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Abstract-- Fingerprinting method is one of the preferred 
method used for indoor localization using Wi-Fi signals 
because of its low complexity and its cost effectiveness. 
This paper proposes an indoor localization algorithm 
using fingerprinting method that is suitable for an indoor 
IoT application. The proposed algorithm combines the 
location estimates from two different approaches, 
deterministic and probabilistic, to estimate the target 
location. The proposed algorithm was tested for different 
conditions: stationary and moving IoT targets, line-of-
sight and non-line-of-sight indoor environments. The 
results showed the proposed combined algorithm 
performed better in terms of localization accuracy, 
precision and robustness than deterministic and 
probabilistic methods individually and similar past 
research.   
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I. INTRODUCTION 

Indoor localization or indoor positioning is a key enabling 
technology for IoT applications [1] such as guiding customers 
or visitors inside a shopping mall or a convention centre, 
where conventional navigation technologies such as GPS is 
not available.[2],[3] Even though there are indoor localization 
solutions that use RFID or BLE beacons with known fixed 
locations inside a building, it requires additional hardware and 
installation costs thus making the implementation of these 
systems costly in terms of time and money. However, using 
Wi-Fi signals to perform localization makes it a better 
alternative to the beacon based systems as it does not require 
the installation of new hardware, thus reducing complexity 
and cost of the system [4]. In the literature, some research 
have focused on the study of RF signal propagation in indoor 
environments while others have developed localization 
methods that exploit various aspects of RF signal propagation 
such as propagation time, angle of arrival and received signal 
strength (RSS) to achieve localization. Methods such as Time 
of Arrival (TOA) and Time Difference of Arrival (TDOA) use 
propagation time for localization. These methods require time 
synchronisation between target device and measuring stations 
and between measuring stations respectively. Methods that 
use propagation angle, such as Angle of Arrival (AOA) 
require measuring stations to have special antenna 
arrangements in different orientations. In addition to being 
complex, these systems suffer reduced performance due to 
propagation time and angle are directly affected by multipath 
effect existing in indoor environments. Methods using RSS 
however provide a better alternative. Fingerprinting method 
uses RSS measurements and is less complex in 
implementation that it does not require special hardware or the 
access point locations. It can be implemented in software 

reducing costs [4].  Performance of localization algorithms are 
quantified using its accuracy, precision and robustness. 
Accuracy is a measure of how much the result has deviated 
from the expected outcome, while precision is a measure of 
how consistently the result is within a certain value range. 
Robustness is how well the algorithm perform under poor 
Radio Frequency (RF) conditions [5]. Past research have 
resulted in precisions in the range of 90%, but it is also 
important to know the error value considered when 
calculating the precision. For example, in [6] the precision 
values for different algorithms are shown in Table I.  

Table I. Precisions of different algorithms in [9] 

Method Accuracy 
(m) 

Precision  
(< 2m) 

Precision  
(< 1m) 

Deterministic 1.6 90% 9% 
Probabilistic 1.87 70% 30% 
Combined 1.54 65% 30% 

 As seen above, the precision is 90% when 2m is considered 
for deterministic (KNN) method while it drops to 9% when 
1m is considered. The same applies for Probabilistic and 
Combined methods. By comparison, the work in [7] proposed 
algorithm achieved only 50% precision below 2m error but 
achieved 30% precision when 1m error was considered. In [8], 
the accuracy and precision of some commercial indoor 
localisation solutions are compared. Table II illustrates some 
solutions using WiFi RSS for localization. 

Table II. Commercial products and their performance [8] 

Solution Algorithm Accuracy Precision 
Microsoft 
RADAR 

KNN 3-5m 50% within 2.5m 
90% within 5.9m 

Horus probabilistic 2m 90% within 2.1m 
DIT MLP 3m 90% within 

5.12m 
MultiLoc SMP 2.7m 50% within 2.7m 

  
Above table shows that the accuracy and precision of some 
commercial systems are relatively low. Some solutions, EIRIS 
and Ubisense, provided accuracy below 1m, but their 
robustness was lower [8]. After considering different existing 
solutions and past research the importance of achieving high 
accuracy, precision along with robustness was identified. For 
this purpose, this paper uses fingerprinting method in the 
proposed algorithm.   

