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Abstract. Low-rank representation (LRR) has been successfully applied to subspace clustering. However, the
nuclear norm in the standard LRR is not optimal for approximating the rank function in many real-world appli-
cations. Meanwhile, the L21 norm in LRR also fails to characterize various noises properly. To address the above
issues, we propose an improved LRR method, which achieves low rank property via the new formulation with
weighted Schatten-p norm and Lq norm (WSPQ). Specifically, the nuclear norm is generalized to be the
Schatten-p norm and different weights are assigned to the singular values, and thus it can approximate the
rank function more accurately. In addition, Lq norm is further incorporated into WSPQ to model different noises
and improve the robustness. An efficient algorithm based on the inexact augmented Lagrange multiplier method
is designed for the formulated problem. Extensive experiments on face clustering and motion segmentation
clearly demonstrate the superiority of the proposed WSPQ over several state-of-the-art methods. © 2017
SPIE and IS&T [DOI: 10.1117/1.JEI.26.3.033021]
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1 Introduction
In recent years, subspace clustering techniques have attracted
much attention due to its widespread applications in com-
puter vision and machine learning, such as image represen-
tation,1,2 face clustering,3,4 and motion segmentation.5,6

Subspace clustering refers to the task of recovering low-
dimensional subspace structures7 in the high-dimensional
data and clustering each group of data into its own subspace
simultaneously. Until now, many subspace clustering meth-
ods have been proposed in the literature8 and they can mainly
be divided into four categories: iterative methods,9,10 alge-
braic methods,11,12 statistical methods,13,14 and spectral clus-
tering-based methods.15,16

The spectral clustering-based methods can be implemented
easily, solved efficiently, and achieve competitive results in
real-world applications. The spectral clustering-based meth-
ods perform subspace clustering in two stages: they first
learn an affinity matrix from the observed data and then
apply spectral clustering algorithms17,18 on the affinity matrix
to get the final clustering results. Therefore, how to construct a
good affinity matrix is the main challenge for spectral cluster-
ing-based methods. Inspired by recent advances in sparse19,20

recovery theory, sparse subspace clustering (SSC)21 was
developed for subspace clustering. SSC constructs the affinity
matrix22 using the sparse representation of each data point
with respect to all the other data points, which is obtained
by solving an L1 norm minimization problem. SSC is
more robust to noise and outliers and does not require the
number and dimensions of subspaces in advance. However,
SSC considers each data point individually, which fails to dis-
cover the global structure of data.

Recently, low rank matrix recovery methods23,24 have
attracted great attention in the fields of subspace learning,25

transfer learning,26 and multiview learning.27 Among them,
low-rank representation (LRR)28 is one typical model for
solving the subspace clustering problem. By solving a
rank minimization problem, LRR seeks the lowest rank rep-
resentation of the whole data and thus can capture the global
structure of data. Nevertheless, rank minimization of a matrix
is a challenging NP-hard problem, and it is commonly
relaxed to a convex nuclear norm minimization (NNM)
problem.24 Although NNM can find a globally optimal sol-
ution of the relaxed problem, this solution may be subopti-
mal for the original problem.

Many efficient nonconvex approaches have been pro-
posed to solve the rank minimization problem. Fazel et al.
developed the Log-det function29 to replace the rank func-
tion, but it has a significantly biased approximation for
small singular values. Hu et al. proposed the truncated
nuclear norm (TNN),30 which minimizes the smallest several
singular values for the matrix completion problem. TNN
requires an accurate estimation of the rank of the data matrix,
which is a hard task in practice. In addition, Nie et al. pro-
posed the Schatten-p norm,31 which is a generalization of the
nuclear norm. Theoretically, it has been proven that the
Schatten-p norm minimization achieves better recovery
for the matrix completion problem while a weaker restricted
isometry property is required.32

Later, the Schatten-p norm has been widely studied. Nie
and Huang33 proposed a new subspace clustering model
based on the Schatten-p norm, which can not only directly
learn the group indicator instead of affinity matrix to obtain
the low rank structure but also better approximate the low
rank constraint. Yu and Schuurmans34 optimized the unitarily
invariant norm, which is a generalization of the Schatten-p
norm, and derived an efficient closed-form solution for the
subspace clustering problem. Moreover, Xie et al. proposed a
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more flexible model, namely the weighted Schatten-p
norm,35 which assigns weights to different singular values
for the Schatten-p norm. The weighted Schatten-p norm
is a better approximation to the rank function as it considers
the importance of different rank components. Until now, it
has been successfully applied to many image processing
problems, such as image denoising, background subtraction,
and hyperspectral image restoration.36 The success inspires
us to use the weighted Schatten-p norm to approximate the
rank function in the subspace clustering problem.

The L21 norm in the standard LRR is used to characterize
the noise, but it is only suitable for sample-specific corrup-
tions. Later, some methods37,38 use other norms to describe
different types of noise. For example, the L1 norm can
describe random corruptions, and the squared Frobenius
norm is suitable for Gaussian noise. Generally speaking,
the above norms can be only applied to one specific type
of noise, which limits the application for different settings.
A generic model, i.e., Lq norm can be used to describe vari-
ous noises by setting different values for q. For example, the
Lq norm reduces to the L1 norm if q ¼ 1 and reduces to the
squared Frobenius norm if q ¼ 2.

To improve the robustness of LRR for the subspace clus-
tering problem, an LRR model, i.e., weighted Schatten-p
norm and Lq norm regularized LRR (WSPQ), is proposed
in this paper. Specifically, the weighted Schatten-p norm
and Lq norm are introduced to approximate the rank of
the coefficient matrix and complex noises, respectively.
The proposed WSPQ can better approximate the rank func-
tion and is more robust to various noises, such as illumina-
tion variations, corruptions, and occlusions. Based on the
inexact augmented Lagrange multiplier (ALM)39 method,
we design an efficient optimization algorithm to solve the
proposed model. Experiments on several datasets, i.e.,
extended Yale B, AR face datasets, and Hopkins155 motion
segmentation dataset, show that the proposed WSPQ has

better clustering performance than the previous methods.
Figure 1 shows the proposed WSPQ for subspace clustering.

The remainder of this paper is organized as follows. We
give an overview of the related works in Sec. 2. In Sec. 3, we
present the proposed WSPQ and the detailed optimization.
The experimental results are reported in Sec. 4. Finally,
we conclude this paper in Sec. 5.

