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ABSTRACT The kernel minimum square error classification (KMSEC) algorithm has been widely used in
classification problems. It shows a good performance on image data besides the following drawbacks: not
sparse in the solutions and sensitive to noises. The latter drawback will result in a decrease in the recognition
performance. To this end, we propose an improved (IKMSEC) by using the L2,1-norm regularization, which
can obtain a sparse representation of nonlinear features to guarantee an efficient classification performance.
The comprehensive experiments show the promising results in face recognition and image classification.

INDEX TERMS Minimum square error classification, kernel, L2,1-norm, pattern recognition.

I. INTRODUCTION
Image recognition, which is one of the hottest topics in the
fields of computer vision and pattern recognition, is receiving
much attention and becoming more acknowledged [1]–[5].
Specially, feature extraction and classifier construction
are two key processes in designing an image recognition
system [6]–[8]. For image recognition, the former researchers
have proposed a large number of methods, e.g., lin-
ear discriminant analysis (LDA) [9]–[11], principal com-
ponent analysis (PCA) [12], independent component
analysis (ICA) [14], [15], sparse representation-based
classifier (SRC) [16]–[20] and minimum squared error
algorithm (MSE) [13]. Minimum squared error classification
(MSEC), which very easy to be realized by using the sample
and its class label as the input and output respectively, gains
its popularity in recent years. MSEC is an efficient and simple
image recognition method. In addition, MSEC is a special
case of LDA when the training samples size approaches
infinity. However, due to the inherent linearity, the nonlinear
structure of training data in image recognitions can’t be
represented effectively by above mentioned methods.

The kernel method is firstly applied to support vector
machine (SVM) and has achieved a great success [21], [22].
Afterwards, a plenty of methods are proposed for

nonlinear data by means of kernel function, e.g., kernel
PCA (KPCA) [23], [24], kernel LDA (KLDA) [25], kernel
ICA (KICA) [26] and kernel MSEC (KMSEC) [27], [28].
KMSECmaps a low dimensional input to a high dimensional
feature space using a nonlinear function, and then accom-
plishes image recognition. As a matter of fact, KMSEC can
be regarded as a feature extraction process based on KPCA,
and it is formally equivalent to the least square SVM and
the kernel discriminant analysis. When the size of training
samples approaches infinite, KMSEC shares the similar idea
with the Bayesian discriminant function in the feature space
based on the minimum mean square error.

However, the KMSEC is based on Frobenius norm. The
main drawback of Frobenius norm is as follows. It can enlarge
the noise and error in data. That is to say, it is sensitive
to outliers and noises in data, which may decrease the
classification accuracy. Resently, the sparsity regularization
has been studied to boost the classification performance. Its
advantages are listed in the following aspects. 1) It usually
leads to more robust models. 2) It avoids overfitting. 3) It may
distinguish the most-relevant features. 4) It is able to better
use the prior information. Wright et al. [29] proposed a clas-
sification method based on the sparse representation, named
sparse principal component analysis (SPCA), which produces
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modified principal components with sparse loadings.
Qiao et al. [31] presented a sparse preserving projection
technique, which is proved to be effective in face recogni-
tions. Cai et al. [32] proposed a sparse projection algorithm
based on graph and showed a good classification performance
for document. To improve the classification accuracy in
face recognition, a sparse representation algorithm based
on kernel method was put forward by Zhu et al. [33].
Zhang et al. [34] constructed a kernel sparse representa-
tion based classifier (KSRC). Based on the fact that the
kernel method can effectively process the nonlinear feature,
Gao et al. [35] presented a kernel sparse representation (KSR)
algorithm. Nie et al. [36] came up with a robust feature
selection algorithm which made joint L2,1-norm minimiza-
tions on both regularization and loss function. Sun et al. [37]
put forward an equation constrained L2,1-norm minimization
model to solve the problem of the multiple measurement
vector. Ren et al. [38] established an objective model for clas-
sification by adding a regularized L2,1-norms minimization
constraint. The L2,1-norm regularized least square regres-
sion model was used to make joint feature selection [39].
According to the sparse representation and the projected
regularization scheme, the images were separated into a
texture part and a cartoon part in [40]. To improve the
robustness of the attribute reduction algorithms, Xia et al. [41]
proposed an attribute reduction algorithm based onmaximum
margin projection and L2,1-norm regularization. In view of
L2,1-norm regularization, Hou et al. [42] proposed a novel
feature selection algorithm, which significantly improved the
accuracy in feature selection and the speed in convergence.

