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Abstract: The discrete element method (DEM) has been extensively adopted to investigate many complex geotechnical related problems due to its 

capability to incorporate the discontinuous nature of granular materials. In particular, when simulating large deformations or distortion of soil (e.g. 

cavity expansion), DEM can be very effective as other numerical solutions may experience convergence problems. Cavity expansion theory has 

widespread applications in geotechnical engineering, particularly in problems concerning in situ testing, pile installation and so forth, explaining why 

cavity expansion simulation using DEM has been adopted in this study. In addition, the behaviour of geomaterials in a macro-level is utterly determined 

by microscopic properties, highlighting the importance of contact models. Despite the fact that there are numerous contact models proposed to mimic 

the realistic behaviour of granular materials, there are lack of studies on the effects of these contact models on the soil response. Hence, in this study, a 

series of three-dimensional numerical simulations with different contact constitutive models was conducted to simulate the response of sandy soils 

during cylindrical cavity expansion. In this numerical investigation, three contact models, i.e. linear contact model, rolling resistance contact model, and 

Hertz contact model, are considered. It should be noted that the former two models are linear based models, providing linearly elastic and frictional 

plasticity behaviours, whereas the latter one consists of nonlinear formulation based on an approximation of the theory of Mindlin and Deresiewicz. To 

examine the effects of these contact models, several cylindrical cavities were created and expanded gradually from an initial radius of 0.055 m to a final 

radius of 0.1 m. The numerical predictions confirm that the calibrated contact models produced similar results regarding the variations of cavity 

pressure, radial stress, deviatoric stress, volumetric strain, as well as the soil radial displacement. However, the linear contact model may result in 

inaccurate predictions when highly angular soil particles are involved. In addition, considering the excessive soil displacement induced by the pile 

installation (i.e. cavity expansion), a minimum distance of 11a (a being the cavity radius) is recommend for practicing engineers to avoid the potential 

damages to the existing piles and adjacent structures. 
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1. Introduction 
 

The rapid advancement in computational technology has facilitated 

the application of discrete numerical analysis for many complex 

geotechnical problems, especially investigations involving large 

deformations or displacements. For instance, analysing the installation 

mechanism of driven piles and vertical drains adopted for ground 

improvement requires cavity expansion theory to better interpret smear 

zone characteristics. Huang and Ma (1994) and Jiang et al. (2006) have 

employed discrete element simulation to study the mechanism of the deep 

penetration in granular materials. Arroyo et al. (2011) and Ciantia et al. 

(2016) successfully modelled the cone penetration tests in a calibration 

chamber while taking the particle crushing behaviour into consideration. 

Geng et al. (2013) simulated the cylindrical cavity expansion and 

pressuremeter test using discrete element analysis. All of these studies 

have indicated that the discrete element method (DEM) is capable and 

reliable for simulating the behaviour of the granular materials, while 

comprehending the microscopic contact properties employed by the 

discrete numerical studies is of paramount importance.  

In DEM simulations, particles interact at pairwise contacts by means 

of internal forces and moments. In addition, contact mechanics are 

embodied in particle-interaction laws that are responsible for recognising 

particle interfaces, updating the internal forces and moments, computing 

the induced displacements and rotations of all particles involved in the 

system (Cundall and Strack, 1979; Potyondy and Cundall, 2004). Hence, 

it can be explicitly concluded that only by adopting the most appropriate 

contact model, the simulation can attain the most accurate outcome. There 

are mainly three types of contact models widely used by researchers that 

are capable of simulating granular materials such as sand, i.e. linear, 

rolling resistance, and Hertz contact models. Linear contact model, 

developed by Cundall and Strack (1979), describes the constitutive 
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behaviour in normal and tangential directions between particles at their 

contact interface adopting linear springs with normal and shear stiffnesses. 

This model has been extensively employed to investigate granular 

materials in many disciplines ranging from chemical to geotechnical 

engineering. Its capabilities in mimicking the behaviour of sandy soils 

under various loading conditions have been successfully verified by many 

researchers (Jenck et al., 2009; Zhao and Evans, 2009; Chen et al., 2011; 

Zhou et al., 2012; Lai et al., 2014; Falagush et al., 2015; Tran et al., 2016). 

Despite the fact that classical theories believe that it is mainly the sliding 

between adjacent particles that plays the dominant role in controlling the 

strength and dilatancy, Oda and Kazama (1998) observed that the effect 

of rolling between contacting particles is very significant. Therefore, the 

rolling resistance contact model has been developed based on the linear 

contact model by introducing a rolling resistance mechanism that 

incorporates a torque acting on the contacting pieces to counteract the 

rolling motion (Iwashita and Oda, 1998; Oda and Kazama, 1998; Irazábal 

et al., 2017). It is indispensable that the rolling resistance model is 

suitable to simulate granular materials particularly when most grains are 

angular, intensifying the interlocking of particles (Tordesillas and Walsh, 

2002; Jiang et al., 2005; Ai et al., 2011; O’Sullivan, 2011). In addition to 

these two linear based models, Hertz contact model also demonstrates its 

competency in capturing the behaviour of granular materials in discrete 

numerical modelling. The most distinct feature differentiating Hertz 

contact model from others is that it has nonlinear formulations and utilises 

the simplified theory of Mindlin and Deresiewicz as force-displacement 

laws to compute contact forces (Mindlin, 1953; Tsuji et al., 1992). As the 

Hertz contact model requires more accessible and macroscopic 

parameters that can be directly correlated to the macroscopic parameters 

measured in the laboratory, such as Poisson’s ratio and shear modulus, it 

is also considered as a simple yet efficient constitutive contact model by 

many researchers (Gu and Yang, 2013; Ng and Meyers, 2015; Ning et al., 

2015; Zeghal and Tsigginos, 2015; Ciantia et al., 2016). Although those 

three contact models have already well demonstrated their own 



competency in simulating the behaviour of sandy soils, there is very 

limited research to investigate the effects of these contact models on soil 

response. Furthermore, the cavity expansion theory, an effective 

technique to interpret the mechanism of pile installation and in situ tests, 

has been extensively employed by many researchers. However, obtaining 

closed-form solutions may become difficult to be obtained when more 

realistic constitutive models are incorporated, and therefore numerical 

approaches can offer a better solution (Carter et al., 1979a). Hence, there 

are numerous analyses available adopting numerical techniques and 

simulations based on continuum method for cavity expansion (Carter et 

al., 1979b; Carter and Yeung, 1985; Mo et al., 2014; Li et al., 2017). 

However, the discrete element studies may provide researchers with a 

microscopic level of insight to study the complex cavity expansion related 

problems. Therefore, the purpose of this study is to compare the results 

obtained from the cavity expansion simulation adopting different contact 

models and evaluate the effectiveness of each contact model in discrete 

element simulations. 

