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Delay-Optimal Biased User Association in
Heterogeneous Networks

Fancheng Kong, Xinghua Sun, Member, IEEE, Victor C. M. Leung, Fellow, IEEE, and Hongbo Zhu

Abstract—In heterogeneous networks (HetNets), load balanc-
ing among different tiers can be effectively achieved by a biased
user association scheme with which each user chooses to associate
with one base station (BS) based on the biased received power.
In contrast to previous studies where a BS always has packets
to transmit, we assume in this paper that incoming packets
intended for all the associated users form a queue in the BS.
In order to find the delay limit of the network to support real-
time service, we focus on the delay optimization problem by
properly tuning the biasing factor of each tier. By adopting
a thinned Poisson point process (PPP) model to characterize
the locations of BSs in the busy state, an explicit expression
of the average traffic intensity of each tier is obtained. On that
basis, an optimization problem is formulated to minimize a lower
bound of the network mean queuing delay. By showing that the
optimization problem is convex, the optimal biasing factor of each
tier can be obtained numerically. When the mean packet arrival
rate of each user is small, a closed-form solution is derived.
The simulation results demonstrate that the network queuing
performance can be significantly improved by properly tuning
the biasing factor. It is further shown that the network mean
queuing delay might be improved at the cost of a deterioration
of the network signal-to-interference ratio (SIR) coverage, which
indicates a performance tradeoff between real-time and non-real-
time traffic in HetNets.

Index Terms—heterogeneous network, biasing factor, average
traffic intensity, network mean queuing delay

I. INTRODUCTION

With widespread use of portable devices such as smart
phones and tablets, cellular networks are facing an exponential
growth of mobile data traffic [1]. Meanwhile, real-time appli-
cations such as video chat and online gaming become more
and more popular, which imposes stringent delay requirements
on the network. To deal with this ever-growing demand and
high service requirement, micro base stations (BSs) such as
pico and femto BSs are deployed to undertake the traffic
pressure of macro BSs. The network architecture is thus
evolving to more dense and irregular heterogeneous networks
(HetNets) [2].

Among all the techniques used in HetNets, load balancing
plays a key role to determine the network performance. For
example, if the traditional maximum downlink received power
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association scheme is adopted, users would tend to connect to
macro BSs with a high transmission power. Macro BSs may
thus easily become overloaded. To purposely push users to
micro BSs, a simple and efficient approach called the biased
association scheme was proposed in [3], with which each user
assigns a biased value to the measured received power from
BSs of each tier, and associates with the BS that has the
largest mean biased received power. Ye et al. demonstrated
in [4] that the user’s long-term rate can be greatly improved
by carefully tuning the biasing factor. With fixed locations of
BSs and users, no tractable expression of a performance metric
such as the signal-to-interference-plus-noise ratio (SINR) or
rate coverage can be derived, and the optimal biasing factor
could only be found empirically. Stochastic geometry was then
adopted in [5]–[10] to characterize the spatial distributions of
BSs and users, and to quantify the average performance metric
of the network. For example, a Poisson point process (PPP)
was adopted in [7], [8] to represent the irregular deployment
of the BSs. The optimal biasing factor for BSs of each tier
was obtained therein to maximize the rate coverage. With a
similar PPP model, the biasing factor was optimized in [9],
[10] by maximizing the logarithm of the mean user rate.

A. Related Works and Motivations
Previous studies [4]–[10] assumed that the BSs always

have packets to transmit, which presents a worst case for
the SINR and rate coverage. In practice, the BS load could
vary significantly over a day. In particular, the amount of
user service requests can drop dramatically during non-peak
traffic hours. The BSs are thus more likely to be idle during
such periods, but still consume energy [11]. On the other
hand, due to a high deployment density, one micro BS would
cover a small area. The void cell problem [12], [13] then
emerges, where some micro BSs don’t have any associated
users. Such BS thus solely acts as an interfering source. To
improve energy efficiency and reduce the interference, the
techniques to selectively switch off a fraction of BSs according
to the traffic load have attracted extensive attention [14]–[18].
For example, the authors in [15] proposed a distributed on/off
switching based algorithm in cellular networks to decide the
minimum set of active BSs. By arguing that a cellular BS could
operate in normal mode, sleep mode, or expansion mode, Guo
et al. [16] proposed a scheme that determines which mode the
BS should choose based on the load condition, such that the
energy consumption is minimized. Dhillon et al. [17] adopted
a thinned-PPP model by assigning an active probability to
BSs of each tier and thus characterized the network signal-
to-interference ratio (SIR) coverage. With the same model,
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Cao et al. [18] derived the optimal BS density of each tier
to minimize the network energy consumption under a certain
rate constraint.

The aforementioned studies [14]–[18] focused on the traffic
load variance over a large time scale, i.e., peak and non-peak
hours, and did not consider queuing in each BS. Most of
them aimed to improve the network energy efficiency. One
BS, nevertheless, can vary between busy and idle states over
a small time scale due to the dynamic packet arrivals of its
associated users, in which case the packet delay could be
taken into account. In practice, with the proliferation of real-
time multimedia applications, the packet delay is becoming
an important quality-of-service (QoS) metric. For example, an
end-to-end latency over 250 ms for real-time multimedia is
generally considered to be unacceptable [19]. In the literature,
there has been limited studies on the queuing analysis. The
queuing performance of a single cell was evaluated in [20] and
[21] in CDMA systems for the first time, based on which the
packet blocking probability and the packet queuing delay were
characterized. These studies focused on only one independent
queue by assuming constant interference over the entire cell. In
HetNets, nevertheless, BSs of various types are deployed with
higher densities, and the queuing behavior of one BS is closely
related with others, leading to the coupled-queue problem [17].
Specifically, whether a BS transmits or not will affect the
interference level experienced by other BSs that occupy the
same spectrum resources, and will consequently determine the
service rates of these co-channel BSs. The service rate in turn
affects the chance that one BS has packets to transmit or not.

