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1 Introduction

Oligopolies are very complex market structures. Consider, for example, an estab-
lished industry where a homogeneous good is produced by several profit-maximizing
firms with identical cost structure and where both demand and cost structure is a
common knowledge. There is no one, commonly agreed descriptive model of firms’
behavior even for this idealized environment. Firms might take into account how
their production decisions affect prices, as they do in Cournot competition or if
they collude. Or, at another extreme, firms may take price as given and behave
competitively. Even if price-making behavior brings firms higher profits,1 the re-
cent literature casts doubts on whether this behavior will actually be observed.
A celebrated result by Vega-Redondo (1997) states that the Cournot-Nash equi-
librium is not evolutionary stable. That is if firms use trial and error and adapt
via imitation of the most profitable firm, the dynamic process moves them away
from the Cournot outcome and bring the market to the Walrasian point, which
corresponds to the equilibrium under price-taking firms. Results in Huang (2003,
2007) show that a firm that deviates from collusive behavior unilaterally to be a
price taker will earn a higher profit than the collusive firms.

In this paper we contribute to the literature by studying market dynamics
when firms decide to be one of the two types (price maker or price taker) and
reconsider the choice over time on the basis of own and, in some cases, all firms’
past experience. Methodologically our paper belongs to the growing literature
on heuristic switching models in which boundedly rational myopic agents switch
between several modes of behavior (see Brock and Hommes, 1997; Anufriev and
Hommes, 2012; Hommes, 2013). It is also closely related to the literature on
reinforcement learning in games (see Erev and Roth, 1998 and Camerer and Ho,
1999). We place our paper in the current literature on oligopolies in Section 2.

To focus on the firms’ decisions about their types, we study the simple and
standard case of linear demand and linear marginal cost oligopoly as introduced in
Section 3. The firms know the demand and cost functions and produce a perishable
homogeneous good. Production takes time which means that price-taking firms
should form expectations about the next period price to make their production
decisions. Price makers know the market composition and produce optimally given
this composition. We shall mostly assume that the expectations of price takers are
naive, though the case of perfect foresight is also discussed.2 We are interested in

1In particular, among all non-collusive outcomes, the firms have the highest profit in the
Cournot-Nash equilibrium when they are price-makers.

2If all firms are price takers in our model, we obtain a well-known cobweb model that became
a standard model to introduce and investigate various expectation schemes, see, e.g., Nerlove
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the question whether there exists a market composition under which firms would
be, in some sense, satisfied with their types. If such composition does not exist,
then we are interested in the time-invariant distribution over types that arises in
the long-run and corresponding dynamics of price, total output and relative profits
of price-taking and price-making firms. In our model price takers have a higher
equilibrium profit than price makers in any market with both types. However,
when the number of price takers in the market is too high, the equilibrium becomes
unstable and price dynamics converge to a 2-cycle where price makers have much
higher average profit than price takers. Given these features, we analyze different
versions of the model with firms choosing their types endogenously.

In Section 4 we use game-theoretic approach where firms choose their types
in a strategic way, by considering their steady-state profits and choosing the best
type given the other firms’ types. We introduce a notion of compositionally stable
markets, which are Nash equilibria in pure strategies of a game where firms choose
their types once and for all. We prove that, with an additional requirement of price
dynamics converging to the steady state, the only stable market composition is
when each firm is a price maker. Thus, we find support for the Cournot equilibrium
but not for the Walrasian equilibrium or for mixed markets where both types
coexist. However, we also show that when the number of firms in the industry
increases, the Cournot market will eventually lose its compositional stability, as
every firm in this market would be better off by becoming a single price taker.

Section 5 is concerned with backward-looking firms’ behavior, when each firm
makes decision repeatedly, based on profits received in the past. As intuition
suggests, when the Cournot market is compositionally stable, then simulations
with backward-looking learning tend to converge to the Cournot market. When the
Cournot market is compositionally unstable, dynamics do not converge to a fixed
composition. In this case we observe oscillations in price and quantities caused by
a cyclical switching between types. The number of price takers is typically low to
guarantee price stability. At the same time, price makers cannot drive price takers
out of the market as price takers earn higher profits than price makers.