2 Related Work
In this section, some research background about subspace
clustering is introduced, such as the subspace clustering
problem, the LRR model, and the inexact ALM method,
which is a basic optimization technique for LRR.

2.1 Subspace Clustering Problem
LetX ¼ fxi ∈ Rdgni¼1 be a given set of points drawn from an
unknown of k linear or affine subspaces fSigki¼1 of unknown
dimensions dk ¼ dim ðSkÞ. The task of subspace clustering is
to find the number of subspaces k and cluster each data point
xi according to the k subspaces. Figure 2 is the illustration of
the subspace clustering problem.

2.2 LRR Model
The recently proposed LRR performs subspace clustering
excellently. The task of LRR is to find the lowest rank rep-
resentation among all the linear combinations of the bases in
a given dictionary. Let X ¼ fxi ∈ Rdgni¼1 be a given set of n
points in the d-dimensional space. LRR aims to solve the
following rank minimization problem:

EQ-TARGET;temp:intralink-;e001;326;424min
Z

rankðZÞ s:t: X ¼ AZ; (1)

where A ¼ ½a1; a2; : : : ; an� ∈ Rd×n is the dictionary matrix
and Z ¼ ½z1; z2; : : : ; zn� ∈ Rn×n is the coefficient matrix
with each zi being the representation coefficient of xi.

Fig. 1 Illustration of the proposed model. The data matrix X contains three subjects of face images, and
we set the dictionary matrix A ¼ X. By solving the weighted Schatten-p norm and Lq norm minimization
problem, we obtain the coefficient matrix Z. The affinity matrix W is acquired by a postprocessing of the
coefficient matrix Z, and the final results are obtained by employing the classical spectral clustering
algorithm.

Journal of Electronic Imaging 033021-2 May∕Jun 2017 • Vol. 26(3)

Zhang, Tang, and Liu: Robust subspace clustering via joint weighted. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/20/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Since Eq. (1) is NP-hard, LRR uses the nuclear norm to
replace the rank function and solves the following convex
optimization problem:

EQ-TARGET;temp:intralink-;e002;63;565min
Z

kZk� s:t: X ¼ AZ; (2)

where k · k� denotes the nuclear norm of a matrix, defined as
the sum of all singular values of the matrix. Considering that
the observed data are usually noisy or corrupted, a more
robust objective function for LRR can be expressed as

EQ-TARGET;temp:intralink-;e003;63;485min
Z

ðkZk� þ λkEklÞ s:t: X ¼ AZþ E; (3)

where λ > 0 is a balance parameter, E ∈ Rd×n represents
the unknown noise or corruption, and k · kl can be
L1 norm kEk1 ¼

P
d
i¼1

P
n
j¼1 jEijj, L21 norm kEk2;1 ¼P

n
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
d
i¼1 E

2
ij

q
, or squared Frobenius norm kEk2F ¼P

d
i¼1

P
n
j¼1 E

2
ij. The standard LRR uses the L21 norm to mea-

sure the noise term. Then the inexact ALM method is
employed to solve Eq. (3). After obtaining the minimizer
ðZ�;E�Þ, the affinity matrix used for subspace clustering is
defined as

EQ-TARGET;temp:intralink-;e004;63;337W ¼ jZ�j þ jZ�T j: (4)

2.3 Inexact ALM Method
The inexact ALM method is widely used for solving the low
rank matrix recovery problem. Consider the following con-
strained optimization problem:

EQ-TARGET;temp:intralink-;e005;63;246min
x;y

½fðxÞ þ gðyÞ� s:t: AðxÞ þ BðyÞ ¼ c; (5)

where x, y, and c are the matrices, f and g are the convex
functions, and A and B are the linear mappings. The aug-
mented Lagrangian function of Eq. (5) can be expressed
as follows:

EQ-TARGET;temp:intralink-;e006;63;165Lðx; y; nÞ ¼ fðxÞ þ gðyÞ þ hn; AðxÞ þ BðyÞ − ci
þ μ

2
kAðxÞ þ BðyÞ − ck2F; (6)

where n is a Lagrange multiplier and μ is a penalty param-
eter. By fixing the other variables, the inexact ALM method
minimizes x and y alternately, and the updating rules are as
follows:

EQ-TARGET;temp:intralink-;e007;326;752xkþ1 ¼ arg min
x

Lðx; yk;nkÞ

¼ arg min
x

�
fðxÞ þ μk

2
kAðxÞ þ BðykÞ − cþ nk∕μkk2F

�
;

(7)

EQ-TARGET;temp:intralink-;e008;326;683

ykþ1 ¼ arg min
y

Lðxkþ1;y;nkÞ

¼ arg min
y

�
gðyÞ þ μk

2
kAðxkþ1Þ þBðyÞ− cþ nk∕μkk2F

�
:

(8)

Equations (7) and (8) can be solved by some convex or
nonconvex optimization methods. The Lagrange multiplier n
and penalty parameter μ are adaptively updated as follows:

EQ-TARGET;temp:intralink-;e009;326;571nkþ1 ¼ nk þ μk½Aðxkþ1Þ þ Bðykþ1Þ − c�; (9)

EQ-TARGET;temp:intralink-;e010;326;541μkþ1 ¼ minðμmax; ρμkÞ; (10)

where μmax is an upper bound of μ and ρ is a constant. The
variables are iteratively updated by Eqs. (7)–(10), until the
convergence conditions are met.

3 Weighted Schatten-p Norm and Lq

Norm Regularized LRR
In this section, we introduce the proposed WSPQ model.
First, we discuss the motivation of this work. Second, we
formulate the objective function of WSPQ. Third, we pro-
vide an efficient optimization algorithm to solve the objec-
tive function. Finally, we present the whole subspace
clustering algorithm of WSPQ and discuss the convergence
of WSPQ.

3.1 Motivation
This work is motivated by the following two aspects: on one
hand, recent researches38,40 have shown that the standard
LRR uses the nuclear norm to approximate the rank function,
which leads to a suboptimal solution, and cannot capture the
global structures of data well. On the other hand, LRR uti-
lizes the L21 norm to represent noise. In this case, it only
describes the sample-specific corruptions and is not robust
to the various types of noise. This paper focuses on improv-
ing the robustness of LRR for subspace clustering. We inves-
tigate an improved LRR model, which has a better rank
approximation and a generic noise representation.