A. Fingerprinting method 
Fingerprinting method is one of the most used method for 
localization because of its above-mentioned benefits.  
Fingerprinting method involves storing the RF characteristics, 
known as fingerprints, of locations of the indoor environment 
in a database and comparing the fingerprint of the unknown 
target location with the fingerprints in the database to find an 
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approximated location of the target [2]. As such fingerprinting 
method is composed of two phases:  

1) Offline Phase  
This phase is also called the Data Collection phase during 
which, the fingerprints of the concerned indoor area are 
collected and the database is created. The indoor area is 
divided into an equally spaced grid where the grid points are 
called reference points (RP), at which the data will be 
collected. Past studies have showed that multipath effect, 
reflection, diffraction and scattering cause RSS to randomly 
vary around a mean value at a location[9]. RSS value is also 
affected by fading, which consists of two parts, Large-scale 
fading and small-scale fading. Large-scale fading is caused by 
attenuation due to signals being absorbed by various materials 
and objects in the environment. Large-scale fading decides the 
mean RSS. Small-scale fading is caused by multipath effect.  
As such, RSS in an indoor environment can be approximated 
to a Gaussian distribution with a mean and a standard 
deviation. For a more accurate approximation of mean and 
standard deviation, large number of samples will need to be 
collected at each RP. In literature, number of samples 
collected were as high as 10,000 [7]. After collecting samples 
the calculated mean and standard deviation will be part of the 
fingerprint of that RP [9],  [10]. 

2) Online phase 
In the online phase the algorithm takes a sample fingerprint 
from the unknown target location and compares it with the 
fingerprints in the database to classify the RPs that are most 
likely (or closest) to the target location. There are several 
known algorithms such as probabilistic, k-Nearest-Neighbour 
(KNN), neural networks, support vector machine (SVM) etc. 
This work uses the probabilistic and KNN methods to find two 
sets of estimated coordinates and finally combine them [8].  

In this paper, Section II describes the proposed fingerprinting 
method in detail. Section III discusses the results and 
observations of the testing of the algorithm. Finally, Section 
IV provides the conclusion of this paper.  

II. FINGERPRINTING ALGORITHM 

This paper implements the fingerprinting algorithm based on 
past research [6] making modifications with the aim of 
improving performance in terms of precision, accuracy and 
robustness. Two algorithms were designed to perform tasks in 
each phase of the fingerprinting method.  

A. Data collection algorithm  
Figure 1 shows the flowchart of the proposed data collection 
software used in during the data collection phase.  As seen in 
the flowchart the data collection will be performed for ‘s’ 
number of times at a particular RP. In this paper 100 is chosen, 
as the number of samples, due to practical reasons, but larger 
values will give a better representation of the RF behaviour at 
the RP. When collecting data at the RP, firstly the Wi-Fi 
signals will be scanned to obtain the list of available Wi-Fi 
access points (Cells) and their information such as signal level, 
signal quality, modulation and MAC address.  The second 
block in the flowchart represent the process of extracting the 
required information from the list. The list will include Wi-Fi 

signals from other buildings, but only those from the required 
building needs to be filtered. There after MAC address and 
RSS of each cell will be extracted and the total number of 
times a MAC address (i.e. access point) was received and the 
total RSS will be saved. When the measurement is done for 
all ‘s’ number of times, the final fingerprint for the RP will be 
created by calculating the mean and standard deviation of RSS 
for each MAC address received and it will them be saved to a 
log-file.  

              

Fig.  1.  Data collection software flowchart 
   

After data has been collected for all RP, the fingerprint 
database (FPDB) can be created using the log-files of each RP. 
The FPDB consists of three parts named FPDB1, FPDB2 and 
FPDB3. FPDB1 contains all RP and the list of MAC addresses 
received at each RP during data collection phase. FPDB2 
contains the fingerprints for each RP. Each fingerprint 
consists of RSS statistics received for all MAC at each RP. 
The RSS statistics include mean RSS, standard deviation and 
unique RSS values received during the measurement period 
and their frequencies.  FPDB3 contains coordinates of each 
RP. The FPDB will be used as an input to the localization 
algorithm during the online phase, which will be explained 
next.  