In this paper, we propose a robust and efficient classifi-
cation algorithm by employing the L2,1-norm minimization
into the KMSEC, which is named IKMSEC. We employ the
L2,1-norm regularization in our work instead of using the
L2-norm regularization so that the negative impact of the out-
liers and contaminated samples can be decreased. Moreover,
the use of the L2,1-norm regularization allows us to select
features.

The remainder of the paper is organized as follows. The
related work is briefly reviewed in the section II. The
proposed IKMSEC based on L2,1-norm regularization is
presented in section III. Section IV conducts a series of
experiments on face recognition databases. The final section
concludes the paper.

II. THE RELATED WORK
A. THE MINIMUM SQUARED ERROR
CLASSIFICATION (MSEC)
We assume there are C classes for N training images
(x1, x2, · · · , xN ) and n training samples for each class,
i.e., N = Cn. Each training sample is mapped into a vector of
values of features. A C-length vector is adopted to stand for
the label of a sample. Suppose one sample belongs to the k th

class, then the label of this sample is represented as gk =
[0 0 · · · 0︸ ︷︷ ︸

k−1

1 0 · · · 0]. In this way, we acquire the training

dataset X = [x1, x2, · · · , xN ]T and the corresponding label
space G = [gT1 , g

T
2 , · · · , g

T
N ]

T for MSEC. MSEC follows the
equation:

XA = G (1)

where A is a transform matrix.
The transform matrix A is generated through Ã = (XTX +

λI )−1XTG, where λ is a small positive constant and I denotes
an identity matrix.

The class label of the test sample y can be obtained by using
Eq. (2):

gy = yÃ (2)

We use Eq. (3) to evaluate the Euclidean distances between
gy and each class label gi, respectively.

dti =
∥∥gy − gi∥∥2 , i = 1, 2, · · · ,C (3)

If k = argmin
i
dti, then the testing sample y is ultimately

assigned to the k th class.

B. THE KERNEL MINIMUM SQUARED ERROR
CLASSIFICATION (KMSEC)
KMSEC, which mainly deals with the classification issue
of nonlinear feature, introduces the nonlinear kernel to
the MSEC. Assume that each sample could be mapped
from an original low-dimensional feature space to a high-
dimensional feature space by a nonlinear mapping func-
tion. Given a set of training image samples are denoted as
X̃ = [f (x1), f (x2), · · · , f (xN )]T in the high-dimensional fea-
ture space. KMSEC follows the equation:

X̃ Ã = G (4)

where Ã is a transform matrix, G is same as the G in Eq. (1).
Let Ã = [a1, a2, · · · , aC ], where ai(i = 1, 2, · · · ,C) is

a vector. According to the correlation theory of kernel func-
tion [21], [22], ai can be expressed as a linear combination of
f (xj)(j = 1, 2, · · · ,N ) as follows:

ai = βi1f (x1)+ βi2f (x2)+ · · · + βiN f (xN )

= (f (x1), f (x2), · · · , f (xN ))


βi1
βi2
...

βiN


= (f (x1), f (x2), · · · , f (xN )βi (5)

where βi = [βi1, βi2, · · · , βiN ]T . Then,

X̃ Ã = X̃ [X̃Tβ1, X̃Tβ2, · · · , X̃TβC ]
= X̃ X̃T [β1, β2, · · · , βC ]
= [f (x1), f (x2), · · · , f (xN )]T [f (x1), f (x2), · · · , f (xN )]β

=


f (x1)T f (x1) f (x1)T f (x2) · · · f (x1)T f (xN )
f (x2)T f (x1) f (x2)T f (x2) · · · f (x2)T f (xN )

...
...