 

2. Material contact models  

 

2.1. General characteristics of adopted contact constitutive models 

In this study, three contact models have been employed to mimic the 

interaction between particles at their contacting points, i.e. linear, rolling 

resistance and Hertz contact models. It is noteworthy to state that all 

adopted contact models are elasto-perfectly plastic, in which the former 

two contact models are linear elasto-perfectly plastic whereas the latter is 

elasto-perfectly plastic model with nonlinear formulations. Therefore, all 

three-contact models can capture both elastic and plastic behaviours. In 

the linear contact model, the behaviour is linearly elastic in normal 

direction with zero tension cut-off, while in the tangential direction, a 

frictional behaviour using linear springs and plastic sliders is utilised, as 

illustrated in Fig. 1. In this contact model, slip is accommodated by 

imposing a Coulomb limit on the shear force using the friction coefficient 

μ (i.e. slider). Both normal and shear forces are computed linearly using 

the linear force displacement law based on the linear springs, and the 

maximum shear force at the contact is the frictional force (ܨߤ୬), where ܨ୬ 

is the normal force acting at the contact interface. 

Fig. 1. Schematic diagrams of (a) linear contact model and (b) rheological model. gs 

is the surface gap (non-tension joint); kn and ks are the normal and shear stiffnesses 

of the linear springs, respectively; p
nd  and p

sd  are the normal and shear dashpots, 

respectively; R1 and R2 are the radii of two contacting particles; O1 and O2 are the 

centres of the contact interface between balls A and B and balls A and B; and Δߜs	 is 

the shear displacement increment in a timestep. 

 

Rolling resistance contact model, as depicted in Fig. 2, developed 

from linear contact model, has a similar behaviour, except that the 

internal moment is incremented linearly with the accumulated relative 

rotation of the contacting pieces at the contact points. The limiting torque 

in the contact is proportional to the normal contact force and acts in the 

direction opposite to the rolling direction. 

Fig. 2. Schematic diagrams of (a) rolling resistance contact model and (b) 

rheological model. kr is the rolling stiffness of the linear spring, L is the distance 

between the centres of balls C and D, Δφr is the rotation increment in a timestep, and 

Mrr is the rolling resistance moment. 

 

Hertz contact model, utilising a nonlinear formulation based on an 

approximation of the theory of Mindlin (1953), incorporates both normal 

and shear forces based on the theoretical analysis of the deformation of 

elastic spheres. Fig. 3 describes the rheological model for Hertz contact 

mode. The main difference between Hertz and linear models is that the 

Hertz contact model employs nonlinear formulations to compute the 

normal and shear forces at the contact. The maximum shear force at the 

contact is also determined based on the frictional force (ܨߤ୬ୌ), where ܨ୬ୌ 

is the Hertz normal force. 
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Fig. 3. Rheological model for Hertz contact model. Hn and Hs are the Hertz normal 

coefficient and tangent shear stiffness of the springs, respectively; and h
nd  and h

sd  

are the normal dashpot and shear dashpot, respectively. 

 

2.2. Formulations of adopted contact constitutive models 

In discrete element simulations, the behaviour of granular materials is 

fundamentally determined by the adopted contact properties at the contact 

interfaces following the Newton’s second law of motion and force-

displacement law. Despite the fact that the particles in discrete element 

simulation may be rigid bodies with finite mass that move independently 

of one another, the behaviour of the contacts is characterised using a soft 

contact approach allowing particles to overlap in the vicinity of the 

contact point. The contact between particles is detected prior to the force-

displacement computation based on the contact overlap (݃ୱ ) detected 

(Cundall and Strack, 1979; Cundall and Hart, 1992; Itasca, 2016). The 

linear contact model adopted in this study corresponds to the model 

developed by Cundall and Strack (1979), which utilises two linear springs 

in normal and tangential directions to mimic the linearly elastic and 

frictional behaviours between contacting particles. The rheological model 

and the operating mechanism are illustrated in Fig. 1. The magnitudes of 

the normal force (ܨ୬ ) and the shear force (ܨୱ ) are determined by the 

normal stiffness ݇୬  and shear stiffness ݇ୱ , respectively, based on the 

following equations: 
୬ܨ ൌ 	݇୬݃ୱ

݃ୱ ൌ ݀ െ ሺܴଵ ൅	ܴଶሻ
ୱܨ ൌ ୱ଴ܨ ൅ ݇ୱ∆ߜୱ	

ቑ		                                            (1) 

where ܨ୬ and 	ܨୱ	are the normal and shear forces, respectively; ݃ୱ is the 

surface gap, measuring the overlap between particles (i.e. ݃ୱ = 0 when 

particles contact yet not overlap, and ݃ୱ < 0 when particles overlap); ݀ is 

the distance between two contacting particles; and ܨୱ଴	 is the initial shear 

force. 

In DEM simulations, the magnitudes of the normal stiffness ݇୬ and 

shear stiffness ݇ୱ  can be specified by the users directly. In this 

circumstance, referring to Fig. 4a and b, applying the same compressive 

force (F), the normal contact forces between two particles (e.g. A1 and 

B1 or A and B) will be doubled if the particles are enlarged twice. 

Therefore, it is obvious that the magnitude of the normal contact force 

increases with the increase in particle size. Therefore, it is evident that the 

normal stiffness ݇୬  should be upscaled, accordingly to respond to the 

increase in normal contact forces. However, besides the direct approach, 

the linear model deformability method can be alternatively employed to 

control the normal and shear stiffnesses in real time by introducing the 

effective Young’s modulus ܧ∗	 and the stiffness ratio ݇∗ of the normal and 

shear stiffnesses of the linear springs based on the following equations 

(Itasca, 2016): 
			݇୬ ൌ πሾminሺܴଵ, ܴଶሻሿଶܧ∗ሺܴଵ ൅ ܴଶሻ	

݇ୱ ൌ ݇୬ ݇∗⁄
ൠ                                                   (2) 

 

 

 

Fig. 4. Illustration of particle assembly in DEM: (a) Particle upscaling factor = 1, 

and (b) Particle upscaling factor = 2. 

 

The effective Young’s modulus ܧ∗  and the stiffness ratio ݇∗  have 

direct correlations to the material macroscopic properties, such as the 

Young’s modulus (ܧ) and the Poisson’s ratio (). Consequently, referring 

to Eq. (2), it can be concluded that adopting the linear deformability 

model can automatically take the particle size effect into account, which 

is especially advantageous when the particles are upscaled to reduce the 

computational effort so that large-scale simulation can be conducted.  

Rolling resistance contact model, developed based on the linear 

contact model, is used to mimic the rolling effect between particles with 

angular shapes (Iwashita and Oda, 1998; Oda and Kazama, 1998; Jiang et 

al., 2005; O’Sullivan, 2011). Hence, it is considered as a more realistic 

contact constitutive model for granular materials where the rolling of 

particles is dominant in determining the strength. The formulations of the 

rolling resistance contact model are similar to the linear contact model 

except the incorporation of the rolling resistance moment (ܯ୰୰) acting at 

the contacting points of particles to counteract the relative motion and 

therefore simulate the interlocking behaviour between contacting particles 

(Ai et al., 2011; Wensrich and Katterfeld, 2012). The rheological model 

and the schematic diagram of the particle interaction are illustrated in Fig. 

