,qdh is the supply rate as agreed in the PPA (ranging

from $60/MWh to $140/MWh). Ebal,qdh is the net energy flow

balance expressed as:

Ebal,qdh = Eload,qdh − Epv,qdh − Ebd,qdh

+ Ebpv,qdh + Ebg,qdh + Ebloss,qdh (11)

where Eload,qdh is the load energy, Epv,qdh is PV generated

energy, Ebd,qdh is the energy discharge from the battery,

Ebpv,qdh and Ebg,qdh are the charge energies from the pv

system and grid respectively and Ebloss,qdh is the energy



lost during charge/discharge. For a complete definition of the

battery energy flow terms, refer to [10].

The energy costs associated with the terms TE,qdh, TD,qd

and TDC,q are shown in Table V in the Appendix.

As the problem is in the form of a mixed integer non-

linear programming problem, meta-heuristic methods were

employed to solve the problem. A modified version of par-

ticle swarm optimization, known as comprehensive learning

quantum-behaved particle swarm optimization (CLQPSO) was

employed. QPSO has been shown have a better global search

performance that standard PSO with fewer parameter adjust-

ments [12]. The CL component as proposed by [13] and

applied to QPSO by [14] further improves the global search

performance. The optimization problem was solved using

Matlab 2017a.

III. RESULTS

A. Energy Model Comparison

A comparison of average hourly generated AC power from

the 53 kW polycrystalline silicon PV array installed by

TransGrid and the energy production model considered in this

research is presented in Fig. 2. Plots for energy production

for months centred around winter and summer, as well as

a full year of production are shown. For the full year of

production, the energy model appears to slightly underestimate

energy production in the late morning and afternoon hours and

overestimates production in the early morning. The overall

normalized mean bias error (NMBE) for the full year of AC

production was found to be 0.02% as shown in Table I.

The overestimation during early morning can be attributed

to shading events in winter, clearly observed in the winter

plots of Fig. 2. The model inaccuracy due to shading events

is further demonstrated by the NMBE and normalized root

mean square error (NRMSE) statistics summarized in Table I

which are the worst for the three periods assessed. The overall

accuracy of the PV energy yield model is perhaps better

represented by the statistics for the summer period whereby

the NRMSE is the lowest amongst periods assessed and the

overall NMBE for AC energy is -2.9%.

The overall effect of energy yield model inaccuracy on

the determination of economic performance of a PV system

is shown in Table II. The model underestimates electricity

cost savings by just 1.57%, thereby presenting a conservative

estimate. Based on the relatively low error, a reasonable degree

of confidence in accuracy of the PV energy yield model can

be held for the purposes of economic optimization.

The average hourly load profiles in different seasons are

also shown in Fig. 2. Clearly there is a strong alignment

between the hours of electricity demand and the hours of

energy generation. The significance of this load profile is

further discussed in Section IV.

B. Optimization Results

Following the application of the optimization algorithm

applied to the TransGrid iDemand data and the economic

scenarios considered, no hybrid PV-battery system was found
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Fig. 2. Comparison of average hourly estimated AC generation versus actual
measured AC generation in 2015.

TABLE I
NORMALISED STATISTICS FOR MEASURED VERSUS MODELLED ENERGY

PRODUCTION OF IDEMAND SYSTEM

Period
AC Energy DC Energy

NMBE (%) NRMSE (%) NMBE (%) NRMSE (%)

Year -0.02 24.18 -0.36 24.19

Summer -2.9 20.69 -3.24 20.81

Winter 4.36 29.34 4.01 29.22

to yield an economic benefit greater than a PV-only system.

Consequently, the results presented and discussed in the re-

mainder of this paper refer to a PV-only system.

Referring to Fig. 3, the NPV achieved for an optimized sys-

tem steadily increases with installation year due to reduction

in system costs. For the base pricing scenario shown in Fig. 3,

it can be seen that the optimal system size for the load profile

considered is a 100 kW PV system, the maximum achievable

under the small-scale renewable energy scheme, up until 2022.

Between 2023 and 2025, the optimal system from an NPV

perspective would be a large-scale system. At this point, the

NPV and system size trajectories diverge depending on the

negotiated exported energy price under a PPA. It should be

noted that the distinct NPV increase from 2021 to 2022 is due

to a significant price drop as forecasted by Brinsmead et al.

[11] and is unrelated to the pricing scenario and PPA energy

price.

Referring to Fig. 4, the modified internal rate of return

(MIRR) for an investment in PV steadily increases as system

price are expected to decrease overtime. Due to the forecasted

price drop in 2022, the MIRR increases rapidly before reduc-

ing once again as the optimal system is deemed to be a large-

scale scale system. The inverse is true for the payback period.