...
...

f (xN )T f (x1) f (xN )T f (x2) · · · f (xN )T f (xN )

β
(6)
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where β = [β1, β2, · · · , βC ]. If the kernel function of
KMSEC is defined as follows:

k(xi, xj) = f (xi)T f (xj) (7)

Eq. (6) can be rewritten as:

X̃ Ã =


k(x1, x1) k(x1, x2) · · · k(x1, xN )
k(x2, x1) k(x2, x2) · · · k(x2, xN )

...
...

...
...

k(xN , x1) k(xN , x2) · · · k(xN , xN )

β
= Kβ (8)

Thus, Eq. (4) can be written as follows:

Kβ = G (9)

β can be solved by Equation (10)

β = (KTK )−1KTG (10)

III. THE IMPROVED KERNEL MINIMUM SQUARED ERROR
CLASSIFICATION (IKMSEC) BASED ON L2,1-NORM
REGULARIZATION
We expect that the transform matrix maintains the sparsity
property for feature ranking. To this end, a L2,1-norm reg-
ularization is applied to minimize β, denoted as ‖β‖2,1. The
objective function of the proposed IKMSEC is formulated as:

min
β
Lβ = min

β
(‖Kβ − G‖ + γ ‖β‖2,1) (11)

where the L2,1-norm of the matrix β is defined as follows:

‖β‖2,1 =

n∑
i=1

√√√√ m∑
j=1

β2ij =

n∑
i=1

∥∥∥β i∥∥∥
2

(12)

where β i is the ith row of matrix β. Then, we have

‖β‖2,1 = β
TUβ (13)

where Ui,i = 1
2‖β i‖2

, if i = j, Uij = 0.
The objective function of IKMSEC is optimized as:

L(β) = ||Kβ − G||22 + γ ||β||21
= trace(βTKTKβ−2βTKTG+ GTG)+ γ trace(βTUβ)

= trace(βT(KTK + γU )β − 2βTKTG+ GTG) (14)

The solution of Eq. (14) can be generated through solving
the least squares below.

(KTK + γU )β = KTG (15)

Since Eq. (15) is solved by iterations on Uii = 1
2||β i|| ,

we initialize U0 as an identity matrix and define Ut+1 in the
iterations as:

Ut+1 =


1

2
∥∥β1t ∥∥2

· · ·

1

2
∥∥βmt ∥∥2

 (16)

The proposed algorithm is robust, so it can well overcome
the uncertainty problem in face images. Namely, different
images of the same face tend to vary significantly. At the same
time, the proposed algorithm is less sensitive to outliers and
noise. In addition, the proposed algorithm can get the sparse
solution.

The proposed IKMSEC algorithm is presented in detail as
follows.

Step 1. Initialize U in Eq. (15) as an identity matrix,
denoted as U0.
Step 2. Generate the iterations on Ut+1 in Eq. (16) and

update βt+1 by Eq. (15).
Step 3. Check the convergence of Eq. (14): output the

optimal matrix β∗ = βt , if convergence; and go to Step 2,
otherwise.

IV. EXPERIMENTS AND RESULTS
In this subsection, we implement comprehensive experi-
ments to assess the effectiveness and the robustness of
the proposed IKMSEC on databases of Olivetti Research
Laboratory (ORL) [43], Yale, FERET [44], Georgia Tech
and AR face [45]. We apply the Gaussian kernel function
(k(x, y) = exp(−‖x − y‖2 /t)) and the Polynomial kernel
function (k(x, y) = (xT×y)d ) for KMSEC and IKMSEC. The
optimal kernel parameters t and d are used in the experiments.

A. EXPERIMENT ON ORL FACE DATABASE
In the ORL face image database, there are 400 samples
of images from 40 objects, that each object has 10 sam-
ples. The images include different expressions (non-smiling
and smiling, closed and open eyes), different facial details
(no glasses and glasses), and different angles (a tolerance for
the rotations and tilting up to 20 degrees). In addition, the
samples of images are captured at different times. The size
of the image samples are cropped to 56 × 46 pixels. Fig. 1
illustrates a set of samples of one object.

FIGURE 1. Image samples of one object in the ORL database.