2. The magnitude of the rolling resistance moment (ܯ୰୰) is computed 

based on the following equations (Iwashita and Oda, 1998; Jiang et al., 

2005):  
୰୰ܯ ൌ 	݇୰∆߮୰

		݇୰ ൌ 	݇ୱሾܴଵܴଶ ሺܴଵ⁄ ൅ ܴଶሻሿ	ଶ
ൠ                                                                 (3) 

In addition to these two linear based contact constitutive models, 

Hertz contact model, as illustrated in Fig. 3, is employed to simulate the 

behaviour of granular materials (Gu and Yang, 2013; Ng and Meyers, 

2015; Zeghal and Tsigginos, 2015; Ciantia et al., 2016). The Hertz 

contact model adopts the simplified Mindlin and Deresiewicz theory 

(Mindlin, 1953; Itasca, 2016) to reproduce the nonlinear force-

displacement formulation to calculate the normal and shear forces during 

analysis using the following equations (Holt et al., 2005; Agnolin and 

Roux, 2007): 
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where ܨ௦ு is the Hertz shear force, ܩ is the effective shear modulus, ߙୌ	is 

the Hertz exponent, ܴୣୌ is the effective radius, ݃ୱ is the surface gap (݃ୱ ൑

0 when particles are in contact/overlapped), and ܨୱబ
ୌ  is the initial Hertz 

shear force. 

It can be clearly noted that the Hertz contact model utilises the 

material properties such as Poisson’s ratio and effective shear modulus to 

define the contact behaviour. The size of the particles (ܴୣୌ) is taken into 

account during the force-displacement computation, confirming that the 

Hertz contact model, similar to the linear model deformability method, 

can be applicable when particles are upscaled.  

Furthermore, it is worthy to mention that the allowed overlapping at 

the contacts between particles in the normal direction is directly related to 

the normal stiffness of the spring and the normal forces acting on the 

contact plane for the linear and rolling resistance contact models. This 

paper employs the linear model deformability method, and therefore the 

allowed overlapping is determined by the effective modulus, ܧ∗specified.  

Referring to Eq. (1), the detected overlap (݃ୱ) and the normal stiffness of 

the linear spring between two particles are used to determine the normal 

force (ܨ୬). Also, according to Eq. (2), the allowed overlapping 	ሺ݃ୱ) can 

be expressed in terms of the normal force (ܨ୬ሻ and effective modulus (ܧ∗ሻ 

as follows: 

݃ୱ ൌ 	
ி౤

஠ሾ୫୧୬ሺோభ,ோమሻሿమா∗ሺோభାோమሻ	
		                                                                    (5) 

Hence, it can be explicitly concluded that the overlap is determined by 

the magnitude of the normal force acting on the contact plane, and the 

effective modulus of particles. Given a constant normal force, the overlap 

between contacting particles decreases as the effective modulus increases. 

For the Hertz contact model, referring to Eq. (4), in a similar way, the 

allowed overlap can be determined as below: 

݃ୱ ൌ ට
ி౤
ౄ

ሾଶீඥସோభோమ ሺோభ⁄ ାோమሻ ଷሺଵିሻൗ

ഀౄ
                                                              (6) 

Hence, it can be concluded that the allowed overlapping at the 

contacts is determined by the effective shear modulus (G), Poisson’s ratio 

(), as well as the Hertz normal force (ܨ୬ୌሻ. 

In this study, PFC3D 5.0 software (Itasca, 2016) has been adopted to 

evaluate the performance of these three contact models for cavity 

expansion simulation. Moreover, it is noteworthy to state that the 

constitutive behaviours of linear contact model, rolling resistance contact 

model as well as Hertz contact model discussed above contain only the 

essential characteristics and readers can refer to existing literature for 

further detailed explanations (e.g. Mindlin, 1953; Cundall and Strack, 

1979; Iwashita and Oda, 1998; Itasca, 2016).  

It is acknowledged that disparities may exist between the microscopic 

parameters of these adopted contact models and the actual behaviour that 

can be investigated when laboratory tests are done in microscopic scale. 

For instance, according to micromechanical experiments conducted by 

Sandeep and Senetakis (2017, 2018), with the increase in the normal 

loads, repeated shearing causes increase in frictional force. However, the 

frictional forces between particles for a given normal force in many 

existing contact constitutive models are constant (e.g. linear, rolling 

resistance, and Hertz contact models). The advance micromechanical 

inter-particle loading apparatus can directly measure the contact 

properties such as 	݇୬ and ݇ୱ between particles, which indisputably lead 

to the new direction in the micromechanical studies. It also offers the 

possibility to study the behaviour of the contacting particles in a 

microscopic level, which is advantageous for the development of more 

comprehensive and realistic contact constitutive models adopted in the 

DEM analysis (O’Sullivan, 2011; Senetakis et al., 2013; Senetakis and 

Coop, 2014). 

 

3. Numerical modelling  

 

3.1. Calibration of contact parameters adopting triaxial test 

Investigating the effects of contact models on the macroscopic soil 

response can never be attained if the variables are not controlled since 

each contact model contains multiple parameters that fundamentally 

determine the contact behaviour between particles. Hence, three adopted 

contact models were calibrated to represent realistic sandy soil by 

matching the results obtained from the numerical simulations of triaxial 

compression tests against existing laboratory results. Typically, the stress-

strain relationships obtained from the experiments are used for calibration 

of the contact models, which is a common practice adopted by many 

researchers (Chareyre et al., 2002; Arroyo et al., 2011; Wang et al., 2014; 

Ciantia et al., 2016). In this study, the contact properties were calibrated 

by matching the overall (macroscopic) stress-strain and volume change-

axial strain curves obtained for the soil specimen. 

3.1.1. Selection of existing experimental triaxial test results for 

calibration exercise 

Experiments adopted for calibration exercise was conducted by 

Cornforth (1964) to compare the drained strengths of medium to fine 

grained sand under the plane strain condition as well as the conventional 

triaxial condition. Detailed experimental procedure and specimen 

information can be found in Cornforth (1964). It is preferred to use 

comprehensive test results (e.g. triaxial test with various confining 

pressures) for calibration of the micro-mechanical properties of the soil 

for general simulation of soil under different confining pressures. 

However, it should be noted that the calibration exercise conducted in this 

study compared predictions and measurements for both axial stress and 

the volumetric strain variations with shear strains. In addition, since the 

test results reported by Cornforth (1964) include the required information 

for calibration of micro-mechanical properties, i.e. particle size 

distribution, void ratio, volume change with shear strain, stress-strain 

results, as well as the experimental procedure and the loading rate, these 

results have been used in this study. Similar calibration techniques were 

also adopted by many other researchers (e.g. Arroyo et al., 2011; Ciantia 

et al., 2015). 