B. Localization algorithm  
Localization algorithm is executed during the online phase. 
The localization algorithm proposed in this paper takes five 
rapid samples at the beginning to create the ‘sample’ 
fingerprint of the unknown target location. This sample 
fingerprint is said to be of size N, meaning it contains N 
number of MAC addresses received at the target location and 
the average RSS of each MAC received during the sampling 
period. This sampling process allows to get a better 
representation of RSS, reducing the effect of RSS fluctuation 
caused by fading. Then the sample fingerprint is sent through 
an above average filter, where MAC addresses whose RSS is 
higher than the average RSS of the sample are selected to 
create the ‘sample_n’ fingerprint of size n where n<N. The 
resulting sample_n MAC address list is then matched against 
the FPDB1 in the pre-match phase. In the pre-match phase RP 
that contain all the MAC in the sample_n are selected from 
FPDB1 to create the prematch set of RP. This reduces the 
number of RP to m<M where M is the number of RP in the 
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test area. The prematch set of RP is then used to calculate the 
target location using two different methods, deterministic 
method and probabilistic method. The difference between the 
two methods is that in deterministic method RPs that are 
closest to the target location are found while in probabilistic 
method RPs that are most probable to be the target location 
are found. 

   
Fig.  2. Localization algorithm 

i. Deterministic method 
This method calculates the Euclidian distance between the 
sample and each RP in the prematch.  

                       ∑                       
(1) 

  In Eq. 1,  and  are RSS values of ith MAC in sample_n 
and corresponding fingerprint in FPDB2 where i=1,2,3…n. 
The Euclidian distance  is found for all RP in prematch 
where j=1,2,3….m.  Then from the prematch, Kd number of 
RPs that have the lowest Euclidean distance are selected. The 
value of Kd that gives the best performance must be 
experimentally found beforehand. [6] 

               ,
∑ ∗ ,

∑
                          (2) 

Thereafter Weighted K-Nearest Neighbour (WKNN) 
algorithm is used to calculate the intermediate coordinates 

,  of the target as in Eq. 2 where 1/  for the ith 
RP with the lowest distance. The ,  values are retrieved 
from FPDB3.  

ii. Probabilistic method  
The main idea behind the probabilistic method is to find the 
RPs in the prematch set, which have the highest probability of 
being the target location. The conditional probability of the ith 
RP is found using Bayes’ rule [11] as shown in Eq. 3. 

       | ∗

∑ ∗
                     (3) 

Where P(RP) is the prior probability of the target being at a 
given RP. This value depends on various factors such as user 
speed, user movement patterns but here it is assumed that each 
RP in the prematch is equally probable making P(RP) = 1/m. 

|  is the likelihood of the sample_n  (i.e. S) occurring 
at the ith RP. Value of |  is given by Eq. 4.   

| | | . |       (4) 

Where i=1,2,…m and |  are Gaussian 
probabilities of RSS of ith  MAC address, | , in 
the sample_n modelled by Eq. 5.   

         |
√

                (5) 

Where x, µ and σ are the RSS of the ith MAC in sample_n, the 
mean RSS of the MAC in RP and the standard deviation of 
RSS of the ith MAC. After calculating |  for each RP 
in prematch, the Kp number of RPs with the highest 
probabilities will be selected. Using this, the intermediate 
coordinates of target, ,  will be found using the 
following equation: [6] 

             ,
∑ ∗ ,

∑
                      (6) 

Where the weight w=p and ,  , the coordinates of each 
jth RP in the prematch set, will be retrieved from FPDB3. After 

,   and ,  are found the two results will be 
combined as shown in Eq. 7. to get the final estimated 
coordinate (X,Y) of the target location. 

, , ,           (7) 

Where E1, E2 are errors of ,  and ,  with respect 
to the test location ,  respectively. E1 and E2 are found 
as in Eq. 8 and Eq. 9 respectively.  