3.2 Problem Formulation
For coefficient matrix Z, the rank function rankðZÞ ¼P

n
i¼1 σ

0
i ðσi ≠ 0Þ ¼ kσk0 is the L0 norm of the singular val-

ues, and the nuclear norm kZk� ¼
P

n
i¼1 σ

1
i ¼ kσk1 is the L1

norm of the singular values. The L1 norm is not a perfect
approximation to the L0 norm; thus, many nonconvex sur-
rogate functions have been proposed.29–35 The weighted
Schatten-p norm, a better surrogate of the rank function,
is defined as

EQ-TARGET;temp:intralink-;e011;326;110kZkw;Sp ¼
�Xn

i¼1

wiσ
p
i

�1
p ð0 < p ≤ 1Þ; (11)

Fig. 2 Illustration of subspace clustering problem. The left is a set of
sample points drawn from a union of three subspaces. The right is the
clustering results: two lines (one-dimensional subspace) and a plane
(two-dimensional subspace).
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where w ¼ ½w1; w2; : : : ; wn� is the weight vector. The
weighted Schatten-p norm of coefficient matrix Z to the
power p is

EQ-TARGET;temp:intralink-;e012;63;719kZkpw;Sp ¼
Xn
i¼1

wiσ
p
i ð0 < p ≤ 1Þ: (12)

Specifically, when p ¼ 1 and wi ¼ 1, the weighted
Schatten-1 norm reduces to the nuclear norm. If we define
00 ¼ 0, when p ¼ 0 and wi ¼ 1, the weighted Schatten-0
norm reduces to the rank function. Compared to the nuclear
norm, the weighted Schatten-p norm possesses two advan-
tages: first, the Schatten-p norm is a generalization of the
nuclear norm, which can approximate the rank function
more exactly and guarantee the flexibility of dealing with
different real problems; second, the weighting strategy con-
siders the importance of different rank components. It can
penalize the smaller singular values and preserve the
major low rank structure of data, thus improving rank
approximation.

The observed data often contains various noises, such
as Gaussian noise and different corruptions. In this work,
we utilize the Lq norm to describe the noise, which is
defined as

EQ-TARGET;temp:intralink-;e013;63;484kEkq ¼
Xd
i¼1

Xn
j¼1

jEijjq ð0 < q < ∞Þ: (13)

The L1 norm and the squared Frobenius norm are two
special cases of the Lq norm. The Lq norm can handle differ-
ent noises with different values of q and thus is more generic
and robust.

In summary, we use the weighted Schatten-p norm and
Lq norm to replace the low rank term and noise term of
the conventional LRR, respectively. The objective function
of the proposed WSPQ is formulated as follows:

EQ-TARGET;temp:intralink-;e014;63;345min
Z

ðkZkpw;Sp þ λkEkqÞ s:t: X ¼ AZþ E: (14)

3.3 Optimization
Similar to Liu et al.,28 we present an inexact ALM iterative
scheme to solve the optimization problem in Eq. (14). We
first introduce an auxiliary variable J to separate the variable
in the objective function and then convert Eq. (14) into the
following equivalent problem:

EQ-TARGET;temp:intralink-;e015;63;227min
Z

ðkJkpw;Sp þ λkEkqÞ s:t: X ¼ AZþ E; Z ¼ J: (15)

As we know, the inexact ALM aims to convert the con-
strained optimization problem into an unconstrained prob-
lem; thus, we minimize the following augmented
Lagrangian function of Eq. (15):
EQ-TARGET;temp:intralink-;e016;63;147

LðZ; J;E;Y1;Y2; μÞ ¼ kJkpw;Sp þ λkEkq
þ hY1;X − AZ − Ei þ hY2;Z − Ji
þ μ

2
ðkX − AZ − Ek2F þ kZ − Jk2FÞ;

(16)

where Y1 ∈ Rd×n and Y2 ∈ Rn×n are Lagrangian multipliers
and μ > 0 is a penalty parameter. We update the variables
Z, J, and E alternately while fixing the others. The updating
rules are as follows:
EQ-TARGET;temp:intralink-;e017;326;708

Jkþ1 ¼ arg min
J

LðZk; Jk;Ek;Y1;k;Y2;k; μkÞ

¼ arg min
J

�
1

μk
kJkpw;Sp þ

1

2
kJ − ðZk þ Y2;k∕μkÞk2F

�
;

(17)

EQ-TARGET;temp:intralink-;e018;326;630

Zkþ1 ¼ arg min
Z

LðZk; Jkþ1;Ek;Y1;k;Y2;k; μkÞ
¼ arg min

Z
½kEk − ðX − AZþ Y1;k∕μkÞk2F

þ kJkþ1 − ðZþ Y2;k∕μkÞk2F�; (18)

EQ-TARGET;temp:intralink-;e019;326;563

Ekþ1¼ argmin
E

LðZkþ1;Jkþ1;Ek;Y1;k;Y2;k;μkÞ

¼ argmin
E

�
λ

μk
kEkqþ

1

2
kE−ðX−AZkþ1þY1;k∕μkÞk2F

�
:

(19)

1. updating J: Equation (17) is a weighted Schatten-p
norm minimization problem, which can be solved via
Lemma 1.

Lemma 1. Let the SVD of Y ∈ Rd×n be Y ¼ UΣVT

with Σ ¼ diagðσ1; σ2; : : : ; σrÞ, where r ¼ minðd; nÞ, and
σ1 > σ2 > : : : > σr. If 0 ≤ w1 ≤ w2 ≤ : : : ≤ wr, the opti-
mal solution X� of the following problem:36

EQ-TARGET;temp:intralink-;e020;326;403 min
X∈Rd×n

�
1

2
kX − Yk2F þ λkXkpw;Sp

�
(20)

is X� ¼ UΛVT with Λ ¼ diagðδ1; δ2; : : : ; δrÞ, where δi can
be obtained by solving the following problem:

EQ-TARGET;temp:intralink-;e021;326;336 min
δ1;δ2;: : : ;δr

Xr

i¼1

�
1

2
ðδi − σiÞ2 þ λwiδ

p
i

�
; s:t: δi ≥ 0

i ¼ 1; 2; : : : r:

(21)

Equation (21) can be decoupled into r independent subpro-
blems and each subproblem can be solved via the general-
ized soft-thresholding (GST) algorithm, which is described
in Lemma 2.