3.1.2. Numerical simulation of triaxial test 

Considering the current computational power, it is not realistic to 

simulate the triaxial test using the true particle sizes. For instance, a 

laboratory-scale triaxial test on a sand specimen with 30 mm diameter and 

60 mm height would comprise approximately 4 million particles. Directly 

mapping such a huge number of particles into the simulation is unrealistic 

and computationally infeasible. Hence, only by reducing the number of 

particles, the analyses can become efficient and possible (O’Sullivan, 

2011). Therefore, before the initial condition has been assigned to the 

particles, an upscaling factor should be applied to reducing the number of 

particles immensely so that the simulation becomes computationally 

feasible. An appropriate upscaling factor is of paramount importance to 

ensure that the soil properties will not be altered. In this case, a very small 

upscaling factor has been initially adopted and has been gradually 

increased to 16.5 so that the porosity can steadily reach the desired value. 

The particle size distribution adopted by Cornforth (1964) and the 

uniformly upscaled particle size distribution employed in the calibration 

exercise are presented in Fig. 5. Hence, the triaxial simulations consisted 

of 20,000 spherical particles after upscaling, with the maximum diameter 

of the particle after upscaling being 12.35 mm while the minimum 



particle has a diameter of 1.245 mm, and the setup of the triaxial test is 

shown in Fig. 6. As illustrated in Fig. 6, the generated model for 

calibration exercise has a length of 406 mm, while the height and width 

are 101.6 mm and 50.8 mm, respectively, which are identical to specimen 

size adopted in the experimental test conducted by Cornforth (1964). The 

initial porosity of the generated DEM model for calibration exercise is 

0.392, similar to the porosity measured in the laboratory, corresponding to 

a medium dense specimen. The common approach adopted to generate a 

relatively dense specimen is to apply a small frictional force at grain 

contacts during the specimen generation stage so that inter-particle sliding 

can occur in a relatively effortless manner. The boundary walls are 

controlled using a servomechanism until the target void ratio and stress 

state are achieved at equilibrium. Once the initial conditions are satisfied, 

the frictional force can be adjusted back to the value determined from the 

calibration exercise (Thornton, 2000; Chareyre et al., 2002; Jiang et al., 

2003; O’Sullivan, 2011; Tong et al., 2012). This technique is also adopted 

in this study to prepare a medium dense specimen. The lateral confining 

stress (Y direction) of 275 kPa were maintained while the facets in the 

intermediate direction (X direction) were fixed to simulate the plane strain 

condition, and then axial load was applied on the top of the specimen (Z 

direction) in a constant rate. During the simulation, stress and strain 

variations as well as volume changes were continuously recorded. To 

investigate the effects of different contact models on soil response, rolling 

resistance, linear and Hertz contact models have been calibrated. 

Fig. 5. Particle size distribution adopted in experimental test, calibration exercise 

and cavity expansion simulation. 

 

Fig. 6. Triaxial compression test in plane strain condition in discrete element 

simulation. 

3.1.3. Calibration methodology 

The linear and the rolling resistance contact models are based on the 

linear deformability model, which is a method controlling the normal and 

shear stiffnesses of the linear springs based on the effective modulus 

	ሺܧ∗ሻ	 and the normal to shear stiffness ratio ሺ݇∗ሻ, as denoted in Eq. (2). 

The effective modulus ሺܧ∗ሻ	 is related to the Young’s modulus ሺܧሻ of the 

material, and ܧ increases as ܧ∗ increases, confirming a direct correlation. 

In addition, the Poisson’s ratio () is related to the normal to shear 

stiffness ratio ሺ݇∗ሻ; with  increasing up to a limiting positive value as ݇∗ 

increases (Itasca, 2016). Therefore, it can generally be concluded that the 

effective modulus ሺܧ∗ሻ controls the elastic part of the stress-strain curve, 

while the normal to shear stiffness ratio ሺ݇∗ሻ influences the volumetric 

behaviour. The selection of the values of ܧ∗ and ݇∗ adopted for the initial 

trial is based on the recommendations made by Plassiard et al. (2009), 

considering a comprehensive parametric study for the triaxial test 

simulation. Since the macroscopic Young’s modulus (ܧ) of the sand in 

the calibration exercise is approximately 70 MPa, as reported in Cornforth 

(1964), the corresponding magnitude of the effective modulus ሺܧ∗ሻ can be 

estimated to be approximately 1000 MPa referring to Plassiard et al. 

(2009). In addition, an interparticle friction coefficient of 0.5 is selected 

as the initial trial value. Considering the initial value of the effective 

modulus, a series of sensitivity analyses is conducted to investigate the 

effects of the interparticle friction coefficient and the normal to shear 

stiffness ratio ሺ݇∗ሻ using control variable method, as illustrated in Figs. 7 

and 8. 

Fig. 7. Influence of interparticle friction coefficient on the axial stress-strain 

relationship. 

Fig. 8. Influence of normal to shear stiffness ratio (݇∗) on the axial stress-strain 

relationship. 

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

P
er

ce
nt

ag
e 

P
as

si
ng

 (
%

)

Particle Size (mm)

Experiment from
Cornforth (1964)

DEM Triaxial Test
Simulation

DEM Cavity Expansion
Simulation

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5
V

ol
um

et
ri

c 
S

tr
ai

n 
(ε

v)
 (

%
)

A
xi

al
 

S
tr

es
s 

(k
P

a)

Axial Strain (%)

Interparticle friction coefficient (μ) = 0.3
Interparticle friction coefficient (μ) = 0.4
Interparticle friction coefficient (μ) = 0.5
Interparticle friction coefficient (μ) = 0.6
Interparticle friction coefficient (μ) = 0.7

Medium Dense Sand

Confining Pressure = 275 kPa

-0.5

0

0.5

1

1.5

2

2.5

3

620

720

820

920

1020

1120

1220

0 1 2 3 4 5

V
ol

um
et

ric
 S

tr
ai

n 
(ε

v)
 (

%
)

A
xi

al
 S

tr
es

s 
(k

P
a)

Axial Strain (%)

kratio (k*) = 1.5

kratio (k*) = 4.5

kratio (k*) = 7.5

kratio (k*) = 10.5

kratio (k*) = 13.5

Medium Dense Sand Confining Pressure = 275 kPa



According to the preliminary studies on the influence of the 

interparticle friction coefficient reported in Fig. 7, increasing the friction 

coefficient can, by and large, enhance the material shear strength, 

especially when the friction coefficient is less than 0.5. However, when 

the interparticle friction coefficient is larger than 0.5, the increase of shear 

strength becomes rather inapparent. Huang et al. (2014) conducted a 

comprehensive DEM investigation exploring the influence of interparticle 

friction coefficient on critical state behaviour of granular materials. The 

study indicated that the interparticle friction coefficient can affect the 

critical state parameter M as well as the position of the critical state line in 

e-log10p space ( e is the void ratio and p is the mean effective stress) , 

particularly when the friction coefficient is less than 0.5, whereas such 

effects are insignificant when the friction coefficient increases beyond 0.5. 