The analysis of coupled queues is a long-standing open
problem, and even solving a special case of two interacting
queues is challenging [22]. Zhuang et al. [23] modeled mul-
tiple interacting queues as a continuous-time Markov chain
(CTMC) with fixed BS locations in the network. By minimiz-
ing the average packet queuing delay, the optimal spectrum
allocation pattern was obtained for each BS. Similarly, Cheng
et al. [24] optimized the average queuing delay of network
subjected to the BS power constraints. They formulated a
Markov decision process (MDP) problem based on the instan-
taneous channel state information and queue state information,
and proposed an adaptive user scheduling and power control
policy. However, the state space of the Markov process may
become huge as the network scales up, and the analysis would
become intractable. Hence, this motivates us to deal with the
coupled queue problem with the tool of stochastic geometry to
account for the random BS deployment, and derive the mean
performance metrics analytically such that some insights can
be gained for system design.

B. Our Approaches and Contributions

In this paper, we consider a K-tier HetNet where users
and BSs of all tiers are randomly distributed, i.e., follow a
PPP distribution. Similar to previous studies [5]–[10], it is
assumed that each user adopts a biased association scheme to
choose one BS with the maximum biased received power. In
contrast to previous studies [4]–[10], [14]–[18], we consider
that the packet requests from the users form a queue in their

associated BSs. The traffic intensity of one BS thus varies
with the aggregate packet requests of all its associated users.
To simplify the analysis, frequency partitioning across tiers
is assumed in this paper. Although the queues of BSs from
different tiers are not correlated, the queuing performance of
one BS would affect the experienced interference of other co-
channel BSs in the same tier. To decouple the queuing behavior
of BSs in the same tier, we resort to the approximation of
replacing each BS’s individual traffic intensity with the average
traffic intensity of its tier. The spatial distribution of BSs in
the busy state can thus be approximately characterized by a
thinned-PPP model [17]. The SIR coverage of each tier is then
obtained, based on which an explicit expression of the average
traffic intensity of each tier is further derived, and is shown to
be an increasing function of the biasing factor of each tier.

In order to find the delay limit that the network can achieve,
an optimization problem is formulated to minimize a lower
bound of the network mean queuing delay by optimizing over
the biasing factor of each tier based on the derived average
traffic intensity. It is shown that the optimization problem is
convex, and the optimal biasing factor can be numerically
obtained. When the mean packet arrival rate of each user is
small, an explicit expression of the optimal biasing factor of
each tier is obtained. With equal bandwidth allocation across
tiers, it is further shown that each user should associate with
its nearest BS. A case study of a 2-tier HetNet shows that the
optimal biasing factor is sensitive to the bandwidth allocation
of each tier. To characterize the network capacity to support
non-real-time services, the network SIR coverage is further
derived. The contributions of this paper are summarized as
follows.
• By assuming queuing in each BS, an explicit expression

of the average traffic intensity of each tier is derived,
which is shown to be an increasing function of the biasing
factor of each tier.

• An optimization problem of a lower bound of the network
mean queuing delay is formulated, and is shown to be
convex with respect to the biasing factor of each tier.
When the mean packet arrival rate of each user is small,
an explicit solution is obtained.

• Simulation results of a 2-tier case demonstrate that the
network mean queuing delay can be significantly reduced
by properly tuning the biasing factor of each tier. In the
meanwhile, a tradeoff is revealed between the network
mean queuing delay and the network SIR coverage, which
indicates that the service provider should strike a balance
between the performance of real-time and non-real-time
services.

The rest of this paper is organized as follows. The system
model is presented in Section II. An optimization problem to
minimize a lower bound of the network mean queuing delay
is formulated and studied in Section III. A case study of a 2-
tier HetNet is presented in Section IV. Conclusions and future
works are given in Section V.

II. SYSTEM MODEL

Consider a K-tier heterogeneous network where BSs in the
kth tier form an independent PPP Φk with an intensity of
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λk, k ∈ {1, ...,K}. Users, on the other hand, form another
independent homogeneous PPP Φu with an intensity of λu
over the whole network. Frequency partitioning across tiers
is assumed in this paper. In particular, BSs of the same tier
share the spectrum with a bandwidth of Wk, k ∈ {1, ...,K},
and BSs of different tiers occupy non-overlapping frequency
bands. Therefore, for each user in the downlink, the associated
BS acts as a desired signal transmitter, and other BSs of
the same tier are interfering sources. Consider a typical user
located at the origin. Denote the distance between this typical
user and a Tier-k BS as xk, and the transmission power of a
Tier-k BS as Pk. The received power PR for a typical user
from this BS can then be written as

PR = Pkgkx
−α
k , (1)

where gk is a small-scale fading coefficient, which is assumed
to follow an i.i.d exponential distribution of unit mean, i.e.,
gk∼ exp{1}, and α is the path-loss coefficient, which is
assumed to be the same for all BSs in the network. Note
that shadowing, i.e., log-normal fading, can be modeled by
the randomness of the BSs’ and users’ locations [25].

In this paper, we consider a biased association scheme
where users associate with one BS according to the maximum
mean biased received power [4]–[10]. In particular, for a
typical user located at the origin, it measures the mean received
power from each tier’s BSs, and chooses a Tier-k BS if

PkBkx
−α
k,min ≥ PjBjx

−α
j,min ∀j ∈ {1, ...,K}, (2)

where Bj denotes the biasing factor of Tier j and xj,min is
the distance between the user and the nearest Tier-j BS.

For each user in the network, assume that its packet requests
follow an independent Poisson process with a mean arrival
rate γ, and the packet length is exponentially distributed with
mean L. The incoming packets for all users form a queue
in the associated BS, and the BS will transmit these packets
in a first-in-first-serve (FIFS) fashion. To avoid users in poor
channel conditions occupying the BS, we consider a fixed rate
modulation and coding format. In particular, a BS will serve
a user only when its instantaneous SIR exceeds a threshold
τ , and will drop its packet request otherwise. Note that due
to a high BS deployment intensity, the background noise is
dominated by the interference, and is therefore ignored in this
paper. According to Shannon’s formula, the service rate for
each user that is associated to a Tier-k BS can be obtained as

µk =
Wk

L
log2 (1 + τ) . (3)

For a randomly selected Tier-k BS, BSk,i, its traffic intensity,
ρk,i, can be obtained as

ρk,i =
γk,i
µk

, (4)

where γk,i is the mean aggregate packet arrival rate of all its
associated users. Note that ρk,i can also be interpreted as the
busy probability or the utilization of BSk,i when ρk,i ≤ 1. Due
to a varied association region, each BS has a different mean
aggregate packet arrival rate and thus has a different traffic
intensity.