Section 6 summarizes the paper. Proofs of some results are presented in the
Appendix and additional simulations can be found in the Online Appendix.

(1958), Muth (1961), Bray and Savin (1986), Chiarella (1988), Hommes (1994) and Brock and
Hommes (1997). If cobweb dynamics converges, it converges to the Walrasian equilibrium. If all
firms are price makers, an immediate outcome is the Cournot-Nash equilibrium.
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2 Literature Review

Our paper belongs to a growing economic literature that deals with behavioral
oligopolies. Instead of taking an equilibrium point in the strategy space as a
granted outcome of firms’ interaction, it studies dynamical aspects of firms’ learn-
ing processes, i.e., firms’ adaptive behavior that occurs in actual time. In this
literature firms are boundedly rational either because they do not have sufficient
information or computational abilities to play an equilibrium strategy or because
they may fail to coordinate with their competitors on playing an equilibrium pro-
file.3 In this literature firms often rely on some behavioral rules that map their past
information to new actions. A typical research question is whether the dynam-
ics generated by the interaction between boundedly rational firms would converge
and, if so, where. The literature can be divided into three interrelated streams.

The first stream focuses on adaptive learning of strategic firms. Price-making
firms form expectations about the production of the rest of the industry and opti-
mize under their expectations. Expectations are formed based on historical obser-
vations. Firms are boundedly rational either because they ignore contemporane-
ous adjustment by their competitors, or because they have incomplete information
about the industry demand function, or both. Indeed, the so-called “naive” adjust-
ment, when every firm plays the best reply to the total production of its competi-
tors in the previous period goes back to Cournot (1838), who focused on a limiting
point of such process.4 Theocharis (1960) and Hahn (1962) among others, derived
several results on the convergence of naive adjustment dynamics to the Cournot-
Nash equilibrium. More sophisticated learning schemes have been studied, where
the firms adjust their output towards the best reply only partially and/or reply
to a historical mean of total output (Huck, Normann, and Oechssler, 1999). This
usually enhances convergence to the Cournot-Nash equilibrium. A different ap-
proach is used in Chiarella and Szidarovszky (2002, 2004), Bischi, Chiarella, and
Kopel (2004), and Bischi, Naimzada, and Sbragia (2007), who study the conver-
gence properties of adjustment processes under the assumption that the demand
function is misspecified.5 In this setup fast convergence to a steady state typically
occurs, though, due to demand misspecification, the steady state may be different
from the Cournot-Nash equilibrium.

3See Bischi, Chiarella, Kopel, and Szidarovszky (2009), Armstrong and Huck (2010) and
Kirman (2011) for recent overviews of various branches of this literature. A related field of
“behavioral industrial organization” focuses on consequences of cognitive biases of consumers.

4That is why naive adjustment is often called Cournot best response dynamics.
5Other models with learning in oligopolies under misspecified demand are Kirman (1983),

Brousseau and Kirman (1992), and recently Anufriev, Kopányi, and Tuinstra (2013). In these
papers firms compete in price, however.
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Another branch of the literature applies ideas of evolutionary game theory. In
these models the firms’ choice of production levels does not involve any strategic
considerations6 but is solely driven by past profits. This is the framework where
such behavioral aspects as experimentation or imitation can be modeled. The focus
is on the long-run outcome of the processes and, in particular, which one of the
two equilibria, Cournot-Nash or Walrasian, attracts the dynamics. The dynamical
process can either be simulated, or can be studied using the tools of stochastic
dynamical system.7 It turns out that the outcome of the dynamic process depends
on the exact assumptions about learning. If firms are engaged in social learning,
where they imitate the most successful firms in the previous period, then the
process converges to the Walrasian equilibrium, see Vega-Redondo (1997).8 On
the other hand, if firms experience individual learning and can only be involved
in hypothetical or actual experimentation with own strategies, then the outcome
may be different.9

In the first stream of literature the firms’ behavior is strategic, whereas in the
second stream non-strategic firms choose an action that worked best in the past.
The third stream combines these two ideas. Similar to the first stream, firms can
use more or less sophisticated behavioral rules. And similar to the second, their
behavior is driven by the relative past profits, but now they select over behavioral
rules. The main interest here lies in the dynamics of market composition (i.e.,
distribution over the rules) and in the resulting price and quantity dynamics. For
instance, Droste, Hommes, and Tuinstra (2002) consider the Cournot duopoly,
where firms choose between two rules: a non-sophisticated “naive adjustment”
rule, that produces the best reply on the previous output, and a very sophisticated
“Nash” rule that is the profit maximizing equilibrium strategy given the current

6Firms do not have to know how many opponents are there in the market, what their demand
curve is, etc.