In addition, more rolling was observed in comparison to the sliding 

occurring at the contact points when a high interparticle friction 

coefficient was adopted. In addition, Yan et al. (2009) conducted a series 

of numerical studies investigating the influence of micro-properties on the 

macroscopic stress-strain behaviour of granular material. The results 

confirm that the interparticle friction coefficient affects both strength and 

overall volumetric dilation. The peak of the stress-strain curve increases 

with the increase in friction coefficient, and the volumetric dilation 

becomes more significant with the increase of the interparticle friction 

coefficient. Similar findings were also presented by Yang et al. (2012) 

and Hosn et al. (2017) in studying the influence of interparticle friction 

coefficient and dilatancy of granular materials. All of these studies carried 

out confirm that the interparticle friction coefficient indeed influence the 

soil behaviour significantly. 

However, referring to Fig. 8, it is observed that, in this study, the 

normal to shear stiffness ratio ሺ݇∗ሻ has insignificant effect on the stress-

strain relationship compared with the effect induced by the interparticle 

friction coefficient. Hence, the normal to shear stiffness ratio could be 

fixed provisionally.  

The interparticle friction coefficient is then adjusted to match the rest 

of the stress-strain curve to obtain the best match, then the interparticle 

friction coefficient is fixed and then the effective modulus ሺܧ∗ሻ and the 

normal to shear stiffness ratio ሺ݇∗ሻ are further adjusted to achieve the 

optimum match with the experimental results. The method discussed 

above is the technique adopted for the linear model calibration. The 

technique adopted by authors to calibrate the rolling resistance and the 

Hertz contact models is similar to the one reported above. In summary, 

the following procedure can be used for the calibration: 

 

(1) Estimating the initial trial values of micro-mechanical properties 

based on the tests and parametric studies carried out by other 

researchers; 

(2) Conducting a sensitivity analysis and then fixing the parameters 

influencing the predictions to less extent in the range of stresses 

applied; 

(3) Adjusting the parameters influencing the stress-strain predictions 

notably until a reasonable match is achieved; and 

(4) Optimising further by fine-tuning all parameters to achieve the best 

possible predictions.  

 

It should be noted that for further information regarding the 

calibration procedure adopting the Hertz contact model, Cheng et al. 

(2017) can be referred to.  

3.1.4. Calibration results 

Calibrated results for stress-strain relationship as well as volumetric 

behaviour are plotted in Figs. 9 and 10, respectively. As observed, the 

axial stress shows a continuous rise with the increase in axial strain until 

the peak stress of 1150 kPa has been reached, while strain softening has 

been observed when the axial strain is greater than 2.2%. Additionally, 

the volumetric strain demonstrates a contraction at the initial stage (i.e. 

axial strain <1%) and dilation when the simulation continues, confirming 

the medium dense state of the specimen simulated in DEM. Referring to 

Figs. 7 and 8, it can be concluded that the numerical predictions have a 

good agreement with experimental data, indicating reliability of calibrated 

parameters reported in Table 1. 

 

Fig. 9. Comparisons of axial stress and strain relationship obtained from calibration 

numerical simulation and experimental results. 

 

Fig. 10. Comparisons of variations of volumetric strain with axial strain obtained 

from calibration numerical simulation and experimental results. 

 

Table 1. Summary of calibrated contact parameters for poorly graded sand. 

Contact model Parameter Description Value 

Linear ܧ∗ Effective modulus 145 MPa

݇∗ Normal to shear stiffness ratio 1.75 

 Interparticle friction coefficient 0.85 ߤ

Rolling resistance Effective modulus 150 MPa ∗ܧ

݇∗ Normal to shear stiffness ratio 4 

 Interparticle friction coefficient 0.5 ߤ

 ୰ Rolling friction coefficient 0.1ߤ

Hertz ܩ Effective shear modulus 1.5 GPa 

 Poisson’s ratio 0.15 

 Interparticle friction coefficient 0.55 ߤ

 ୌ Hertz exponent 1.5ߙ

 

3.2. Cavity expansion simulation 

The ultimate objective of this study is to investigate the effects of 

different contact models on soil response during the cavity expansion 

process. To achieve this goal, a large-scale numerical model simulating 
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the cylindrical cavity expansion has been proposed adopting PFC3D 

software and calibrated parameters. Considering the fact that many cavity 

expansion related problems, such as pressuremeter test and driven pile 

installation, are in plane-strain condition (Alshibli and Sture, 2000), and 

taking the advantage of the axisymmetric geometry, only a quarter of the 

geometry with plane-strain condition has been simulated, as shown in Fig. 

11. The discrete element model established for three different contact 

models contains 75,010 spherical particles, generated using the radius 

expansion method, with its external boundary located 1 m away from the 

centre of the initial cavity, as shown in Fig. 11. The measured soil initial 

porosity is approximately 0.39, similar to the porosity reported in the 

experiment used for calibration of medium dense sand. The initial friction 

coefficient assigned to particles is 0.2 at the generation stage and the 

internal and external boundaries as well as the top and bottom walls are 

servo-controlled (as illustrated in Fig. 11) to satisfy the stress state and the 

void ratio. Once the target void ratio and stress state are reached at the 

equilibrium, the friction coefficient is set to that determined in the 

calibration exercise. The initial stress field adopted was 500 kPa 

( σ௥బ= σ௑ ൌ σ௒ = 500 kPa), and wall servomechanism was enabled to 

ensure that the external pressure remains equal to the initial stress field at 

all time at the outer boundary during the cavity expansion process. After 

the initial condition has been satisfied, all three groups of analyses 

adopting different contact models have the same properties, including the 

same initial stress field and the porosity equaling 500 kPa and 0.39, 

respectively. In addition, the average number of active contacts per 

particle (i.e. coordination number) was 5.7 for all contact models, 

confirming that the specimen is in medium dense state according to the 

empirical equation to relate coordination number and porosity proposed 

by Mitchell and Soga (2005).  

 

Fig. 11. Cavity expansion model setup. 

 

Three groups of simulations were conducted using different yet 

calibrated contact models (see Table 1), and the above conditions were 

consistently applied to all analyses. After the initial conditions were 

satisfied, the cylindrical cavities were expanded gradually from an initial 

cavity radius ܽ଴ = 0.055 m to a final cavity radius ܽ୤ = 0.1 m in a constant 

strain rate of 0.001 m/s to ensure quasi-static loading condition. Internal 

cavity pressure ( ௔ܲ) is measured using appropriate subroutines that can 

obtain the contact forces acting on the internal cavity wall and then 

divided by the corresponding contact area. On the other hand, there were 

five equally spaced gauge particles selected along angular bisector, as 

shown in Fig. 11, and the displacements and positions of these gauge 

particles are continuously monitored during the cavity expansion. 