           1                  (8) 

            2              (9) 

III. TESTS, RESULTS AND OBSERVATIONS 

This section discusses tests performed to measure the 
accuracy and precision of the fingerprinting algorithm for 
both LOS and non-LOS conditions.  

A.  Line of Sight (LOS) scenario  
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Fig.  3. Test area layout for LOS scenario 

The test area is located in an open area with five access points 
having clear LOS with the entire test area. Figure 3 shows the 
test area with the approximate location of access points. (Note 
that the exact locations of access points are irrelevant when 
using fingerprinting method)Test parameters are shown in 
Table  below.  

Table III. Stationary test parameters for LOS scenario 

Parameter Value 
RF propagation LOS 
No of RP 49 
Area size  6m x 6m 
Origin RP1 
X-axis direction RP1RP7 
Y-axis direction RP1RP43 
Test location (xt,yt) (3.5, 3.5) 
User speed N/A 
Readings 100 
Kd and Kp K 

 
Access points A and D have clear LOS with entire test area 
while B and C have obstructions to parts of the area. Test 
results are shown in Table IV.  

Table IV. Results for different K in LOS scenario 

K Deterministic Probabilistic Combined 
Error 
(m) 

Pre 
(%) 

Error 
(m) 

Pre 
(%) 

Error 
(m) 

Pre 
(%) 

3 1.5546 9 2.1247 6 0.4757 88 
4 1.5613 1 1.4414 24 0.5383 84 
5 1.5784 16 1.5851 29 1.1923 46 
6 1.3382 19 1.3812 21 0.9635 49 
7 1.7811 5 1.5638 34 1.4347 31 

 
The combined method has an improved the accuracy and 
precision when compared to the individual methods. The 
maximum precision of 88% for error below 0.9m  and lowest 
error of 0.4757m were observed by the combined method for 
K=3. The results of the proposed method for K=3 is shown in 
Fig. 6.  
As seen in Fig. 4 the results are mostly clustered within 1m 
radius of the test location (3.5, 3.5). A moving test was 

performed to track the moving target with the following test 
parameters: 
 

 

Fig.  4. Stationary test K=3 using combined method for LOS scenario 
 

Table V. Moving test parameters for LOS scenario 

Parameter Value 
RF propagation LOS 
No of RP 49 
Area size  6m x 6m 
Origin RP1 
X-axis direction RP1RP7 
Y-axis direction RP1RP43 
Between points (3.5,0)  (3.5,5) 
User speed 0.31 m/s 
Readings 100 
Kd and Kp 3 

The apparatus was moved in a straight line, back and forth, 
slowly at a speed of 0.31 m/s for the 100 readings. A low 
speed was selected to simulate IoT application where a 
customer walks in a shopping mall. As seen in Fig. 5, the 
resulting points from the proposed combined method are 
mostly above 0.5 m from the actual path of the target, but 
comparatively, the combined method has more points that are 
closer to the actual path than the other two method.   

 

Fig.  5.  Moving  test  with  K=3  using  combined  method  for  LOS 
scenario 

 

B. Non Line of sight scenario  
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Fig.  6. Test area layout for non‐LOS scenario 

To test the robustness of the algorithm, it was tested under 
non-LOS conditions. For this, a room, which is located at the 
end of a narrow corridor, was selected as the test area. Fig. 6 
shows this area with the locations of the nearby access points. 
The test location was chosen as (2.6, 2) such that it does not 
have LOS from any of the access points. 

Table VI. Stationary test parameters for non‐LOS scenario 

Parameter Value 
RF propagation Non-LOS 
No of RP 16 
Area size  5m x 3m 
Origin RP14 
X-axis direction RP14RP16 
Y-axis direction RP14RP1 
Test location (xt,yt) (2.6, 2) 
User speed N/A 
Readings 100 
Kd and Kp K 

 The test results in Table VII shows that the proposed 
algorithm performs better in terms of both accuracy and 
precision over the other two individual methods.   