Lemma 2. Given y ∈ R and λ > 0, the optimal solution
x� of the following problem:41

EQ-TARGET;temp:intralink-;e022;326;192min
x

�
1

2
ðx − yÞ2 þ λjxjp

�
(22)

is given by
EQ-TARGET;temp:intralink-;e023;326;136

x� ¼
(
0 jyj ≤ τGSTp ðλÞ
sgnðyÞSGSTp ðjyj; λÞ jyj > τGSTp ðλÞ ; (23)

where τGSTp ðλÞ ¼ ½2λð1 − pÞ� 1
2−p þ λp½2λð1 − pÞ�p−12−p and

SGSTp ðjyj; λÞ is obtained by solving the problem below:
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EQ-TARGET;temp:intralink-;e024;63;752SGSTp ðjyj; λÞ − jyj þ λp½SGSTp ðjyj; λÞ�p−1 ¼ 0: (24)

In addition, Eq. (20) has the optimal solution only when
0 ≤ w1 ≤ w2 ≤ : : : ≤ wr holds, that is, wi must be in non-
descending order. The weighting strategy in Eq. (17) aims
to protect the major low rank structure of J. Therefore,
large singular values should be shrunk less than the small
ones, which inspires us to set the weight vector wi to be
inversely proportional to σiðJÞ, where σiðJÞ is the i’th sin-
gular value of J. Thus, an intuitive way for setting weights is
as follows:

EQ-TARGET;temp:intralink-;e025;63;630wi ¼ C∕σiðJÞ; (25)

where C is a constant. Considering the effect of the size of
the data matrix X ∈ Rd×n, we rewrite Eq. (25) as

EQ-TARGET;temp:intralink-;e026;63;576wi ¼ C
ffiffiffiffiffiffi
dn

p
∕σiðJÞ: (26)

To avoid dividing by zero, we add a parameter 0 < ε1 ≤ 0
to Eq. (26), and thus we have

EQ-TARGET;temp:intralink-;e027;63;521wi ¼ C
ffiffiffiffiffiffi
dn

p
∕½σiðJÞ þ ε1�: (27)

Since σiðJÞ is unknown before Eq. (17) is solved, we pro-
pose an alternative method to calculate wi: we first initialize
σiðJÞ by σiðXÞ, where σiðXÞ is the i’th singular value of X,
and then iteratively update wi and σiðJÞ until the optimal sol-
ution is obtained. Many experiments have shown that the
optimal solution can be obtained with fewer iterations.
The iteration number is simply set to 3 in this work. The
optimization procedure of Eq. (17) is described in
Algorithm 1.

2. updating Z: Equation (18) has a closed-form solution
EQ-TARGET;temp:intralink-;e028;326;741

Z¼ ðIþATAÞ−1½ATðX−EkÞþ Jkþ1þðATY1;k−Y2;kÞ∕μk�:
(28)

3. updating E: Equation (19) is an Lq norm minimization
problem. We shift jEijjq to ðjEijj þ ε2Þq with 0 < ε2 ≤ 1,
such that Eq. (19) can be relaxed as follows

EQ-TARGET;temp:intralink-;e029;326;658Ekþ1 ¼ arg min
E

�
λ

μk

Xd
i¼1

Xn
j¼1

ðjEijj þ ε2Þq

þ 1

2
kE − ðX − AZkþ1 þ Y1;k∕μkÞk2F

�
: (29)

We linearize the objective function of Eq. (29) using the
first degree Taylor expansion with respect to E at E ¼ Ek
and then add a proximal term. Thus, the variable E can
be updated by minimizing the following problem:
EQ-TARGET;temp:intralink-;e030;326;534

Ekþ1 ¼ arg min
E

�
λ

μk

Xd
i¼1

Xn
j¼1

½jðEijÞkjþ ε2�qþðMijÞk½jEijj

− jðEijÞkj�þ
1

2
kEk− ðX−AZkþ1þY1;k∕μkÞk2F

þhEk− ðX−AZkþ1þY1;k∕μkÞ;E−Eki

þ η

2
kE−Ekk2F

�

¼ arg min
E

�
λ

μkη

Xd
i¼1

Xn
j¼1

ðMijÞkjEijj

þ1

2

				E−
�
Ek−

1

η
½Ek− ðX−AZkþ1þY1;k∕μkÞ�

�				2
F

�
;

(30)

where ðMijÞk ¼ q∕½jðEijÞkj þ ε2�1−q is the weight corre-
sponding to Ek. We can obtain Ekþ1 by solving Eq. (30),
which can be calculated separately, and each Eij is derived
using Lemma 3.

Lemma 3. Given y, w ∈ R, w ≥ 0, and λ > 0, the opti-
mal solution of the following problem:42

EQ-TARGET;temp:intralink-;e031;326;257SλwðyÞ ¼ arg min
x

�
λwjxj þ 1

2
ðx − yÞ2

�
(31)

is given by

EQ-TARGET;temp:intralink-;e032;326;201SλwðyÞ ¼
8<
:

y − λw if y > λw;
yþ λw if y < −λw;
0 otherwise:

(32)

Therefore, Ekþ1 can be updated by

EQ-TARGET;temp:intralink-;e033;326;140Ekþ1 ¼ SλM∕μkη

�
Ek −

1

η
½Ek − ðX − AZkþ1 þ Y1;k∕μkÞ�

�
:

(33)

In summary, the complete algorithm of solving problem
Eq. (14) is outlined in Algorithm 2.

Algorithm 1: Solving Eq. (17).

Input: Data matrix X, parameter p;

Step 1: Compute the SVD: X ¼ UXΣXVX
T , where

ΣX ¼ diag½ðδ0Þ1; ðδ0Þ2; : : : ; ðδ0Þr �;

Step 2: Compute the SVD∶ðZk þ Y2;k∕μk Þ ¼ UΣVT , where
Σ ¼ diagðσ1; σ2; : : : ; σr Þ;

Step 3: for j ¼ 0 to 2 do

for i ¼ 1 to r do

ðwj Þi ¼ C
ffiffiffiffiffiffi
dn

p
∕½ðδj Þi þ ε1�:

Solve the following problem by GST

ðδjþ1Þi ¼ arg minðδj Þi
1
2 ½ðδj Þi − σi �2 þ ðwj Þi

μk
ðδj Þpi ;

end

end

Step 4: Calculate: Λ ¼ diag½ðδjþ1Þ1; ðδjþ1Þ2; : : : ; ðδjþ1Þr �;

Output: Optimal solution Jkþ1 ¼ UΛVT .

Journal of Electronic Imaging 033021-5 May∕Jun 2017 • Vol. 26(3)

Zhang, Tang, and Liu: Robust subspace clustering via joint weighted. . .