III. QUEUING DELAY

In this section, we will formulate an optimization problem
of the network mean queuing delay, which is an important
performance metric of QoS. As the mean queuing delay of
a BS increases with a higher busy probability, we will first
characterize the average traffic intensity of each tier’s BSs,
ρk.

A. Average Traffic Intensity of Tier-k BSs, ρk
For a randomly selected Tier-k BSk,i, since it delivers a

packet only when the SIR exceeds a certain threshold τ , its
mean aggregate packet arrival rate can be obtained as

γk,i = γNk,iPr [SIRk,i > τ ] (5)

where Nk,i is the number of users that are associated to BSk,i
and Pr [SIRk,i > τ ] denotes the SIR coverage of BSk,i, i.e.,
the probability that the SIR of a random user associated to
BSk,i is larger than the threshold τ . By combining (3)-(5), the
average traffic intensity of Tier-k BSs can be obtained as

ρk = E [ρk,i] = E

[
γNk,iPr [SIRk,i > τ ]

µk

]

=
γ

µk
E [Nk,i]E [Pr [SIRk,i > τ ]]

=
γL

Wklog2 (1 + τ)
E [Nk] P [SIRk > τ ] , (6)

where E [Nk] denotes the average number of users associated
with a Tier-k BS and P [SIRk > τ ] denotes the SIR coverage
of all Tier-k BSs, i.e., the probability that the SIR of a typical
user associated with a Tier-k BS exceeds the threshold τ . As
the average traffic intensity, ρk, is determined by the average
number of associated users, E [Nk], and the SIR coverage,
P [SIRk > τ ], we will characterize these two components in
the following.

According to [6], the average number of users associated
with a Tier-k BS, E [Nk], has been obtained as

E [Nk] =
λuAk
λk

, (7)

where Ak denotes the probability for a typical user to be asso-
ciated with a Tier-k BS. Note that the association probability
Ak has been derived in [6] as

Ak =
λk(PkBk)

2/α

K∑
j=1

λj(PjBj)
2/α

=
1

K∑
j=1

λ̃j

(
B̃jP̃j

)2/α
, (8)

where λ̃j = λj/λk, P̃j = Pj/Pk, and B̃j = Bj/Bk denote
the normalized intensity, the normalized transmission power,
and the normalized biasing factor of Tier j, respectively,
conditioned on Tier k being a serving tier.

Recall that BSs of Tier k form a PPP Φk with an intensity of
λk. Moreover, for a randomly selected BSk,i where i ∈ Φk, the
traffic intensity ρk,i can be interpreted as its busy probability
when ρk,i ≤ 1. The set of Tier-k BSs being busy, therefore,
forms a thinned point process Φ′k ⊆ Φk by including BSk,i ∈
Φk with the probability ρk,i [26]. Since the traffic intensity of
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one BS is different from each other, the thinned point process
Φ′k is non-homogeneous. To simplify the analysis, it can be
approximately viewed as a homogeneous PPP with intensity

λ′k = ρkλk. (9)

It will be demonstrated in Section IV that the average traffic
intensity achieves a good approximation. For a typical user
that is associated with a Tier-k BS, the interference all comes
from busy BSs of the same tier. According to (1), the SIR of
this typical user can then be written as

SIRk =
Pkgxk,0x

−α
k,0∑

j∈Φ′k\BSk,0
Pkgk,jx

−α
k,j

, (10)

where xk,0 and xk,j denote the distance from the typical user
to the associated BS BSk,0 and the jth interfering Tier-k
BS, respectively; gk,0 and gk,j denote the small-scale fading
coefficient of BSk,0 and the jth interfering Tier-k BS, re-
spectively. In (10), BSk,0 and Φ′k\BSk,0 denote the associated
Tier-k BS of this typical user and the set of interfering Tier-
k BSs, respectively. Note that as frequency partitioning is
assumed across tiers, there is no inter-tier interference, and the
interfering sources consist of all the busy Tier-k BSs besides
the associated BSk,0. Following a similar approach in [7], we
have the following lemma that presents the SIR coverage of a
Tier-k BS.

Lemma 1. The SIR coverage of a Tier-k BS can be written as

P [SIRk > τ ] =
1

AkρkZ (τ, α, 1) + 1
, (11)

where Z (τ, α, 1) = τ
2
α

´∞
(1/τ)

2
α

du

1+u
α
2

, and the probability Ak
for a typical user to be associated with a Tier-k BS is given
in (8).

According to Lemma 1, the outage probability of Tier
k, P [SIRk ≤ τ ], can be written as P [SIRk ≤ τ ] =
AkρkZ(τ,α,1)
AkρkZ(τ,α,1)+1 . If Tier-k BSs are always busy, i.e., ρk = 1,
the outage probability P [SIRk ≤ τ ] reduces to [6, Eq. (17)].

By combining (6), (7), and (11), the average traffic intensity
ρk of Tier-k BSs can be derived as

ρk =
−λkRk +

[
(λkRk)

2
+ 4γλuλkA

2
kRkLZ

] 1
2

2AkλkRkZ
(12)

where

Rk = Wklog2 (1 + τ) , (13)

and Z denotes Z (τ, α, 1) for simplicity. It is indicated in (12)
that ρk is critically determined by the mean packet arrival
rate of each user γ and the association probability Ak. It
is clear that ρk increases as γ increases. On the other hand,
the following lemma presents the monotonicity of the average
traffic intensity ρk of Tier-k BSs with respect to the association
probability Ak.