7The examples of the latter approach are Vega-Redondo (1997), Schenk-Hoppé (2000) and
Alós-Ferrer (2004). As technical tools can be applied to a limited range of situations, the agent-
based approach as used in Vriend (2000), Arifovic and Maschek (2006), Riechmann (2006) and
Vallée and Yıldızoğlu (2009) is often more insightful.

8This is surprising as every firm has the smallest possible profit in that equilibrium. This
result is often attributed to the spite effect emerging under imitation, when a profit-decreasing
experimentation of a firm can be sustained and even imitated simply because other firms have
even larger decrease in profits than the experimenting firm. Alós-Ferrer (2004) shows that if
firms in Vega-Redondo (1997) setting can remember profits of all firms from the previous two
or more periods, the evolutionary process can converge to any point between the Walrasian and
Cournot-Nash equilibria. This suggests that the Walrasian outcome is produced not only by the
spite effect, but also when the memory of imitating firms is very short (one period only).

9In Vriend (2000) the dynamics with individual learning converges to the Cournot-Nash equi-
librium, whereas in Arifovic (1994) and Arifovic and Maschek (2006) it converges to the Walrasian
equilibrium. See Vallée and Yıldızoğlu (2009) for reconciliation of the results.
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market composition. Both rules have the Cournot-Nash equilibrium as the steady
state. Nevertheless, if the “Nash” rule is costly and the best reply function is
steep enough, then evolutionary competition between the two rules may lead to
cyclical or even chaotic dynamics.10 This model has been extended to the case
of oligopolies in Hommes, Ochea, and Tuinstra (2011). It turns out that the
Cournot-Nash equilibrium is destabilized with an increasing number of firms in
the industry.11

It is common in this stream to study two competing rules with the same steady
state. Instead, in our model the two modes of behavior have different equilibria, the
Cournot-Nash and the Walrasian equilibria. It relates us to an important earlier
work in Huang (2002, 2003).12 These papers analyze the market with a price
taker and more sophisticated (e.g., price-making) firms and show that price takers
always make a higher profit than sophisticated firms. This result suggests that
the price-taking behavior maybe advantageous for the firms and invites to study
incentives of firms to switch their behavioral types and investigate the properties of
their dynamical type selection process. This is the path we follow in this paper.13

Specifically, we ask the question: What type of distribution between two com-
monly used modes of behavior, price-taking and price-making, would prevail in
the markets? Can the case be made to support one of the homogeneous markets
(i.e., one of those two equilibria)? We deliberately simplify other aspects of the
environment by assuming linear demand and marginal cost functions, as well as
common knowledge of them and of the market composition. This distinguishes us
from many contributions discussed in this section, though we share with them the
dynamic nature of the model, learning aspect of the firms, and the main question
of interest. In particular, we differ from the first stream of literature as in our
model all firms know the demand function. This is a natural assumption for well
established industries. Moreover, we assume that the price makers use correct (i.e.,
equilibrium) strategies for a given market composition. Again, this is plausible on
established and transparent markets, where more sophisticated firms gather infor-
mation about strategies employed by less sophisticated firms. Consequently, we
do not touch the issue of stability of the Cournot-Nash equilibrium under adaptive

10The underlying intuition is simple. “Naive adjustment” rule, being cheaper, is more popular
near the steady state but under this rule the steady state is unstable. “Nash” rule, becomes
more popular far from the steady state, and brings dynamics back close to the equilibrium.