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 8/20/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3.4 Constructing an Affinity Matrix
We consider constructing an affinity matrixW from the coef-
ficient matrix Z�. Different from the traditional method using
Eq. (4), we utilize the postprocessing technique that consid-
ers the angular information.28 Let the skinny SVD of Z� be
Z� ¼ U�Σ�ðV�ÞT ; we define H ¼ U�ðΣ�Þ1∕2, and then W is
obtained by the following equation:

EQ-TARGET;temp:intralink-;e034;63;348Wij ¼ ½ðHHTÞij�2α: (34)

The obtained W is positive and can increase the separa-
tion of data points from different subspaces. A large α may
break the affinities between data points of same subspace;
thus, we simply set α ¼ 2 in this work. We apply a spectral

clustering algorithm on W to cluster data into its own sub-
space. Algorithm 3 summarizes the complete subspace clus-
tering algorithm of WSPQ.

3.5 Convergence Analysis
This section discusses the convergence of Algorithm 2.
When the objective function is smooth, the convergence
of the exact ALM algorithm has been proven in the
literature.43 However, for the inexact ALM algorithm, the
proof of convergence is complicated and difficult. In fact,
it has been proven that the inexact ALM is convergent
when two variable matrices iterate alternately.39,44 Since
the objective function of the proposed WSPQ is not smooth
and the optimization algorithm (Algorithm 2) includes three
iterating variable matrices (J, Z, and E), it would be not easy
to prove the convergence in theory. Fortunately, according to
the theoretical analysis,45 there are some sufficient condi-
tions (but may not be necessary) to guarantee the conver-
gence of Algorithm 2.

(1) The penalty parameter μ is upper bounded.
(2) The dictionary matrix A is of full column rank.
(3) The error Δk ¼ kðZk; JkÞ − ðZ; JÞk is monotonically

decreasing, where ðZk; JkÞ is the solution of the k’th
iteration and ðZ; JÞ is the real solution by solving
min LðZ; J;E;Y1;Y2; μÞ.

Condition 1 is guaranteed by step 5 in Algorithm 2. Similar
to LRR, we replace the dictionary A by its orthogonal basis,
which not only reduces the complexity of the algorithm but
also guarantees condition 2. Condition 3 cannot be proven
directly, but the convexity of the Lagrange function guarantees
that Δk is monotonically decreasing to a certain extent.

4 Experiments
In this section, we evaluate the effectiveness of the proposed
WSPQ method on two real-world applications of subspace
clustering: face clustering and motion segmentation. We con-
duct face clustering experiments on the extended Yale B and
AR dataset and motion segmentation experiments on the
Hopkins155 dataset. WSPQ is compared to several related
subspace clustering methods, including principal component
analysis (PCA), local subspace affinity (LSA),15 spectral cur-
vature clustering (SCC),16 least squares regression (LSR),46

low rank subspace clustering (LRSC),47 Schatten-p norm
regularized LRR (SPM),40 SSC,21 and LRR.28 All the experi-
ments are conducted using MATLAB® 2012a in a laptop with
Intel Core i7 4710MQ CPU and 8GRAM.

4.1 Settings
For WSPQ, we use the data matrix as the dictionary matrix,
namely A ¼ X. The step factor ρ in the inexact ALMmethod
influences the convergence speed, which is set to 1.1. The
convergence threshold ε is set to 10−8 for face clustering
and 10−5 for motion segmentation. We also present the
grid search method to select the parameters of WSPQ.
Specially, the parameters p, q, and λ are learned by searching
the grid from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
{1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, and f10−4; 10−3; 10−2; 10−1;
100; 101; 102g, respectively.

For comparison methods, the source codes are down-
loaded or provided by the authors, and the algorithm settings

Algorithm 2: Solving problem Eq. (14) by inexact ALM.

Input: Data matrix X, parameters λ, p, q and η > 1
2;

Initialize: Z0 ¼ J0 ¼ 0, E0 ¼ 0, Y1;0 ¼ 0, Y2;0 ¼ 0, μ0 ¼ 10−6,
μmax ¼ 1010, ρ0 ¼ 1.1, ε ¼ 10−8, k ¼ 0;

While not converged do

Step 1: Fix the others and update Jkþ1 by Eq. (17);

Step 2: Fix the others and update Zkþ1 by Eq. (18);

Step 3: Fix the others and update Ekþ1 by Eq. (19);

Step 4:Update the multipliers by Y1;kþ1 ¼ Y1;k þ μk ðX − AZkþ1 −
Ekþ1Þ;Y2;kþ1 ¼ Y2;k þ μk ðZkþ1 − Jkþ1Þ;

Step 5: Update the parameter μ by μkþ1 ¼ minðμmax; ρμk Þ;

Step 6: Update k by k ¼ k þ 1;

Step 7: Check the convergence condition
kX − AZ − Ek∞ < ε and kZ − Jk∞ < ε;

End while

Output: Optimal solution ðZ�;E�Þ.

Algorithm 3: The WSPQ algorithm.

Input: Data matrix X;

Step 1: Solve the following problem by Algorithm 2:
minZðkZkpw;Sp

þ λkEkqÞ s:t: X ¼ AZþ E; and obtain
the optimal solution ðZ�;E�Þ;

Step 2: Compute the skinny SVD: Z� ¼ U�Σ�ðV�ÞT ;

Step 3: Calculate: H ¼ U�ðΣ�Þ1∕2;

Step 4: Construct the affinity matrix W by Eq. (34);

Step 5: Apply spectral clustering algorithm18 on W;

Output: The clustering results.
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are obtained according to the publications. Specifically, for
LSR, we use the method described in Theorem 6.46 For
LRSC, we use the method described in Lemma 147 for
motion segmentation and an ALM variant for face clustering.
For SSC, we use the sparse outlying entries variation for face
clustering and the noisy variation for motion segmentation.
For LRR, we report the results for both cases of LRR (with-
out postprocessing) and LRRH (with postprocessing). For
SPM, we report the results with postprocessing. We carefully
tune the parameters of the comparison methods and report
their best results.

Two popular evaluation metrics, clustering error and con-
fusion matrix, are used to measure the performance of differ-
ent subspace clustering methods. The clustering error is
defined as follows:

EQ-TARGET;temp:intralink-;e035;63;587error ¼ Nerror

Ntotal

; (35)

where Nerror represents the number of incorrectly assigned
samples and Ntotal represents the number of total samples.
The smaller the clustering error is, the better the clustering
quality is.