Additionally, the radial stress ( ୰ܲ) distributions at various stages of the 

cavity expansion are also recorded using numerous prediction spheres 

created in the radial direction. Furthermore, referring to Fig. 11, the 

variations of the deviatoric stresses and volumetric strains with the shear 

strain during the cavity expansion are continuously recorded adopting two 

particular predication spheres A and B (see Fig. 9), which are situated at 

  .= 5, respectively	୆/ܽ୤ݎ ୅/ܽ୤ = 2.5 andݎ

 

4. Results and discussion 

 
4.1. Cavity pressure variations during cavity expansion 

Variations of cavity pressure during the cavity expansion process are 

plotted against the cavity radius ratio ( ܽ/ܽ଴ ) in Fig. 12. Pressure 

variations are represented by the ratio of the measured cavity pressure ( ௔ܲ) 

over the initial cavity pressure ( ௔ܲబ). It is observed that the cavity pressure 

variations follow the same pattern irrespective of the adopted contact 

model. The peak cavity pressure acquired for all three contact models is 

approximately 5.5 times of the initial cavity pressure (i.e. ୫ܲୟ୶  = 2.75 

MPa). However, it is noticed that the cavity pressure obtained from the 

simulation with Hertz contact model tends to reach the peak at slightly 

less expansion radius. This finding complies with the soil stress-strain 

behaviour obtained in the triaxial test (Fig. 9), in which Hertz contact 

model resulted in the peak axial stress at a lower axial strain. It can be 

readily concluded that the soil response during the cavity expansion is 

largely dependent on the soil behaviour during the triaxial compression 

test. Additionally, the simulation process takes approximately 40 h for the 

simulations adopting linear contact model and rolling resistance contact 

model on a computer with an Intel i7 processor @3.4GHz and 16GB 

RAM, while about 50 h is required for the analysis adopting Hertz contact 

model. This may be attributed to the fact that the Hertz contact model 

employs nonlinear formulations and hence complicated and time-

consuming computational algorithms are required. It should be noted that 

for all adopted contact models, strain softening behaviour is captured, 

which is likely due to the dilatancy of granular material since the 

specimen generated in the simulation is defined as medium dense sand. 

 

Fig. 12. Cavity pressure variations during cavity expansion. 

 

The dilatancy in macroscopic view is explained as the volume 

expansion when the specimen is subjected to the shear deformation. 

However, in discrete element modelling, the dilation can be 

fundamentally interpreted by the interactions between contacting particles 

adopting the equilibrating force system. As inspired by Budhu (2008), the 

dense assembly of sand particles in microscopic view can be simplified to 

the packing shown in Fig. 13. With continuous shearing, particles on the 

top layer (e.g. particle A) tend to override the particles underneath (e.g. 

particle B). Hence, the potential slipping plane between two particles can, 

at any stage, be idealised to an inclined surface with an angle of α to the 

horizontal plane, as shown in Fig. 14. Referring to Fig. 14, the angle α 

reduces to α′ (ߙᇱ = ߙ +	dߙ, and dߙ ൏ 0) when the particle A moves to 

location A while a new slipping plane with particle B would be formed. 
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Fig. 13. Illustration of the dense sand assembly in DEM. 

 

Fig. 14. Free-body diagram of the particles on the slipping plane. N is the normal 

force acting perpendicular to the slipping plane; f is the friction force acting parallel 

to the slipping plane (f = μN); H and V are the horizontal and vertical forces applied 

due to external loading, respectively; and α is the dip of slipping plane. 

 

If the horizontal force (ܪ) is applied in a slow manner and considering 

a constant vertical force (ܸ ) during the shearing process, quasi-static 

condition can be satisfied. In this case, equilibrium of forces in both 

horizontal and vertical directions can be expressed as 
௫ܨ∑ ൌ 0 → ߙcosሺܰߤ ൅ dߙሻ ൅ ܰ sinሺߙ ൅ dߙሻ ൌ ܪ ൅ d݄                     (7) 
௬ܨ∑ ൌ 0 → ܰcosሺߙ ൅ dߙሻ	– ܰߤ sinሺߙ ൅ dߙሻ ൌ ܸ                               (8) 

Combining Eqs. (7) and (8) leads to:  
ுାୢு	

௏
ൌ

ఓ ୡ୭ୱሺఈାୢఈሻାୱ୧୬ሺఈାୢఈሻ

ୡ୭ୱሺఈାୢఈሻ–ఓ ୱ୧୬ሺఈାୢఈሻ
                                                   (9) 

where ߤ = tan and  is the friction angle. 

Assuming that the surface area of the specimen remains constant 

during the shearing process, Eq. (9) can be expressed directly in terms of 

the relationship between the shear and normal stresses: 
ఛ	ା	ୢఛ	

ఙ
ൌ

୲ୟ୬ୡ୭ୱሺఈ	ା	ୢఈሻ	ା	ୱ୧୬ሺఈ	ା	ୢఈሻ
ୡ୭ୱሺఈ	ା	ୢఈሻ	–	୲ୟ୬ୱ୧୬ሺఈ	ା	ୢఈሻ

ൌ
୲ୟ୬ା୲ୟ୬ሺఈ	ା	ୢఈሻ
ଵ	–	୲ୟ୬୲ୟ୬ሺఈ	ା	ୢఈሻ

	   
 (10) 

Hence, we have 
߬ ൅ d߬ ൌ ሾ	tanߪ ൅ ሺߙ ൅ dߙሻሿ                                                             (11) 

Referring to Eq. (11), when the friction angle () is assumed to be 

constant, the predicted deviatoric stress increases (d߬ > 0) as the dilation 

angle increases (d0 < ߙ). On the contrary, a decrease in dilation angle (dߙ 

< 0) would contribute to a reduction in the deviatoric stress (d߬ < 0), 

which is known as the strain softening behaviour, observed after the peak 

deviatoric stress in macroscopic point of view. 

4.2. Radial stress distributions during cavity expansion 

A comparison for the distribution of the radial stresses measured at 

various distances (ݎ/ܽ଴) during the cavity expansion is presented in Fig. 

15. Results have been plotted for a selection of cavity sizes. Fig. 15a and 

b present the results for ܽ/ܽ଴  = 1.15 and 1.25, respectively. It can be 

generally concluded that the magnitude of the radial pressure changes 

significantly with the distance from the internal cavity. As ݎ increases, the 

radial stresses ( ୰ܲ) reduce more significantly, while further away from the 

cavity, this reduction rate becomes less pronounced. For example, the 

normalised radial pressure decreases immensely when the normalised 

cavity radius (ݎ/ܽ଴ ) is less than 5, while insignificant radial pressure 

variations are observed when ݎ/ܽ଴ ൐11. It is projected that the measured 

radial stresses eventually reach the initial in situ stress (i.e. ௔ܲ  / ௔ܲబ  = 1) at 

a large radial distance (i.e. ݎ → ൅∞ሻ . Furthermore, comparisons were 

made for radial pressure variations with the radial distance, and it is 

clearly noticed that there are no pronounced differences between 

predictions obtained from simulations with three different contact models 

(see Fig. 15). 