In this experiment, the first l samples of every object
(l varies from 1 to 9) are chosen as the training set, and
the rest samples are used as the testing set. The parameter
of t in the Gaussian kernel function is set as 1 for KMSEC
and IKMSEC. The parameter of d in the Polynomial kernel
function is set as 8 for KMSEC and IKMSEC. Fig. 2 shows
the face recognition results.

In Fig. 2, there are three main findings. To begin with,
whatever kernel function we choose, the proposed IKMSEC
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FIGURE 2. The recognition accuracies of several different methods with
different numbers of training samples on the ORL image database.

algorithm always outperforms KMSEC irrespective of the
variation of the training sample size. Then, the performance
of KMSEC is better than that of MSEC. Last, from the two
points above, it is obvious to tell that the kernel method pro-
motes the classification performances. At the same time, the
proposed IKMSEC is more robust than the original KMSEC.

B. EXPERIMENT ON YALE FACE DATABASE
The Yale face image database has 15 objects and a total
of 165 images, i.e., each object contains 11 image samples
with different illuminations and facial expressions. In this
experiment, all image samples are cropped to 50× 40 pixels.
Fig. 3 presents the samples of one object.

FIGURE 3. Image samples of one object in the Yale database.

In the experiment, the number of training samples of each
object varies from 1 to 10, and the rest image samples are
used as the test samples. The parameter of theGaussian kernel
function is set as t = 2 for KMSEC and IKMSEC. The
parameter d of the Polynomial kernel function is set as 0.8
for KMSEC and IKMSEC. Fig. 4 shows the face recognition
accuracies of all methods with different numbers of training
samples.

It can be seen from Fig. 4 that the proposed IKMSEC
method still performs the best regardless of the number of
training samples. Because the face database is relatively
small, all the methods have achieved good recognition per-
formance. When the training sample size is larger than 3,

FIGURE 4. The recognition accuracies of sereral methods with different
numbers of training samples on the Yale database.

IKMSEC based on the Gaussian kernel function consistently
achieves 100% in classification accuracy. IKMSEC based on
the Polynomial kernel function achieves 100% in classifica-
tion accuracy when the training sample size is larger than
4. Other methods achieves 100% in classification accuracy
when the training sample size is larger than 6.

C. EXPERIMENT ON FERET FACE DATABASE
There are 1,565 objects and a total of 13,539 image samples
in the FERET database. The image samples vary in illumi-
nations, ages, sizes, facial expressions, and poses. We select
1400 images from 200 objects (each object includes 7 image
samples) in this experiment. Each sample is resized to
40×40 pixels. Fig. 5 demonstrates the samples of one object.

FIGURE 5. Image samples of one object in the FERET database.

In this experiment, the first l image samples (l varies from
1 to 6) of every object are selected as the training samples
and the rest of images are selected as the test samples. The
parameter of the Gaussian kernel function is set as t = 1 for
KMSEC and IKMSEC. The parameter d of the Polynomial
kernel function is set as 10 for KMSEC and is set as 20
for IKMSEC. Fig. 6 illustrates the recognition accuracies of
different methods based on different training sample sizes.

In Fig. 6, we find that our proposed IKMSEC method
outperforms KMSEC and MSEC in the classification task
irrespective of the number of the training samples. Besides,
the accuracy of KMSEC method outperforms that of MSEC
only when the training sample size is 3. The recognition rates
of KMSEC and the proposed IKMSEC with Gaussian kernel
function are respectively 67.75% and 74%. The recognition
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FIGURE 6. The recognition accuracies of several methods with different
numbers of training samples on the FERET database.

rates of KMSEC and the proposed IKMSECwith Polynomial
kernel function are respectively 67.25% and 72.75%.

D. EXPERIMENT ON GEORGIA TECH IMAGE DATABASE
Georgia Tech image database includes 50 objects taken in two
or three sessions by GIT (Georgia Institute of Technology).
The 15 color JPEG images are captured at the resolution
of 640 × 480 pixels for each object in this database. These
samples are tilted or fronted with various scales, expressions,
and illuminations. All samples are resized to 40×30 pixels in
this experiment. Fig. 7 illustrates the samples of one object.