Assume that we have already known the number of clus-
ters k, then C ∈ Rk×k is defined as the confusion matrix,
where Cij is obtained by first counting the number of sam-
ples that are clustered into cluster j but actually belonged to
cluster i and then dividing them by the number of i’th cluster
samples. Each column and row of the confusion matrix C
represents the predicted cluster and actual cluster, respec-
tively, and thus can reveal more accurate index and structural
information.

4.2 Face Clustering on the Extended Yale B Dataset
It has been shown that, under the Lambertian assumption, the
set of face images of multiple subjects with varying illumi-
nation lies close to a union of 9D subspaces.48 Thus, face
clustering is a typical application of subspace clustering.

In this section, we evaluate the clustering performance of
WSPQ on the extended Yale B dataset. The extended Yale B
dataset is a benchmark for the face clustering problem, which
consists of 2432 human face images of 38 subjects. Each
subject contains 64 face images taken under different illumi-
nations, and each image is cropped into 192 × 148 pixels. To
reduce the computational cost of all algorithms, we resize
each image to 48 × 42 pixels in our experiment. Thus,
each 2016D vectorized face image is treated as a data
point. Some sample images from the extended Yale B dataset
are shown in Fig. 3(a).

4.2.1 Experiment under different illuminations

We design three experiments on the extended Yale B dataset
to demonstrate the effectiveness of the proposed algorithm.
In the first experiment, we randomly select K (ranging from
2 to 10) subjects from the 38 subjects in the whole dataset.
For each given cluster number K, we conduct 20 test runs on
different randomly chosen subjects and compute the cluster-
ing results by averaging the clustering errors from the
20 tests.

Table 1 shows the average results of all the algorithms. As
we can see, the average clustering error of WSPQ reaches
3.62% and outperforms the other algorithms. Meanwhile,
as the number of subjects increases, the clustering errors
of WSPQ remain at a low level, while those of other

Fig. 3 Some sample images from the extended Yale B dataset. (a) Some original face images under
different illuminations; (b) some corrupted face images with Gaussian noise; and (c) some corrupted face
images with random block occlusion.
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algorithms increase in different degrees. The results show
that the proposed WSPQ is effective for different illumina-
tions. Since the sparse representation is also an efficient data
representation, SSC obtains relatively low clustering errors.
We also observe that SPM performs better than LRRH,
which indicates that the Schatten-p norm is more suitable
than the nuclear norm for estimating the rank. Moreover,
the average clustering error of LRRH is 8.80%, while that
of LRR is 15.47%, which shows that the postprocessing
technique can improve the clustering performance.
Obviously, the clustering errors of LSA and SCC are much
larger than other algorithms. This is because they do not
explicitly deal with data noise.

4.2.2 Experiment with Gaussian noise

In the second experiment, we evaluate the robustness of
WSPQ to corrupted face images with Gaussian noise. The
first 10 subjects of the extended Yale B dataset are used
in the experiment, and we randomly select some face images
to be corrupted using Gaussian noise with zero mean and
deviation of 0.1. The percentage of corrupted face images
is gradually increased from 20% to 100%, in steps of
20%. Figure 3(b) shows some corrupted sample images
with Gaussian noise.

Table 2 shows the clustering errors of all the algorithms
with Gaussian noise. It can be seen that WSPQ is obviously

superior to comparison algorithms among all the cases. As
the number of corrupted face image increases, the perfor-
mance of all algorithms declines in different degrees. In
the case of corrupting all face images, the clustering error
of WSPQ is 27.34%, which improves by 5.10% over the
best result provided by SPM. This demonstrates that
WSPQ is more robust to Gaussian noise than the other algo-
rithms. We also observe that SSC performs worse than
LRRH, which indicates that the sparse model is sensitive
to Gaussian noise.

4.2.3 Experiment with block occlusion

In the third experiment, we further verify the robust perfor-
mance of WSPQ against block occlusion. We corrupt some
face images from the first 10 subjects of the extended Yale B
dataset with a fixed black block occlusion of size
24 × 21 pixels, and the position of the blocks is randomly
chosen. Following the strategy in Sec. 4.2.2, we experiment
on different percentages of corrupted face images varying
from 20% to 100%, in steps of 20%. Figure 3(c) shows
some corrupted sample images with random block occlusion.

The clustering errors of all the algorithms with random
block occlusion are reported in Table 3. As can be seen,
WSPQ outperforms all the comparison algorithms among
all the cases, which again verifies the robustness of
WSPQ. As the corrupted face image increase, the clustering

Table 1 Clustering errors (%) of all the algorithms on the extended Yale B dataset.

Subjects

Algorithms

PCA LSA SCC LSR LRSC LRR LRRH SPM SSC WSPQ

2 38.83 43.65 18.54 4.02 3.54 4.29 2.14 1.92 1.74 1.07

4 61.09 54.96 40.29 11.67 5.41 6.41 4.53 3.57 3.29 2.53

6 68.26 58.78 61.22 28.19 13.32 14.82 7.24 5.89 4.80 2.81

8 67.91 59.37 65.19 39.97 27.84 22.10 14.72 8.07 6.42 4.67

10 71.17 60.12 74.62 42.06 32.43 29.73 15.38 10.74 11.91 7.02

Avg 61.45 55.38 51.97 25.18 16.51 15.47 8.80 6.04 5.63 3.62

Table 2 Clustering errors (%) of all the algorithms on the extended Yale B dataset with Gaussian noise.

Corruption (%)

Algorithms

PCA LSA SCC LSR LRSC LRR LRRH SPM SSC WSPQ

20 71.88 64.11 71.02 42.22 37.69 34.61 20.81 18.70 31.03 14.88

40 73.75 65.08 74.14 42.45 38.44 36.05 22.09 19.13 37.91 15.42

60 72.66 67.34 79.91 43.10 39.05 40.17 25.42 24.72 47.04 17.69

80 72.50 67.89 81.09 42.11 39.66 42.47 33.92 29.45 47.27 25.09

100 71.72 73.36 81.75 44.56 40.42 43.89 34.38 33.91 51.17 27.34

Avg 72.50 67.56 77.58 42.89 39.05 39.44 27.32 25.18 42.88 20.08
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task becomes more challenging, and all the algorithms obtain
very high clustering errors. In particular, when all face
images are corrupted, the clustering error of all the algo-
rithms is nearly 80%. The reason is that many useful features
in the human face (month, nose, and eyes) may be occluded
by the random block. The more corrupted the face images
are, the less useful the information that can be obtained is.