Lemma 2. The average traffic intensity ρk of Tier-k BSs is an
increasing function of its association probability, Ak.

Proof: See Appendix A.

Intuitively, as the probability of a user being associated with
a Tier-k BS increases, more users from other tiers will be
offloaded to BSs of Tier k, i.e., E [Nk] becomes larger, which
leads to an increment of the traffic intensity.

To this end, an explicit expression of ρk has been derived
in (12). When the mean packet arrival rate of each user γ is
small, the average traffic intensity ρk of Tier-k BSs can be
approximately written as

ρk =
−1 +

[
1 + 4γλuA

2
k(λkRk)

−1
LZ
] 1

2

2AkZ

(a)
≈ −1 + 1 + 2γλuA

2
k(λkRk)

−1
LZ

2AkZ

=
γλuLAk
λkRk

, (14)

where (a) follows from the fact that[
1 +

4γλuA
2
kLZ

λkRk

] 1
2

≈ 1 +
2γλuA

2
kLZ

λkRk
. (15)

B. Queuing Delay Optimization

In this section, we will further minimize a lower bound of
the network mean queuing delay based on the average traffic
intensity by optimally tuning the biasing factors of all tiers.
As each BS can be modeled as a M/D/1 queuing system, the
mean queuing delay Dk of Tier k BSs can be obtained as

Dk = E

[
L

Rk (1− ρk,i)

]
. (16)

Since (16) is difficult to characterize, we resort to its lower
bound using the convexity of 1/(1− ρk,i), i.e., we have

Dk ≥ D̄k =
L

Rk (1− E [ρk,i])
=

L

Rk (1− ρk)
. (17)

By combining (3), (12) and (17), the lower bound of the mean
queuing delay of the whole network D̄ can then be written as
(18), which is shown on the top of next page.

It can be observed from (18) that the lower bound of
the mean queuing delay D̄ is critically determined by the
association probability Ak. To minimize D̄, we have the
following optimization problem

D̄∗ = minimize
{Ak}∀k∈{1,...,K}

D̄, (19a)

s.t.

K∑
k=1

Ak = 1, (19b)

ρk < 1, k ∈ {1, . . . ,K}. (19c)

Note that instead of directly optimizing over the biasing factor
of each tier, we optimize over the association probabilities
{Ak}∀k in (19) to obtain the optimal solution {A∗k}∀k. The
optimal normalized biasing factor of Tier k conditioned on
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D̄ =

K∑
k=1

λk
K∑
j=1

λj

· D̄k =

K∑
k=1

2Akλ
2
kLZ

K∑
j=1

λj

(
2AkλkZRk + λkRk −

[
(λkRk)

2
+ 4γλuλkA2

kRkLZ
] 1

2

) (18)

∂D̄

∂Ak
= 2λKZ

RK

(
1−

K−1∑
j=1

Aj

)−2

−R2
K

(
1−

K−1∑
j=1

Aj

)−3
R2

K

(
1−

K−1∑
j=1

Aj

)−2

+ 4γλuλ
−1
K RKLZ

− 1
2

2ZRK +RK

(
1−

K−1∑
j=1

Aj

)−1

−

R2
K

(
1−

K−1∑
j=1

Aj

)−2

+ 4γλuλ
−1
K RKLZ

 1
2


2

− 2λkZ
RkA

−2
k −R2

kA
−3
k

(
R2
kA
−2
k + 4γλuλ

−1
k RkLZ

)− 1
2[

2ZRk +RkA
−1
k −

(
R2
kA
−2
k + 4γλuλ

−1
k RkLZ

) 1
2

]2 = 0, k ∈ {1, . . . ,K−1}. (25)

Tier i, {B̃∗k}∀k, can then be readily obtained as

B̃∗k =
Pi(λiA

∗
k)

α
2

Pk(λkA∗i )
α
2
, k ∈ {1, ...,K}, (20)

according to (8). On the other hand, the constraint (19b) comes
from the fact that each user should associate with one BS,
and the constraint (19c) ensures that the lower bound of the
network’s mean queuing delay is bounded, which leads to the
following lemma.

Lemma 3. For the lower bound D̄k, when the mean packet
arrival rate γ > (Z+1)λkRk

λuL
, it is bounded if the association

probability

0 < Ak <
λkRk

γλuL− λkRkZ
; (21)

otherwise, it will become unbounded. When γ < (Z+1)λkRk
λuL

,
it is always bounded.

Proof: See Appendix B.

According to Lemma 3, constraint (19c) can be further
written as{

0 < Ak <
λkRk

γλuL−λkRkZ , γ > (Z+1)λkRk
λuL

0 < Ak < 1, γ < (Z+1)λkRk
λuL

, (22)

where k ∈ {1, . . . ,K}. First note that (22) does not have a
feasible region if and only if

γ > max
∀k

{
(Z+1)λkRk

λuL

}
(23a)

and
K∑
k=1

λkRk
γλuL− λkRkZ

< 1, (23b)

according to (22). Intuitively, when the mean packet arrival
rate of each user γ is too large, (22) can be written as
0 < Ak < λkRk

γλuL−λkRkZ for each Tier k, k ∈ {1, . . . ,K},

which leads to
K∑
k=1

Ak < 1 according to (23b). In this case, the

lower bound of the network mean queuing delay will always
be unbounded. If (23) does not hold, the feasible region of the
optimization problem (19) can be further written as

A=

{
(A1, ..., AK−1) ,

∣∣∣∣0 < Aj < min
{

1,
λjRj

γλuL−λjRjZ

}
,

j ∈ {1...,K−1}; max
{

0, 1− λKRK
γλuL−λKRKZ

}
<

K−1∑
j=1

Aj

< 1

}
, (24)

where AK is eliminated according to the constraint (19b)
without loss of generality. It is shown in Appendix C that
the objective function (19a) is convex within the feasible
region A. Nevertheless, there may not exist a solution in
A through solving (25), which is shown at the top of this
page, by setting the partial derivative of D̄ with respect to the
association probability Ak to zero. The following lemma rules
out this possibility and guarantees that the optimal association
probabilities {A∗k}∀k can always be obtained by finding the
solution of (25) within A.