11See also Bischi, Lamantia, and Radi (2015) and Baiardi, Lamantia, and Radi (2015).
12We thank an anonymous reviewer for pointing out these contributions.
13Huang (2007, 2008b) study dynamics in the model with price takers and price makers, where

price takers use a cautious quantity adjustment process. These alternatives lead to different
dynamic patterns than in our paper. Explicit type selection is analyzed in Huang (2010), though
under a very different learning mechanism than what we use in Section 5.
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learning, but in our model other equilibria are also possible because some firms
can be price takers. In our model firms are more farsighted than in the models
of the second stream. Indeed, our firms learn which type (or mode of behavior)
they want to choose and not their production level. We will see that under such
learning Cournot-Nash equilibrium can be stable and the spite effect disappears.

Even if our model naturally belongs to the third stream of the literature, there
are several important differences both in setup and methodology from other papers.
Apart from absence of adaptive learning by the price makers, we do not employ a
so-called “random matching setup” typical for other papers and, instead, work di-
rectly with integer number of firms.14 Moreover, we investigate individual learning
of the firms about their types, as this requires less information, which is reasonable
in case when some types are non-sophisticated.

3 The Model

We consider an industry with N ≥ 2 firms indexed by i = 1, . . . , N producing a
homogeneous good and facing a linear (inverse) demand function

pt = max{a− bQt, 0} , a, b > 0 ,

where pt is the price and Qt is the total quantity produced at period t. Firms have
an identical cost structure. At each period of time, the firms’ cost functions are
quadratic:

Ci(qi,t) =
sq2i,t

2
, s > 0 ,

where qi,t is the quantity produced by a single firm so that Qt =
∑

i qi,t.

The structure of production is of the standard type for the cobweb model. That
is production takes one period and the commodity cannot be stored after it has
been produced. Therefore, every firm i should make at the end of period t − 1
the decision on which quantity qi,t it should produce and supply to the market at
time t. To make this decision, a firm should decide which type it wants to be.

14In the spirit of evolutionary game theory and for the technical reasons rather than by motives
of realism, it is common to model interactions of few firms via replicator dynamics, i.e., as an
outcome of random matching from a continuum set of firms. One recent example is Radi (2017),
where an evolutionary learning between the same types as in our paper is studied. Working with
integer number of firms makes the model less artificial but comes at the cost that formal dynamic
analysis of the learning model is intractable. Thus, after characterizing stable equilibria we rely
on computer simulations.
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There are two types of firms on the market, price takers (or non-strategic firms)
and price makers (or strategic firms) and firms decide their types at the end of
period t − 1. We will specify their decision process in Section 5, after analyzing
the model with fixed types. The number of price-taking firms at time t is denoted
as nt ∈ {0, 1, . . . , N}. The remaining N − nt firms are price makers.

Price-taking firms are non-strategic in the sense that they do not take other
firms into account when choosing their quantities to maximize their profits. Due
to the lagged production structure, at the end of period t − 1 these firms form
price expectations pet for period t and then produce the quantity q that maximizes
petq − C(q). Two cases can be considered. Under perfect foresight price-taking
firms predict price correctly, pet = pt. However, this requires strong assumptions
on information and computational abilities, which would contradict our notion of a
low degree of sophistication of price-taking firms. The perfect foresight assumption
can also be justified as a limiting point of a boundedly rational price rule. Indeed,
we will assume that the expectations of the price-taking firms are naive, so that
pet = pt−1. When the price dynamics converges with time to a constant price,
naive expectations would generate perfect foresight. Under naive expectations,
every price-taking firm produces in period t

qPTt =
pt−1

s
. (1)

Price-making firms are strategic because they take into account the presence
of other firms in the market. They are assumed to know the exact industry com-
position. Every price-making firm knows the total supply from the price-taking
firms, ntq

PT
t , and sets its quantity as in the Cournot model by solving

max
qi,t

{(
a− b(qi,t +Q−i,t + ntq

PT
t )
)
qi − sq2i /2

}
,

where Q−i,t is the quantity produced by the remaining price makers at time t.
Standard calculations show that the production level of every price-making firm
in the symmetric equilibrium is

qPMt = max

{
a− bntqPTt

s+ b(N − nt + 1)
, 0

}
. (2)

Finally, we determine the market clearing price in period t as

pt = max
{
a− b

(
ntq

PT
t + (N − nt)qPMt

)
, 0
}
.