4.3 Face Clustering on the AR Dataset
In this section, we further evaluate different subspace clus-
tering algorithms on the AR dataset. This dataset consists of
over 4000 human face images of 126 subjects (70 men and
56 women). For each subject, 26 face images were taken in
two sessions, separated by two weeks (14 days). These
images feature frontal view faces with different facial
expressions (neutral, smile, anger, and scream), illumination
conditions (left, right, and all side lights on), and occlusions
(sunglasses and scarf). In our experiment, we make use of the
first 20 subjects and resize each image to 40 × 50 pixels.
Some sample images from the AR dataset are shown
in Fig. 4.

4.3.1 Experiment without occlusion

In this experiment, we evaluate the performance of WSPQ on
the AR dataset without occlusion. For each subject, eight
face images with different facial expressions and six face
images with varying illuminations are selected for clustering
tasks. Similar to the experiments on the extended Yale B
dataset, we also randomly select K (ranging from 2 to 10)
subjects from the first 20 subjects in the whole dataset.
For each given cluster number K, the clustering results
are based on 20 test runs on different randomly chosen
subjects.

The average results of all the algorithms are shown in
Table 4. Obviously, WSPQ obtains the best experimental
results among all the cases, verifying the effectiveness of
WSPQ on face clustering. The clustering errors of LSR
and SSC reach 8.16% and 8.33%, respectively, which are
lower than the four low rank algorithms (LRSC, LRR,
LRRH, and SPM). The reason is that conventional low
rank models fail to accurately approximate the rank in
cases of large variations. WSPQ obtains better results
due to its superior rank approximation and adaptive noise
representation. In addition, LRR and LRRH have similar

Table 3 Clustering errors (%) of all the algorithms on the extended Yale B dataset with block occlusion.

Occlusion (%)

Algorithms

PCA LSA SCC LSR LRSC LRR LRRH SPM SSC WSPQ

20 72.66 70.16 75.55 47.19 46.33 50.02 33.28 30.27 31.88 21.25

40 74.75 77.66 77.19 49.38 48.67 51.17 34.38 33.52 49.14 29.75

60 75.38 80.71 81.02 66.35 60.78 61.72 54.06 55.81 61.78 50.41

80 75.06 83.98 82.11 72.03 73.05 73.05 68.52 67.92 70.47 66.12

100 76.75 84.69 83.20 79.92 78.83 85.08 80.23 77.37 77.03 75.89

Avg 74.92 79.44 79.81 62.97 61.53 64.21 54.09 52.98 58.08 48.68

Fig. 4 Some sample images from the AR dataset. (a) Some face images without occlusion; (b) some
face images with real occlusion.
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performances, which illustrates that the postprocessing tech-
nique cannot work well on the AR dataset.

4.3.2 Experiment with real occlusion

To validate the robustness of WSPQ to different noises, we
further test WSPQ on the AR dataset with real occlusion.
All 26 face images of each subject are used in this experi-
ment, including 14 images with different expressions and

illuminations and 12 images with real occlusion (sunglasses
and scarf). Since each subject has few sample images and
the data noise is complex, it is challenging for clustering
algorithms.

Following the strategy in Sec. 4.3.1, we report the average
results of all the algorithms in Table 5. As can be seen, sim-
ilar to previous experimental results, the proposed WSPQ is
superior to the other algorithms. The results demonstrate
again that WSPQ works well in face clustering.

Table 4 Clustering errors (%) of all the algorithms on the AR dataset without occlusion.

Subjects

Algorithms

PCA LSA SCC LSR LRSC LRR LRRH SPM SSC WSPQ

2 21.57 37.57 13.15 3.11 4.54 2.94 3.05 2.29 2.21 1.65

4 36.93 40.95 25.71 5.79 7.90 4.11 4.92 4.03 3.67 3.04

6 40.38 41.17 27.29 9.83 17.61 8.73 9.11 7.89 7.45 5.33

8 39.61 63.25 40.07 7.98 39.04 14.72 16.92 15.21 10.43 7.19

10 40.43 65.82 42.91 14.08 39.85 23.51 24.18 19.46 17.91 12.72

Avg 35.78 49.75 29.83 8.16 21.79 10.81 11.64 9.78 8.33 5.98

Table 5 Clustering errors (%) of all the algorithms on the AR dataset with real occlusion.

Subjects

Algorithms

PCA LSA SCC LSR LRSC LRR LRRH SPM SSC WSPQ

2 28.46 40.26 19.74 9.06 14.59 12.32 10.76 8.83 9.53 7.97

4 54.62 44.10 35.97 15.64 22.95 21.31 18.47 14.69 17.73 11.57

6 53.85 45.94 36.75 25.77 36.62 34.15 29.16 23.10 29.02 19.74

8 62.59 69.21 48.40 28.41 51.08 40.23 35.94 33.43 37.17 25.05

10 67.77 74.09 52.71 33.83 52.71 42.01 39.37 38.05 41.52 28.92

Avg 54.46 54.72 38.71 22.54 35.59 30.01 26.74 23.62 27.01 18.65

Fig. 5 Three example frames with the extracted feature from the Hopkins155 dataset.
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4.4 Motion Segmentation on the Hopkins155
Dataset

Given a set of two-dimensional point trajectories extracted
from a video sequence, motion segmentation refers to the
task of clustering the trajectories into groups according to
their underlying motions. Under the affine projection
model, the trajectories associated with a single rigid motion
lie in an affine subspace.49 Therefore, the trajectories of n
rigid motions lie in a union of n affine subspaces, and the

motion segmentation problem reduces to a subspace cluster-
ing problem.

In this section, we evaluate the proposed WSPQ for the
motion segmentation task on the Hopkins155 dataset. This
dataset consists of 155 video sequences, where 120 sequen-
ces have two motions and 35 sequences have three motions.
Each sequence is a separate clustering task, so there are 155
clustering tasks in total. Three example frames with the
extracted feature are shown in Fig. 5.

Table 6 Clustering errors (%) of all the algorithms on the Hopkins155 dataset.

Algorithms PCA LSA SCC LSR LRSC LRR LRRH SPM SSC WSPQ

Two motions

Mean 16.13 3.64 2.15 2.49 3.33 3.23 1.33 1.39 1.53 1.06

Std 15.53 7.96 7.31 7.27 8.26 8.25 4.48 4.56 6.42 4.14

Max 49.79 40.88 48.83 39.49 40.34 41.16 33.30 35.51 47.18 33.30

Three motions

Mean 23.44 7.13 8.01 5.93 6.97 8.20 2.51 2.47 4.40 1.97

Std 17.58 9.47 13.74 9.88 8.83 10.11 5.20 5.04 9.33 4.87

Max 58.03 44.98 52.83 38.29 31.12 36.17 26.81 25.49 41.25 24.93

Fig. 6 The distribution of the clustering errors of LRRH, SPM, SSC,
and WSPQ on the Hopkins155 dataset.