Lemma 4. (25) has a unique solution within the feasible region
A, which is the optimal association probabilities {A∗k}∀k.

Proof: See Appendix D.

So far we have demonstrated how to find the optimal associ-
ation probability of each tier A∗k by solving (25) numerically.
Recall that it is indicated in Lemma 3 that when the mean
packet arrival rate of each user γ < min

∀k

{
(Z+1)λkRk

λuL

}
, we

have the average traffic intensity ρk < 1 for all tiers, and
the lower bound of the mean queuing delay D̄k is always
bounded for each tier. In this case, the average traffic intensity
ρk is simply written as (14), and an explicit optimal association
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Algorithm 1 Procedure to optimize the association proba-
bility when the mean packet arrival rate of each user γ <

min
∀k

{
(Z+1)λkRk

λuL

}
1: Input: λk, Wk for each tier, and other system parameters
λu, L, γ, τ .
2: Initialize: a set of index C = {1, . . . ,K} where optimal
association probability of Tier k is not determined.
3: Calculate the solution set {A∗k}∀k∈C by (26).
4: for ∀k ∈ C, construct a set S = {m |A∗m < 0,∀m ∈ C }.
5: if S = ∅, return {A∗k}∀k∈C .
6: else, for ∀m ∈ S, let λm = 0 and A∗m = 0, delete m from
C.
7: end if
8: go to Step 3.

probability A∗k for each tier can be obtained, which is shown
in the following lemma.

Lemma 5. When the mean packet arrival rate of each user
γ < min

∀k

{
(Z+1)λkRk

λuL

}
, the optimal association probability of

Tier k A∗k to minimize the lower bound of the network mean
queuing delay D̄ can be written as

A∗k =
λk
K∑
j=1

λj

+

λklog2 (1 + τ)
K∑
j=1

λj(Wk −Wj)

γλuL
K∑
j=1

λj

. (26)

The detailed derivation can be found in Appendix E.
Intuitively, if the bandwidth of Tier k is larger than that of

Tier j, i.e., Wk > Wj , the service rate of Tier k will be larger,
indicating a better queuing performance. Therefore, the Tier-k
BSs will undertake more traffic from other tiers by having a
larger association probability. With equal bandwidth allocation
among all tiers, i.e., Wi = Wj , i, k ∈ {1, . . . ,K}, the optimal
association probability of a Tier-k BS can be further written
as

A∗k =
λk
K∑
j=1

λj

(27)

according to (26). The corresponding optimal normalized
biasing factor B̃∗k of Tier k, conditioned on Tier i, is thus
given by

B̃∗k=
1

P̃k
, (28)

where P̃k is the normalized transmission power of Tier k
conditioned on Tier i. It is indicated in (28) that in this
case, each user chooses the nearest BS. The traffic load is
thus evenly distributed among all BSs, which leads to similar
queuing performance with the same service rate of each tier’s
BSs.

Note from (26) that if there exists one tier, say Tier m, such

that log2 (1+τ)
K∑
j=1

λj(Rm−Rj) < −γλuL, and then we have

TABLE I
SIMULATION PARAMETERS

Parameter Value
User Density λu 10−2 m−2

Tier-1 BS Density λ1 10−4 m−2

Tier-2 BS Density λ2 5∗10−4 m−2

Tier-1 BS Transmission Power P1 46 dBm
Tier-2 BS Transmission Power P2 35 dBm
Path Loss Coefficient α 4
Mean Packet Length L 0.1 Mb
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Fig. 1. Average traffic intensity of each tier ρk versus the normalized biasing
factor B̃2 with various values of the mean packet arrival rate of each user γ.
W1 = 10MHz, W2 = 6MHz, and τ = 1.

A∗m < 0. To minimize the lower bound of the network mean
queuing delay, the association probability of Tier m should be
close to zero. Intuitively, if the bandwidth of Tier m is much
smaller than that of other tiers, then few users should associate
with Tier-m BSs due to the low service rate. In this case, the
association probability Am could then be simply set as Am =
0, i.e., Tier-m BSs are turned off. The procedure to obtain the
optimal association probability when γ < min

∀k

{
(Z+1)λkRk

λuL

}
is summarized in Algorithm 1.

IV. CASE STUDY

In this section we will demonstrate the analytical results in
Section III by simulations of a 2-tier HetNet. The base stations
and the users are drawn from PPPs with high intensities,
and the background noise is ignored in the simulations. This
setting, for example, can correspond to a dense heterogeneous
network that consists of macro cellular BSs and micro Wi-Fi
access points, each of which uses a non-overlapping frequency
band. Each point of the simulation results is obtained by
averaging all the BSs on a time scale of 105 s. The system
parameters used in simulations are summarized in Table I.

Fig. 1 illustrates how the average traffic intensity of each
tier, i.e., ρ1 and ρ2, varies with the normalized biasing factor
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Fig. 2. Network mean queuing delay D and its lower bound D̄ versus the
normalized biasing factor B̃2 with various values of the mean packet arrival
rate of each user γ. W1 = 10MHz, W2 = 6MHz, and τ = 1.

B̃2 with various values of the mean packet arrival rate of each
user γ. It can be observed from Fig. 1 that the average traffic
intensity of Tier 1, ρ1, decreases as the normalized biasing fac-
tor B̃2 increases, while that of Tier 2, ρ2, increases. Intuitively,
since the association probability of a Tier-2 BS, A2, increases
as the normalized biasing factor B̃2 increases according to (8),
more users that associate with Tier-1 BSs would be offloaded
to Tier-2 BSs, which leads to an increment of ρ2 according
to Lemma 2. Moreover, due to a larger deployment intensity
of the Tier-2 BSs, the users that originally associate with only
one Tier-1 BS can be offloaded to several neighboring Tier-2
BSs. Hence, the decline rate of ρ1 is larger than the increasing
rate of ρ2. It can be clearly seen from Fig. 1 that the simulation
results match with the analysis well with a wide range of the
normalized biasing factor, indicating that replacing each BS’s
traffic intensity by the average traffic intensity in (9) achieves
a good approximation.