When the price as well as the quantities are non-negative, it becomes

pt = a− b
(
nt
pt−1

s
+ (N − nt)

a− bntpt−1/s

s+ b(N − nt + 1)

)
. (3)
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Price depends on the market composition (the number of price takers and price
makers) at a given period and also on the past price. The latter dependence is
caused by the naive price expectations of price-taking firms.15

4 Fixed Market Composition

In this section we study the case of fixed market composition, with nt ≡ n price-
taking and N − n price-making firms. In this case the price dynamics described
by (3) is one-dimensional and linear. It has a unique steady state with price

p(n) =
as(s+ b)

s2 + bs(N + 1) + b2n
, (4)

where price takers and price makers produce the quantities

qPT (n) =
a(s+ b)

s2 + bs(N + 1) + b2n
, qPM(n) =

as

s2 + bs(N + 1) + b2n
, (5)

respectively. The corresponding profits of the two types are

πPT (n) =
sa2(s+ b)2

2(s2 + bs(N + 1) + b2n)2
, πPM(n) =

s2a2(s+ 2b)

2(s2 + bs(N + 1) + b2n)2
. (6)

These formulas incorporate the two limiting special cases. If all firms are price
takers, i.e., n = N , the price dynamics (3) reduces to pt = a−bNpt−1/s, which gives
rise to the cobweb dynamics. At the steady state the price, individual quantities
and individual profits are given by

pW :=
as

s+ bN
, qW :=

a

s+ bN
, πW :=

a2s

2 (s+ bN)2
,

respectively.16 In the other special case all firms are price makers, i.e., n = 0.
Then we are in the standard Cournot-Nash equilibrium, where the price, individual
quantities and individual profits are given by

pCN :=
a(s+ b)

s+ b(N + 1)
, qCN :=

a

s+ b(N + 1)
, πCN :=

1

2

a2(s+ 2b)

(s+ b(N + 1))2
,

respectively. On the basis of these calculations we have the following result.

15If price-taking firms would have perfect foresight about the price, pet = pt, then we can solve
the previous equation for price to obtain pt = as(b+ s)

/(
s2 + bs(N + 1) + b2nt

)
. This is just the

steady state under naive expectations, see (4).
16The superscript W refers to the Walrasian equilibrium that we have in this competitive case.
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Proposition 4.1. Consider the steady state of a market with 0 ≤ n ≤ N price-
taking and N − n price-making firms. Then:

1. The price, individual firms’ quantities and profits are given by (4), (5), and
(6) above, and are decreasing in the number of the price-taking firms.

2. Total production and consumer surplus increase with the number of price-
taking firms.

3. Price-taking firms produce more than price-making firms and receive higher
profits in any mixed market composition.

The statements of this proposition can be confirmed by direct computations, but
the underlying intuition is also simple. In the mixed market with N firms, price
makers take the production of the price-taking firms as given and coordinate on
the Nash equilibrium given the residual demand.17 Understanding that they have
an impact on the price, price makers will cut their production and produce less
than they would produce as price takers. Therefore, the total output is always
higher with more price takers, and, as their number increases, the price falls from
pCN to pW . Hence, the total production

Q(n) = nqPT (n) + (N − n)qPM(n) =
a(sN + bn)

s2 + bs(N + 1) + b2n
(7)

will increase18 with n from NqCN to NqW . Since price falls and total production
increases with n, the impact of the number of price takers on the consumers’
surplus

CS(n) =
1

2

(
a− p(n)

)
Q(n) =

1

2

a2b(sN + bn)2

(s2 + bs(N + 1) + b2n)2
(8)

is undoubtedly positive. Finally, for a fixed market composition, given the price
p(n), price takers produce the profit maximizing output and, hence, receive higher
profit than price makers.19

17The behavior of price makers is thus similar to the behavior of followers in the Stackelberg
model. In our model, however, the price takers are not rational leaders, as they do not take the
price makers’ decisions into account.

18Note that as the number of price takers increases, we have two opposing effects on the total
production. The negative effect is due to the fact that with a new market composition both price
takers and price makers will produce less. The positive effect is due to the increased relative
weight of price takers as they always produce more than price makers. Direct computations show
that p′(n) < 0 and Q′(n) > 0, so that the positive effect dominates.