FIGURE 7. Image samples of one object in the Georgia Tech face
database.

For this experiment, all the images are firstly converted into
grayscale images. We select the first 1, 2, up to 14 image
samples of every object to be the training set and the rest
as test set. The parameter of the Gaussian kernel function
is set as t = 1 for KMSEC and t = 0.5 for IKMSEC.
The parameter d of the Polynomial kernel function is set as
10 for KMSEC and 15 for IKMSEC. Fig. 8 illustrates the
recognition accuracies with different training sample sizes.

FIGURE 8. The recognition accuracies of several methods with different
numbers of training samples on the GT database.

Fig. 8 shows that the proposed IKMSEC method still per-
forms the best irrespective of the number of training samples
and the recognition performance of the proposed method
and KMSEC is much better than that of MSEC. However,
the performance of the proposed method and KMSEC is
relatively close. This is because the pose of face images in GT
database varies greatly, and the proposed method is robust to
noise and outliers.

E. EXPERIMENT ON AR IMAGE DATABASE
There are over 400 images of color faces from 126 objectives
in the AR face database. Under different lighting conditions,
each object has 26 frontal views of faces with occlusions and
various facial expressions. The AR image database is taken
in two sessions and each session (14 days) includes 13 color
images. In this experiment, we select 14 non-occluded face
images (with 7 samples of every session for every object), and
the image samples are transformed to grayscale. The size of
each image is converted to 50×40 pixels. The image samples
of one object are shown in Fig. 9.

FIGURE 9. Image samples of one object with two sessions in the
AR database.

In this experiment, we set the first 1, 2, up to 7 image
samples of each object from the first session as the training
set, and all the 7 images of each object from the second
session are used as the test set. The parameter in the Gaussian
kernel function is set as t = 0.2 for KMSEC and t = 0.3
for IKMSEC. The parameter in the Polynomial kernel
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FIGURE 10. The recognition accuracies of several methods with different
numbers of training samples on the AR database.

FIGURE 11. One image and its corresponding corrupted sample images.

function is set as d = 0.4 for KMSEC and IKMSEC.
The experiment results are illustrated in Fig. 10. It can be
seen from Figure 10 that the proposed IKMSEC shows a
better recognition performance than KMSEC regardless of
the kernels. The performance of the proposed IKMSEC with
Polynomial kernel function is more than that of the proposed
IKMSEC with Gaussian kernel function.

F. EXPERIMENT ON NOISY ORL DATABASE
For the sake of validating the robustness of the proposed
IKMSEC for noise, we implement some experiments in this
subsection. The first l image samples each object (l varies
from 1 to 9) are given to act as the training set, and the rest as
the test set. We give the following assumptions: the training
samples are not corrupted, and the test samples are corrupted
by three types of noise, i.e., Gaussian noise, Speckle noise
and Salt & pepper noise. Fig. 11 illustrates one image and
its corresponding corrupted images. We use the Polynomial

FIGURE 12. The recognition rates of several methods with Gaussian
kernel function versus the variation of the training sample size on the
corrupted ORL database.

FIGURE 13. The recognition rates of several methods with Polynomial
kernel function versus the variation of the training sample size on the
corrupted ORL database.

kernel function and the Gaussian kernel function for KMSEC
and IKMSEC. The recognition results are listed in Fig. 12
(based on the Gaussian kernel function) and Fig. 13 (based
on the Polynomial kernel function). It can be known from
Fig. 12 and Fig. 13 that the recognition performance of our
IKMSEC method is much better than that of the original
KMSEC method regardless of any kind of noises. In this
experiment, the experiment results prove that our IKMSEC
method is robust to noises.

V. CONCLUSION
In this paper, we present an improved kernel minimum square
error classification algorithm based on L2,1-norm, which is
a kind of sparse coding techniques that applied in a
high dimensional feature space and mapped by an implicit
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nonlinear function. The proposed method is robust, and it
can overcome the uncertainty problem in face images. The
proposed method has been successfully used in solving face
classification problems. The experiment results on five
benchmark face databases show that our algorithm is very
efficient in image classification tasks, and outperforms
KMSEC methods and MSEC methods.
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