Table VII. Results for different K in non‐LOS scenario 

K Distance Probabilistic Combined 
Error 

(m) 
Pre 
(%) 

Error 
(m) 

Pre 
(%) 

Error 
(m) 

Pre 
(%) 

3 0.6745 73 0.7814 73 0.5362 91 
4 0.6916 68 0.9521 29 0.6019 87 
5 0.703 91 0.7676 77 0.5678 95 
6 0.6282 82 0.6845 99 0.4968 99 
7 0.5939 87 0.471 98 0.4025 99 

The lowest average error of 0.4025m and highest precision of 
99% for error below 0.9m were obtained by the combined 
method when K=7, and the results are illustrated in Fig. 7.  
In Fig. 7, it can be seen how the results of combined method 
are clustered closer together. This implies that the precision of 
the combined method is higher as seen in Table VII. A moving 
test was performed with the test parameters shown in the 
following Table VIII.  

 

Fig.  7. Stationary test with K=7 using combined method for non‐
LOS scenario 

 

Table VIII. Moving test parameters for non‐LOS conditions 

Parameter Value 
RF propagation Non-LOS 
No of RP 16 
Area size  5m x 3m 
Origin RP14 
X-axis direction RP14RP16 
Y-axis direction RP14RP1 
Between points (0,2.2)  (4.5,2.2) 
User speed 0.29 m/s 
Readings 100 
Kd and Kp 7 

As in previous section, the apparatus was moved in a straight 
line back and forth for the 100 readings. The results are shown 
in Fig 8.  

 

Fig.  8. Moving test (K=7) using  deterministic method for non‐LOS 

Unlike in the LOS scenario, in the non-LOS case the 
algorithm tracks the target more precisely along the actual 
path. All three methods provide target location within 0.5m of 
the actual path. However, only the deterministic method 
tracked the target along the path for more distance than the 
other two methods whose results were concentrated. Further 
coordinates were not received when the target was near the 
wall at location (0, 2.2). 

C. Observations  
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After the tests, the accuracy and error results can be used to 
compare the combined method’s performance in terms of 
accuracy and average error with those of deterministic and 
probabilistic methods.  

 

Fig.  9. Accuracy and Precision comparison of the combined method 
for LOS and non‐LOS scenarios for combined method 

As seen in Fig. 9, when K<5, the combined method performs 
with an average error <0.7m and precision >84% for both LOS 
and non-LOS conditions. For the same conditions, the 
deterministic and probabilistic methods have a higher 
accuracy and lower precision than the combined method as 
seen in Fig. 10 and Fig. 11 respectively.  

For all K under LOS conditions, the performance of the 
combined method is better than the deterministic and 
probabilistic methods. However K<5 values provide the best 
performance for all situations. 

 

Fig.    10.  Accuracy  comparison  of  deterministic,  probabilistic  and 
combined methods for LOS and non‐LOS scenario 

 

Fig.    11.  Precision  comparison  of  deterministic,  probabilistic  and 
combined methods for LOS and non‐LOS scenarios 

IV. CONCLUSIONS 
In conclusion, for a stationary target device, the proposed 
combined algorithm achieved a maximum precision of 88% 
under LOS conditions with K=3 and a maximum precision of 
99% was achieved under non-LOS conditions was with K=6 

and K=7. Accuracy of the proposed algorithm remained stable 
around 0.5m for all K under non-LOS conditions, while it 
degraded with increasing K for LOS conditions. In addition, 
the proposed fingerprinting algorithm with combined method 
achieved a 91% precision and accuracy of less than 1m when 
K=3 and K=4 for both LOS and non-LOS conditions. 
Therefore, it was concluded that the proposed algorithm can 
be used for localization under any RF conditions using K<=4 
with satisfactory overall performance with high accuracy, 
precision and robustness. Overall, the combined method 
performed better than both deterministic and probabilistic 
methods for all situations. For a moving target, the algorithm, 
using deterministic method, performed better under non-LOS 
conditions by tracking it with less deviation from the actual 
path. However, further research needed to be done to track a 
mobile target precisely along its path in an indoor 
environment  
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