Fig. 15. Radial stress distributions at various stages: (a) a/a0 = 1.15 and (b) 1.25 

during cavity expansion. 

 

4.3. Soil radial displacement during cavity expansion 

Fig. 16 shows the soil movement obtained in radial direction due to 

the cavity expansion. The results are plotted based on the total 

displacement of five gauge particles from the beginning of the cavity 

expansion (i.e. ܽ	= ܽ଴ = 0.055 m) till the end (ܽ	= ܽ୤ = 0.1 m). These five 

gauge particles are equally spaced, and the locations of these particles are 

represented using the normalised distance of ݎ/ܽ (refer to Fig. 11). As 

expected, particles located closer to the centre of the cavity experience a 

larger radial displacement. For instance, the gauge particle 1 positioned 

0.1 m away from the internal cavity moved 0.03 m in the radial direction 

when the cavity expanded from 0.055 m to 0.1 m. However, the gauge 

particle 5 located 0.4 m from the internal cavity experienced a total radial 

displacement of 0.0075 m during the entire cavity expansion process. 

Referring to Fig. 16, it can be observed that the total radial displacement 

shows a dramatic decrease with radius when the normalised radius (ݎ/ܽ) 

is less than 6, while the changes become almost insignificant when the 

normalised cavity radius is larger than 8. Furthermore, it can be 

concluded that the calibrated contact models express very similar results 

in terms of the distribution of the radial soil movement. 
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Fig. 16. Radial displacement of five equally spaced gauge particles during the cavity 

expansion. 

 

4.4. Deviatoric stress and volumetric variations during cavity 

expansion 

Comparisons of the deviatoric stress and the volumetric strain 

variations with the shear strain during the cavity expansion are presented 

in Figs. 17 and 18. Results obtained are reported based on two prediction 

spheres situated at radial distances of ݎ୅ and ݎ୆, as illustrated in Fig. 11. 

As it can be clearly observed in Figs. 17a and 18a, the deviatoric stresses 

reveal a continuous increase with the increase of the shear strain, and the 

soil particles close to the internal cavity experience larger deviatoric 

stresses compared with those situated further away. Similar findings were 

also reported by Manassero (1989) and Silvestri (2001) when attempting 

to interpret the self-boring pressuremeter test in the calibration chamber. 

Additionally, as depicted in Figs. 17b and 18b, the volumetric strain 

variations show a contraction during the initial stage of the cavity 

expansion and then dilation when the cavity is expanded further, 

confirming the medium dense state of the sandy soil simulated. As 

expected, the soil close to the centre of the cavity (e.g. ݎ୅/ܽ୤  = 1.25) 

experiences more evident volume changes while the variations of the 

volumetric strain predicted become less pronounced with the increase in 

radial distance (e.g. ݎ୆/ܽ୤  = 2.5). It is projected that the predicted 

volumetric strains would eventually approach zero when the radial 

distance is extremely large (i.e. ݎ → ൅∞ ). Furthermore, it can be 

explicitly concluded that the numerical results obtained for three different 

yet calibrated contact models are in a good agreement. 

Fig. 17. (a) Deviatoric stress-shear strain relationship and (b) Volumetric strain-

shear strain relationship at predication sphere A. 

Fig. 18. (a) Deviatoric stress-shear strain relationship and (b) Volumetric strain-

shear strain relationship at predication sphere B. 

 

4.5. Dilatancy variations during the cavity expansion 

 
Dilation angle is the measure of the change in the volumetric strain 

with respect to the change of the shear strain (Budhu, 2008). Hence, it is 

possible to use the current model and results to further investigate the 

dilatancy variations. Fig. 19 depicts the variations of dilatancy with shear 

strain based on the prediction spheres A and B (as shown in Fig. 11). It is 

observed that dilatancy is negative at the initial stage of the cavity 

expansion and then positive when the cavity expands further, confirming 

a transient contraction and subsequent continuous expansion at both 

predictions spheres. In addition, referring to Fig. 19a, the dilatancy shows 

a persistent reduction after the peak, and it is projected that the dilatancy 

will eventually approach zero when the specimen reaches the critical state.  
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Fig. 19. Variations of dilatancy during cavity expansion at (a) prediction sphere A 

and (b) prediction sphere B. 

 

4.6. Contact forces and displacement contour 

Fig. 20 shows an example of contact forces between particles and 

total displacement contours adopting rolling resistance contact model. As 

the contours obtained from three different contact models are very similar, 

only one case is presented. As expected, the contact forces close to the 

internal cavity are larger and change more dramatically with radius. 

Additionally, referring to Fig. 20a, the maximum soil displacement of 

approximately 0.045 m is observed at the internal cavity, while the 

displacement reduces gradually with the increasing distance from the 

centre of the cavity. It should be highlighted that linear contact model 

may not be able to simulate the behaviour of particles that are highly 

angular. Instead, these angular particles may be more accurately 

simulated using rolling resistance contact model. Consequently, it is 

always strongly suggested that the choice of the most appropriate contact 

model should be deliberated based on the properties and characteristics of 

the materials to be studied. 

Fig. 20. (a) Particle displacement contour (m) and (b) particle contact force contour 

(m) for rolling resistance contact model. 

 

5. Further discussion and limitations 

 

This paper has presented an investigation on the influence of particle 

contact models on soil response of sandy soil during cavity expansion. 

According to the unified soil classification system (USCS), the specimen 

used in this study was categorised as poorly graded sand. The calibration 

exercise was conducted using the same particle size distribution reported 

by Cornforth (1964) as shown in Fig. 5. Hence, the calibrated contact 

parameters could mimic the shear behaviour and obviously correspond to 

the poorly graded sand adopted in the experiment. Obviously, the micro-

mechanical characteristics including the particle contact properties greatly 

depend on the texture of the surface of particles, particle roundness and 

sphericity, mineralogy of the parent material, and geological processes 

involved (Horn and Deere, 1962; Herle and Gudehus, 1999; Bareither et 

al., 2008). For instance, Bareither et al. (2008) indicated that sand with 

lower shear strength is usually derived from weathering of underlying 

sandstones, and tends to have medium to fine and well-rounded yet poor 

graded particles. However, higher shear strength is expected from the 

sand particles formed as a result of recent glacial activities leading to 

coarser, more angular and well graded particles. Obviously, if the 

calibration exercise is conducted for another type of soil that is well 

graded, then the micro-mechanical properties would be different, which in 

turn will influence the soil response during the cavity expansion process. 

For instance, the shear strength of the well graded sand is generally larger 

due to its relatively stable particle structure resisting the sliding and the 

collapse of the interlocking (Enomoto et al., 2015). In addition, 

Kirkpatrick (1965) and Leslie (1969) pointed out that the increase in the 

coefficient of uniformity (Cu) can enhance the peak shear strength of 

granular material significantly. 