Fig. 2 further demonstrates how the network mean queuing
delay D, as well as its lower bound D̄, vary with the
normalized biasing factor B̃2. For the sake of comparison,
the y-axis on the left hand side of Fig. 2 denotes the network
mean queuing delay D while on the right hand side it denotes
the lower bound D̄. To obtain the network mean queuing
delay in simulations, BSs that have an unbounded queuing
delay are not taken account of. It can be observed from
Fig. 2 that the trend of the network mean queuing delay D
resembles that of its lower bound D̄. Both D and D̄ are
very sensitive to the normalized biasing factor B̃2. If B̃2 is
not carefully tuned, the delay performance could be greatly
degraded. For example, when γ = 1.9, the network mean
queuing delay D is as high as 135 ms with the normalized
biasing factor B̃2 = −10 dB, which is not acceptable to many
delay-sensitive applications. Moreover, due to a similar trend
between the network mean queuing delay D and its lower
bound D̄, the optimal normalized biasing factor of D̄ is close
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Fig. 3. Minimum lower bound of the network mean queuing delay D̄∗ versus
the mean packet arrival rate of each user γ. W1 = 10MHz, W2 = 6MHz,
and τ = 1.

to that of D. Therefore, by properly tuning the normalized
biasing factor B̃2 according to (20) and (25), the mean queuing
delay performance can be improved significantly. With the
mean packet arrival rate of each user γ = 1.9, for instance, the
optimal normalized biasing factor is obtained as B̃∗2 = 1.7 dB,
and the corresponding network mean queuing delay D can be
reduced to be 48 ms.

Recall that it is indicated in Lemma 5 that when the
mean packet arrival rate satisfies γ < min

∀k

{
(Z+1)λkRk

λuL

}
, the

minimum lower bound of the network mean queuing delay
D̄∗ can be obtained by combining (18) and (26). Fig. 3
further compares the minimum lower bound of the network
mean queuing delay D̄∗ obtained by combining (18) and (25)
with that by combining (18) and (26), respectively. It can be
observed from Fig. 3 that the gap between the two curves
diminishes as the mean packet arrival rate of each user γ
decreases. When γ < min

∀k

{
(Z+1)λkRk

λuL

}
, the minimum lower

bound of the network mean queuing delay D̄∗ obtained by
combining (18) and (26) is quite close to that obtained by
combining (18) and (25). When the mean packet arrival rate
of each user γ is large, i.e., γ ≥ min

∀k

{
(Z+1)λkRk

λuL

}
, there is a

large gap between the curves in Fig. 3. Therefore, the optimal
association probabilities {A∗k}∀k should be instead obtained
by numerically solving (25). As Lemma 4 guarantees, (25)
has a unique solution within the feasible region A, which is
the optimal association probability {A∗k}∀k.

Fig. 4 further illustrates how the optimal normalized biasing
factor, B̃∗2 , and the corresponding minimum lower bound of
the network mean queuing delay, D̄∗, vary with the bandwidth
ratio of Tier 2, W2/W , with various values of the mean packet
arrival rate of each user γ. Note that the total bandwidth
W = W1 +W2 is fixed here. It can be observed from Fig. 4(a)
that for a given γ, the optimal normalized biasing factor B̃∗2
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Fig. 4. Optimal normalized biasing factor B̃∗
2 and the minimum lower bound

of the network mean queuing delay D̄∗ versus the bandwidth ratio of Tier
2 W2/W with various values of the mean packet arrival rate of each user
γ. W=12MHz and τ = 1. (a) Optimal normalized biasing factor B̃∗

2 . (b)
Minimum lower bound of the network mean queuing delay D̄∗.

increases as W2/W increases. Intuitively, as the bandwidth of
Tier 2, W2, increases, Tier-2 BSs can provide a higher service
rate to the associated users. The optimal B̃∗2 should thus
become larger so as to encourage more users to be associated
with Tier-2 BSs. Moreover, it can be observed from Fig. 4(a)
that as W2/W increases, the optimal normalized biasing factor
B̃∗2 becomes insensitive to the mean packet arrival rate of
each user γ. The minimum lower bound of the network mean
queuing delay D̄∗, on the other hand, decreases as W2/W
increases, as Fig. 4(b) demonstrates.

While minimizing the network mean queuing delay is
desirable for real-time traffic, the SIR coverage is an important
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Fig. 5. The network SIR coverage and the network mean queuing delay
performance with various bandwidth ratios of Tier 2 W2/W . γ = 1.8, W =
12MHz, and τ = 1. (a) Network SIR coverage P [SIR > τ ]. (b) Network
mean queuing delay D. (c) Lower bound of the network mean queuing delay
D̄.
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performance metric to support non-real-time traffic for ser-
vice providers. According to (11), the network SIR coverage
P [SIR > τ ] can be written as

P [SIR > τ ] =

K∑
k=1

Ak · P [SIRk > τ ]

=

K∑
k=1

Ak
AkρkZ (τ, α, 1) + 1

. (29)

Fig. 5(a) demonstrates how the network SIR coverage
P [SIR > τ ] varies with the normalized biasing factor B̃2

with various values of the bandwidth ratio W2/W . It can
be observed from Fig. 5(a) that there exists an optimal nor-
malized biasing factor with which the network SIR coverage
is maximized. Intuitively, when B̃2 is too large, a large
fraction of users that are originally associated with Tier-1
BSs are offloaded to Tier-2 BSs. As these users are close
to the interfering Tier-1 BSs and have long distances to
their associated Tier-2 BSs, they have very poor channel
conditions, which leads to a low SIR coverage of the network.
Similarly, when B̃2 is too small, the network SIR coverage also
deteriorates. In addition, it can be seen from Fig. 5(a) that
the optimal normalized biasing to maximize P [SIR > τ ] is
insensitive to the bandwidth allocation. In the meanwhile, the
optimal normalized biasing factor B̃∗2 to minimize D̄ increases
as W2/W increases, as illustrated in Fig. 5(c) indicating a
tradeoff between the network mean queuing delay and the
network SIR coverage. For example, if W2/W = 1/2, the
optimal normalized biasing factor is obtained as B̃∗2 = 24dB,
with which the network SIR coverage greatly deteriorates. In
this case, the service providers should properly tune the biasing
factor in HetNets such that a desired point on the tradeoff
curve can be achieved to balance the performances of real-
time traffic and non-real-time traffic.