Fig. 7 The affinity matrix of one example sequence. From left to right: WSPQ, SSC, SPM, and LRRH.

Fig. 8 The clustering performance of LRRH, SPM, SSC, and WSPQ
with different numbers of subjects.
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We report the mean, standard deviation, and maximum of
clustering errors over the whole dataset in Table 6. From the
results listed in Table 6, we observe that WSPQ outperforms
the other algorithms. Since LRRH, SPM, SSC, and WSPQ
achieve competitive results, we further compare the distribu-
tion of the clustering errors of them, and the results are
shown in Fig. 6. As we can see, WSPQ obtains accurate clus-
tering results for most sequences, and nearly 100 sequences
are clustered accurately.

We next show the affinity matrices of one example
sequence, i.e., the 40th sequence obtained by LRRH,
SPM, SSC, and WSPQ in Fig. 7. Clearly, there are two
diagonal blocks in each affinity matrix, which indicates
that the example sequence has two motions. If the number
of nonzero entries lying outside the diagonal blocks is small,
the spectral clustering algorithm can obtain a better result.
The matrix of the proposed WSPQ obviously has bright
diagonal blocks and is clearer than others outside the diago-
nal blocks. This demonstrates the superiority of our algo-
rithm in affinity matrix construction.

4.5 Large-Scale Subspace Clustering
In this section, we carry out an in-depth study for large-scale
subspace clustering. Instead of using at most 10 subjects to
perform clustering experiments in Secs. 4.2 and 4.3, we con-
duct experiments on the whole extended Yale B dataset with
more subjects. We range the number of subjects from 5 to 38
and report the results of four competitive algorithms (LRRH,
SPM, SSC, and WSPQ). The clustering performance and
CPU time are shown in Figs. 8 and 9, respectively.

From Fig. 8, we can see that the four algorithms all per-
form worse as the number of subject increases and the pro-
posed WSPQ always achieves the best results no matter how
many subjects are used. From Fig. 9, it is observed that
WSPQ is more time consuming than LRR and SPM.
Although the computational cost of WSPQ is a little higher,

Fig. 9 The CPU time of LRRH, SPM, SSC, and WSPQ with different
numbers of subjects.

Fig. 10 The confusion matrices of (a) LRRH, (b) SPM, (c) SSC, and (d) WSPQ on the AR dataset.
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it can obtain much performance improvement. In addition,
the growth rate of SSC is much slower than that of LRR vari-
ant algorithms (LRRH, SPM, and WSPQ); thus, it runs fast
when more subjects are used.

4.6 Evaluation by Confusion Matrix
To examine the performance of different subspace clustering
algorithms more carefully, the confusion matrix is presented

in this section. The confusion matrix can not only show the
clustering accuracy from different angles but also reveal
more structural information. We use the first 10 subjects
of the AR dataset with real occlusion and report the results
of LRRH, SPM, SSC, and WSPQ in this experiment. The
confusion matrices of the four algorithms are shown in
Fig. 10. It can be seen that the proposed WSPQ again
achieves more clustering accuracy and outperforms other
algorithms, which demonstrates the effectiveness of both
weighted Schatten-p norm and Lq norm.

4.7 Parameter Selection
The proposed WSPQ includes three important parameters
(p, q, and λ), where p is used to control the low rank term
and q and λ are used to select a suitable noise model and
balance the effect of noise, respectively. In this section, we
experiment on the extended Yale B dataset (in the case of
10 subjects) to study the effectiveness of the parameters in
WSPQ.

First, we range the value of p from 0.1 to 1.0; the exper-
imental results are shown in Fig. 11. It is observed that
WSPQ achieves the best results when p ¼ 0.7 and the clus-
tering performance is acceptable when p is not set to a small
value. In theory, as p decreases, the weighted Schatten-p
norm is getting closer to the rank function, so it seems that
we can achieve better results with a smaller p. However, the
input data contain various noises, which may destroy the low
rank structure in different degrees. Taking a small value of p
means a strict rank approximation, and it is not suitable when
the low rank property is weak. Actually, according to differ-
ent input data, we can always get an appropriate rank
approximation by varying the value of p. In addition, the
parameters q and λ both control the noise term. Thus, we do
parameter selection by varying q and λ simultaneously, and
the experimental results are shown in Fig. 12. As can be seen,
WSPQ can achieve promising results when q ∈ ½1.4; 2.0�
and λ ∈ ½4 × 10−4; 10 × 10−4�.

4.8 Convergence Verification
In this section, we empirically verify the convergence of
the proposed WSPQ. We first construct five independent
subspaces fSig5i¼1 ⊂ R100 and then sample 40 data vectors
from each subspace. We randomly select 20% of samples
to be corrupted by adding Gaussian noise with zero mean
and deviation of 0.2kXkF, where X is the created data
matrix. After each iteration, we record the relative error

Fig. 11 The clustering performance with the varied parameter p.

Fig. 12 The clustering performance with the varied parameters q
and λ.

Fig. 13 The convergence curves of WSPQ.
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kX−AZ−EkF
kXkF . Figure 13 has shown the convergence curves of

WSPQ when p ¼ 0.4, 0.7, and 1.0. We can see that WSPQ
reaches convergence within 100 iterations.

5 Conclusions
This paper proposes a subspace clustering algorithm, named
WSPQ, for face clustering and motion segmentation.
Specifically, WSPQ uses the weighted Schatten-p norm and
Lq norm to model the low rankness and noise in LRR,
respectively. The weighted Schatten-p norm can better
approximate the rank function, and the Lq norm can handle
complex noise well. Moreover, an efficient algorithm based
on the inexact ALM method is developed to solve the opti-
mization problem. Using a postprocessing technique, the
affinity matrix is constructed and used for the spectral clus-
tering algorithm. Experimental results on two face datasets
and one motion segmentation dataset demonstrate the supe-
riority of the proposed WSPQ over the state-of-the-art algo-
rithms. Our future work will introduce the manifold model
into WSPQ, so the global and local structures of data can be
captured simultaneously. Another important work is how to
select the parameters adaptively. We need to do more theo-
retical research on it.
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