TABLE II
NPV OF ENERGY COST SAVINGS OF IDEMAND SYSTEM (2015)

NPV (Actual) NPV (Estimated) Error (%)

$10,210 $10,049 -1.57
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It should be noted that under the base system pricing scenario

featured in Figs. 3 and 4, the maximum MIRR achieved for

the NPV optimized PV systems is around 9.5%, less than

the cost of capital of 10%. Consequently, without considering

ulterior motives, under the economic assumptions considered

in this paper, investment in a PV system does not present the

most efficient investment option. However a relaxation of the

discount rate, would yield a higher rate of return and therefore

the investment in a PV system may be deemed economically

viable.

The optimal NPV and PV system size trajectories for the

three pricing scenarios considered in this research are overlaid

in Figs. 5 and 6 respectively. Under the minimum and base

price scenarios, the optimal system size is 100 kW until 2020

and 2022 respectively whereby a larger system is the most

beneficial. The shaded regions represent the range of PPA

energy prices considered in this research, the lower bound

representing $60/MWh and the upper bound representing

$140/MWh. However under the maximum price scenario, the

optimal size for all installation years is almost uniform at

100 kW with the exception of the initial year 2017. Due to

especially high PV system costs modelled for 2017 under

the maximum pricing scenario, the optimal size is only 4.5

kW. This is an unrealistic scenario as the industry pricing is

0

50

100

150

200

250

2017 2018 2019 2020 2021 2022 2023 2024 2025

N
P

V
 (

$
k)

Installation Year

Min Scenario

Base Scenario

Max Scenario

Fig. 5. Comparison of optimized NPVs for three component pricing sce-
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currently tracking well below the assumed price point.

IV. DISCUSSION

It should be noted that hourly insolation measurements from

satellite observations do not necessarily coincide with the be-

ginning of the hour. In the instance of MTSAT-2 observations

at a latitude of -35◦, the observation occurs 49.5 seconds after

the beginning of the hour [15]. As the insolation observations

are required to align with the time stamp for the load data,

this may present a problem. Consequently hourly insolation

estimates based on daily insolation data may be required where

load data is not available in minutely intervals, such as has

been previously investigated in [9].

As stated in Section III, no battery system was found to

provide an economic benefit higher than a PV-only system.

This may be attributed to two primary factors. Firstly, the

electricity costs as detailed in Table V are particularly low

when compared to the residential consumer market. Con-

sequently, the relatively low energy cost savings achieved

through avoided grid-imported energy are not sufficient to

outweigh the high capital costs of a battery system. Secondly,

as shown in Fig. 2, the hours of load demand strongly

align with the hours of PV generation. Therefore, the benefit

achieved through shifting PV generated energy to peak hours



is far less than the case if demand occurs during the peak

tariff period. The combination of these two factors mean that

under the load profile and tariffs conditions representative of

TransGrid’s operations, a hybrid PV-battery system is not the

most economically efficient arrangement.

V. CONCLUSION

PV energy yield models and battery operation models were

developed as key components of an optimization algorithm

to determine the hybrid PV-battery system with the most eco-

nomic value for a load based on TransGrid’s iDemand system.

The energy yield model was found to have an acceptable

accuracy and shown to underestimate the potential annual

energy cost savings by just 1.57%.

Implementation of the optimization algorithm revealed no

battery system would yield an economic benefit greater than a

PV-only system for installation years between 2017 and 2025.

Under the system pricing scenarios considered, the optimal

system was found to be a small-scale system until 2020 after

which a transition to a large-scale system would yield the

highest net present value depending on the pricing scenario

considered.

The results presented in this article demonstrate the neces-

sity to optimize PV-battery systems as an integral component

of the investment decision process.

APPENDIX

TABLE III
PV MODULE CHARACTERISTICS

Make Suntech

Model STP250-20/Wd

Type Polycrystalline

Maximum Power @ STC 250 W

Efficiency (ηmpp,STC ) @ STC 15.4% W

Power temperature coefficient (µmpp) -0.43%/◦C

NOCT 45◦C

Surface Area (Ac) 1.62688 m

TABLE IV
BATTERY CHARACTERISTICS

Manufacturer Kokam

Model KRI-H-3R4C-133

Nominal Charge/Discharge Power (Rmax) 133 kWh

Initial Maximum Useful Capacity (Cmax 0) 126 kWh

End-of-life Capacity (CEOL) 75.6 kWh (60%)

Cycles (YEOL) 8000

Depth of Discharge (D) 80%

Round-trip DC efficiency (ηbatt) 95%

Assumed warranty period 10 years

TABLE V
ELECTRICITY CHARGES (P=PEAK, SH=SHOULDER, OP=OFF-PEAK)

Charges
Rate

Unit
P SH OP

Retailer Energy 6 6 4 c/kWh

Distributor Energy 4.1124 3.0474 1.3178 c/kWh

Distributor Demand 10.4581 $/kVA

Network Access Charge 18.729 $/Meter/Day

Administration 0.0378 c/kWh

Ancillary Services 0.261 c/kWh

Meter Provision 2 $/Meter/Day

LRET 0.381 c/kWh

SRES 0.404 c/kWh

NSW Energy Saving 0.082 c/kWh
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