As the SIR threshold τ critically determines the network
mean queuing delay and the network SIR coverage, Fig. 6
further demonstrates the impact of the SIR threshold τ on
these two performance metrics. It can be observed from Fig.
6 that for a given normalized biasing factor B̃2, the network
SIR coverage P [SIR > τ ] decreases as the SIR threshold τ
increases. In the meanwhile, both the network mean queuing
delay D and its lower bound D̄ decrease as τ increases.
Intuitively, with a higher SIR threshold τ , the mean aggregate
packet arrival rate of each BS becomes lower while the service
rate becomes higher, leading to a better queuing performance.
In addition, it is illustrated in Fig. 6(a) that the optimal nor-
malized biasing factor to maximize the network SIR coverage
P [SIR > τ ] is insensitive to the SIR threshold τ , while the
optimal normalized biasing factor B̃∗2 to minimize D̄ increases
as τ decreases, as Fig. 6(c) demonstrates. Intuitively, although
the service rates of both macro and micro BSs become lower
with a smaller τ , macro BSs are more likely to become
overloaded as their deployment density is much lower than
that of micro BSs. The optimal normalized biasing factor B̃∗2
should thus become larger to undertake the load pressure from
macro BSs. By comparing Fig. 6(a) with Fig. 6(b) and Fig.
6(c), it can be found that with a smaller SIR threshold τ , the
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Fig. 6. The network SIR coverage and the network queuing delay
performance with various values of the SIR threshold τ . W1 = 8MHz,
W2 = 4MHz, and γ = 3.8, (a) Network SIR coverage P [SIR > τ ]. (b)
Network mean queuing delay D. (c) Lower bound of the network mean
queuing delay D̄.
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deterioration of the network mean queuing delay D becomes
much more severe if the normalized biasing factor is optimally
tuned to maximize the network SIR coverage P [SIR > τ ],
indicating a more significant tradeoff between the network SIR
coverage and the network mean queuing delay.

V. CONCLUSION AND FUTURE WORK

In this paper we have studied how to optimally tune the
biasing factor of each tier in HetNets in order to minimize a
lower bound of the network mean queuing delay. It is shown
that the network queuing performance can be significantly
improved when the biasing factor of each tier is optimally
tuned. The characterization of the optimal biasing factor pro-
vides guidance for real-time service provisioning in HetNets.
The case study of a 2-tier HetNet further illustrates that the
network mean queuing delay and the network SIR coverage
might not be optimized simultaneously by tuning the biasing
factor, indicating a performance tradeoff between real-time and
non-real-time services.

It is worth mentioning that it is assumed in this paper that
one BS will serve a user with a constant rate if its SIR exceeds
a threshold. In practice, nevertheless, the service rate could
depend on the channel conditions. In this case, as the biasing
factor of one tier decreases, the mean service rate of this tier
increases as the users located at the edge of the cells are
offloaded. The queuing performance of this tier can thus be
improved due to a lower mean aggregate packet arrival rate
and a higher mean service rate. Therefore, there would exist
an optimal biasing factor for each tier such that the traffic load
is balanced across tiers and the network mean queuing delay
is minimized. On the other hand, if the biasing factor of one
tier is too large, the SIR coverage of this tier degrades, which
would drag down the network SIR coverage. Therefore, the
network mean queuing delay may be optimized at the cost of
the network SIR coverage. The tradeoff between the network
SIR coverage and the network mean queuing delay in this case
is an interesting issue that needs further study.

In addition, it is assumed that orthogonal spectrum resources
are allocated to different tiers. In practice, nevertheless, uni-
versal frequency reuse may be adopted so that all the other
BSs may act as interfering sources for one BS. Therefore, the
average traffic intensities of different tiers would be correlated.
The characterization of the queuing performance under such
circumstances deserves much attention in future study.

APPENDIX A
PROOF OF LEMMA 2

Proof: According to (12), the first-order derivative of the
average traffic intensity ρk with respect to Ak is given by

dρk
dAk

=
4γLλuλ

2
kR

2
kA

2
kZ

2∆−
1
2−λkRkZ

(
−λkRk + ∆

1
2

)
2(AkλkRkZ)

2 ,

(30)

where ∆ = λ2
kR

2
k + 4γλuλkRkA

2
kLZ. The numerator on the

right hand side of (30) can be further written as

4γLλuλ
2
kR

2
kA

2
kZ

2∆−
1
2 − λkRkZ

(
−λkRk + ∆

1
2

)

=
λ2
kR

2
kZ
[(
λ2
kR

2
k + 4γλuλkRkA

2
kLZ

) 1
2 − λkRk

]
∆

1
2

> 0.

(31)

By combining (30) and (31), we have dρk
dAk

> 0, which
indicates that ρk monotonically increases as Ak increases.

APPENDIX B
PROOF OF LEMMA 3

Proof: It has been shown in Lemma 2 that the average
traffic intensity ρk monotonically increases as the association
probability Ak increases. With Ak < 1, we then have

ρk =
−λkRk +

[
(λkRk)

2
+ 4γλuλkRkA

2
kLZ

] 1
2

2AkλkRkZ

<
−λkRk +

[
(λkRk)

2
+ 4γλuλkRkLZ

] 1
2

2λkRkZ
. (32)

In the following, we divide the discussion into two parts:

1) If
−λkRk+[(λkRk)2+4γλuλkRkLZ]

1
2

2λkRkZ
< 1, i.e., γ <

(Z+1)λkRk
λuL

, we have

ρk < 1 (33)

according to (32). In this case, D̄k will always be bounded if
γ < (Z+1)λkRk

λuL
.