As mentioned earlier, this paper has employed the discrete element 

simulations to investigate the influence of the particle contact models on 

response of poorly graded sand during cavity expansion. The contact 

models utilised contain simplifications and assumptions that inevitably 

induce disparities between the numerical predictions and the realistic soil 

responses. Hence, it is noteworthy to highlight the limitations of this 

study as summarised below: 

 

(1) Soil particle crushing and cracking have not been captured in this 

study. Therefore, the ploughing behaviour causing permanent 

plastic deformation at the contact under high normal loads has not 

been captured (Senetakis et al., 2013). According to Sandeep and 

Senetakis (2018), the ploughing behaviour is responsible for the 

decrease in interparticle friction coefficient during shearing, and 

this ploughing might also trigger the increase in particle friction 

coefficient during unloading process. Hence, particle crushing can 

contribute to strength and stiffness degradation. Similarly findings 

are also report by Miura et al. (1984). Hence, it is recommended for 

future studies to capture particle crushing during cavity expansion 

process to assess the extent to which the particle crushing can 

influence stress and strain predictions. Indeed, the particle crushing 

can be considered by means of the user-defined contact models 

through a pre-defined particle crushing criterion. When the contact 

forces (or stresses) between particles exceed the threshold, the 

particles will be crushed and replaced by a certain number of 

smaller particles.  

(2) The viscous behaviours of particles and interfaces have not been 

included. Indeed, the material behaviour can be influenced by both 

compression and shear creep causing stress relaxation or further 

deformation (Pham Van Bang et al., 2007; Wang et al., 2008). For 

instance, Kuwano and Jardine (2002) indicated that the shear creep 

deformation observed within 2 h of the end of anisotropic 

consolidation contributed to 30%-80% of the “primary” 

deformation observed during the fully drained loading stages. 

(3) In this study, ideal spherical particles have been used in both the 

calibration exercise and the cavity expansion simulation, while 

angularity of particles and sharp corners may influence the results 

(Zhao et al., 2015; Fu et al., 2017; Sandeep and Senetakis, 2018). 

Zhao et al. (2015) reported that the interlocking of the particles is 

more dramatic in a high angular assembly, resulting in high shear 

strength and dilatancy. In addition, the non-uniform distribution of 

normal contact forces near the shear plane is more significant in 



high angular assembly during shearing, confirming that less 

particles share the majority of the shear force. 

 

All of these limitations discussed above have certain effects on the 

numerical predictions. Authors are working on follow-up papers 

addressing the above limitations. 

 

6. Conclusions 

 

Cavity expansion theory serves as one of the most effective 

techniques in geotechnical engineering to interpret the soil behaviour in 

many practical applications such as driven piles and in situ tests. In this 

study, the effects of three different contact constitutive models, i.e. linear, 

rolling resistance and Hertz contact models, on the sandy soil response 

during the cylindrical cavity expansion have been investigated adopting 

discrete element analysis. The simulations of the cavity expansion with 

different contact models have been calibrated using the experimental 

results obtained from the triaxial test in plane-strain condition on medium 

dense sand. The calibration process calibrating the microscopic contact 

parameters including the methodology adopted and parametric studies 

carried out is expounded. In addition, micro-mechanical formulations 

based on the contact forces have been developed to explain the soil 

dilation and strain softening in a microscopic point of view. The 

numerical predictions on cavity expansion indicate that these calibrated 

contact models produced similar results in terms of cavity pressure 

variations, radial stress distributions, deviatoric stress and volumetric 

strain variations as well as soil radial movement, confirming that the soil 

response during the cavity expansion is highly correlated to its behaviour 

during the triaxial test used for the model calibration. Additionally, strain-

softening behaviour due to the dilatancy of medium dense specimen has 

been captured during the cavity expansion, and the volumetric strain 

predicted shows an initial slight contraction followed by dilation at larger 

shear strains. However, it should be highlighted that if the soil particles 

are highly angular (e.g. ballast particles), modelling adopting simplified 

linear contact model may result in inaccurate predictions. Furthermore, 

according to the results reported in this study, at a radial distance beyond 

11ܽ  and 8ܽ , soil displacement and radial stress variations would be 

insignificant, respectively. Thus, the effects of soil displacement due to 

installation of displacement-based inclusions (such as driven piles and 

vertical drains used in ground improvement) on nearby structures should 

be considered carefully by practicing engineering. Moreover, the 

limitations of this study are elaborated including the soil crushing, viscous 

behaviour as well as the particle angularity. All of those effects will be 

thoroughly considered in the future studies. 
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List of symbols 

 

ܽ	 Current cavity radius (m) 

ܽ଴ Initial cavity radius (m) 

ܽ୤ Final cavity radius (m) 

	݀	  Distance between the centres of two contacting particles (m) 

 Effective Young’s modulus of particles (Pa) ∗ܧ

 Young’s modulus (Pa) 	ܧ

 ୬ Normal force at the contact interface between contactingܨ

particles (N) 

 ୱ Shear force at the contact interface between contactingܨ

particles (N) 

 ୱ଴ Shear force at the beginning of the timestep (N)ܨ

 ୬ୌ Hertz normal force (N)ܨ

 ୱୌ Hertz shear force (N)ܨ

ୱబܨ
ୌ Hertz shear force at the beginning of the timestep (N) 

݃ୱ Surface gap between contacing particles (m) 

 Effective shear modulus (Pa) 	ܩ

 Horizontal force appied to the particle (N) 	ܪ

݇୬ Normal stiffness of linear springs (N/m) 

݇ୱ Shear stiffness of linear springs (N/m) 

݇୰ Rolling stiffness of linear springs (N/m) 

݇∗ Stiffness ratio between normal stiffness and shear stiffness 

 Distance between the centres of contacting particles 	ܮ

୰୰ܯ
	 Rolling resistance moment (N m) 

ܰ	 Normal force appied to the particle (N) 

 ௔ Cavity pressure (kPa)݌

௔ܲబ Initial cavity pressure (kPa) 

 ୫ୟ୶ Peak cavity pressure (kPa)݌

 ୰ Radial stress (kPa)݌

ܴଵ Radius of particle 1 (m) 

ܴଶ Radius of particle 2 (m) 

ܴୣୌ Particle effective radius in Hertz contact model (m) 

 ୅ Radius of the prediction sphere A (m)ݎ

 ୆ Radial of the prediction sphere B (m)ݎ

 Radial distance (m) 	ݎ

ܸ	 Vertical force appied to the particle (N) 

 ୌ Hertz contact model exponentߙ

 Dilation angle in DEM simulation () 	ߙ
 ୱ Shear displacement increment in a timestep (m)ߜ∆

 Poisson’s ratio 

 ୰ Rolling resistance coefficientߤ

 ௥బ Initial radial stress (kPa)ߪ

 ௑ Initial stress in X direction (kPa)ߪ

 ௒ Initial stress in Y direction (kPa)ߪ

∆߮୰ Relative rotation increment between contacting particles in a 

timestep () 
 Friction angle () 
߬	 Shear stress (Pa) 
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