2) If γ > (Z+1)λkRk
λuL

, D̄k will be bounded if and only if

−λkRk +
[
(λkRk)

2
+ 4γλuλkA

2
kRkLZ

] 1
2

2AkλkRkZ
< 1. (34)

Accordingly, we have

Ak <
λkRk

γλuL− λkRkZ
. (35)

APPENDIX C
PROOF OF CONVEXITY OF (19)

Proof: According to (17), the second-order derivative of
D̄k with respect to Ak can be written as

d2D̄k

dAk
2 =

2L

Rk (1− ρk)
3 ·
(
dρk
dAk

)2

+
L

Rk (1− ρk)
2 ·

d2ρk

dAk
2 .

(36)
Substituting (30) into (36) yields

d2D̄k

dAk
2 >

L

Rk (1− ρk)
2 ·

[
2

(
dρk
dAk

)2

+
d2ρk

dAk
2

]

=
L

Rk (1− ρk)
2
A4
kZ

2∆
·

(
4γλuLλ

2
kR

2
kZ

2A3
k + 2∆
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+ 2λkRkAkZ∆
1
2 + λ2

kR
2
k − 2AkZ∆− λkRk∆

1
2

)

>
L

Rk (1− ρk)
2
A4
kZ

2∆
·

[
4γλuLλ

2
kR

2
kZ

2A3
k

+ λkRk

(
2AkZ∆

1
2 + λkRk −∆

1
2

)]
, (37)

where ∆ = λ2
kR

2
k+4γλuλkRkA

2
kLZ. Since ∆

1
2 > λkRk, we

further have

d2D̄k

dAk
2 >

L

Rk (1− ρk)
2
A4
kZ

2∆
·

[
4γλuLλ

2
kR

2
kZ

2A3
k

+ λkRk

(
2AkZ∆

1
2 + λkRk −∆

1
2

)]

>
L

Rk (1− ρk)
2
A4
kZ

2∆
·

[
4γλuLλ

2
kR

2
kZ

2A3
k

+ λkRk

(
2λkRkAkZ + λkRk −∆

1
2

)]
(a)
>

4γλuL
2λ2
kRk

(1− ρk)
2
Ak∆

> 0, (38)

where (a) follows from the fact that ρk < 1, As the constraints
(19b) and (19c) are linear, it can be concluded from (38) that
the optimization problem is convex with respect to Ak.

APPENDIX D
PROOF OF LEMMA 4

Proof: We divide the proof into two parts.

1) If γ > max
∀k

{
(Z+1)λkRk

λuL

}
, then the mean queuing delay D̄k

of all tiers go to infinity as Ak approaches to 1. Therefore,
according to (18), the lower bound of the network mean
queuing delay, D̄, goes to infinity at the boundary of A. As
D̄ is convex within the region A, (25) always has a unique
solution of the optimal association probabilities {A∗k}∀k.

2) If γ < max
∀k

{
(Z+1)λkRk

λuL

}
, then there exists at least one

tier such that the lower bound of its mean queuing delay is
always bounded. Without loss of generality, denote this tier
as Tier K. For Tier K, we have λKRK

γλuL−λKRKZ > 1, and the
feasible region A is then written as

A=

{
(A1, ..., AK−1) ,

∣∣∣∣0 < Ak < min
{

1,
λkRk

γλuL−λkRkZ

}
,

k ∈ {1...,K−1}; 0 <

K−1∑
k=1

Ak < 1

}
. (39)

For each k ∈ {1, . . . ,K−1}, we have

lim
Ak→0

∂D̄

∂Ak
= 2λKZ·

RKA
−2
K

[
1−

(
1+4γλuλ

−1
K A2

KR
−1
K LZ

)− 1
2

]
[
2ZRK+RKA

−1
K −

(
R2
KA
−2
K +4γλuλ

−1
k RkLZ

) 1
2

]2 < 0

(40)

according to (25).
Following a similar approach, if λkRk

γλuL−λkRkZ > 1, we have

lim
Ak→1

∂D̄

∂Ak
> 0. (41)

Otherwise, if λkRk
γλuL−λkRkZ < 1, the lower bound D̄k goes to

infinity as Ak approaches λkRk
γλuL−λkRkZ , and thus we have

lim
Ak→

λkRk
γλuL−λkRkZ

∂D̄

∂Ak
> 0. (42)

By combining (40)-(42), it can be concluded that (25) al-
ways has only one solution within the region 0 < Ak <
min{1, λkRk

γλuL−λkRkZ }, k ∈ {1, . . . ,K−1}.

Furthermore, if
K−1∑
k=1

Ak > 1, i.e., AK < 0, we always have

∂D̄
∂Ak

> 0, k ∈ {1, . . . ,K−1} by substituting AK < 0 into
(25). This indicates that the solution is not in the region where
K−1∑
k=1

Ak > 1. Therefore, (25) has a unique solution in region

A when γ < max
∀k

{
(Z+1)λkRk

λuL

}
.

APPENDIX E
DERIVATION OF (26)

By combining (14), (18), and (19b), when the mean packet
arrival rate of each user satisfies γ < min

∀k

{
(Z+1)λkRk

λuL

}
, the

lower bound of the network mean queuing delay can be written
as

D̄ =
1

K∑
j=1

λj

K∑
k=1

λ2
kL

λkRk−γλuLAk
=

1
K∑
j=1

λj

[

K−1∑
k=1

λ2
kL

λkRk−γλuLAk
+

λ2
KL

λKRK−γλuL(1−
K−1∑
j=1

Aj)

]
(43)

where Rk is given by (13). By setting the partial derivative of
D̄ with respect to Ak to zero, we have

∂D̄

∂Ak
=

λ2
k

K∑
j=1

λj

· λuγ(
λk

Rk
L − λuγAk

)2 − λ2
K

K∑
j=1

λj

·

λuγ[
λk

Rk
L − λuγ

(
1−

K−1∑
j=1

Aj

)]2 = 0, ∀k∈{1, . . . ,K−1}.

(44)

By combining (19b) and (44), (26) can be obtained.
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