19Huang (2002) shows that the price taker has a higher profit than the price maker in duopoly
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4.1 Local stability analysis

Proposition 4.1 characterizes the steady state of price dynamics (3), which is always
consistent with the perfect price foresight of price takers. Under our assumption of
naive expectations, the steady state can be justified as a limiting point in time, but
only in the case if it is stable. The next result addresses the question of stability.

Proposition 4.2. Consider price dynamics in (3) in the market with nt ≡ n price
takers and N − n price makers. There are two possibilities:

1. If Nb/s < 1, the steady state (4) is locally stable for any n.

2. If Nb/s ≥ 1, there is a threshold value nc ≤ N such that the steady state (4)
is locally stable if n < nc and unstable if n > nc.

In the latter case with n > nc, the dynamics converges to a locally stable 2-cycle
with price interchanging between p1 = 0 and p2 = a(s + b)/(s + b(N − n + 1)).
Along this cycle price takers make a negative average profit whereas price makers
make a positive average profit.

Proof. See Appendix A.1, where we derive the threshold value nc, see (A.2), as
well as the production quantities and profits along the 2-cycle.

The market with no price-taking firms is not affected by their price expectations
and hence it is stable. Proposition 4.2 shows that price-taking firms may destabilize
the market as their number increases. Condition Nb/s < 1 is the standard stability
condition in the cobweb model with naive expectations.20 When it is not satisfied,
there is a threshold in the number of price takers. Above it, the price dynamics
diverges to the 2-cycle being equal to 0 at every other period.

We illustrate the dynamics of price and quantities on the market with a fixed
composition of total N = 10 firms in Figure 1. For the chosen parameters (see the
caption), the threshold value is nc = 4.69 and so the dynamics is stable for n ≤ 4

and calls this result “naiver’s paradox”. Subsequent work (Huang, 2003, 2007, 2011) showed
that the paradox can be generalized for oligopolies with a decreasing demand and increasing,
strictly convex cost function of firms. Furthermore, the price-taking strategy outperforms also
other sophisticated firms, including collusive and dynamically optimizing price makers.

20Indeed, every price-taking firm has a linear supply function with slope 1/s. Hence N/s is the
slope of the aggregate supply when every firm is a price taker. The slope of aggregate demand
is −1/b. The absolute ratio of their slopes is Nb/s. The cobweb model is stable when supply is
relatively flat, i.e., when Nb/s < 1.
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(a) Time series of price for n = 4
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(b) Time series of quantities for n = 4.
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(c) Time series of price for n = 5.
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(d) Time series of quantities for n = 5.

Figure 1: Time series of prices (left panels) and quantities (right panels) for different
values of the number of price takers, n, in the market with N = 10 firms. Upper panels:
Convergence to the steady state. Lower panels: Convergence to the 2-cycle. Two vertical
lines show the price and quantities in the Cournot-Nash (n = 0) and Walrasian (n = 10)
equilibria. Market parameters: a = 10, b = 1, s = 1.5 and N = 10.

and unstable otherwise. The upper panels show the stable case (n = 4), when price
and quantities converge to the equilibrium values. As stated in Proposition 4.1, the
equilibrium price p(4) lies between pW (shown by the dotted line) and pCN (shown
by the dashed-dotted line). Price takers produce more than the competitive level of
production, whereas price makers produce less than the Cournot-Nash quantity,
qW < qPM(4) < qCN . The lower panels show the unstable case, n = 5, when
simulations converge to the 2-cycle. Every other period the price-taking firms
produce too much, leading to zero price. Their profit is negative, whereas price
makers produce and earn nothing. In the following period price takers are inactive,
price makers foresee this and respond by producing the optimal quantity. The price
is positive and this makes price takers entering the market again in the next period.

12



4.2 Stable markets

On the market with N firms there are N +1 possible market compositions. Which
of these compositions is most likely to be observed?

According to Proposition 4.1, in any mixed market price-taking firms are better
off than price-making firms. This creates incentives for price makers to switch their
type and become a price taker. It seems, therefore, that the market with no price
makers would be an outcome of some profit-driven adaptive process by the firms.
Moreover, as the total output is maximized in such market, the outcome would
be socially optimal, consistent with the largest possible consumer surplus (8).
However, there are two reasons why the Walrasian outcome may not be so likely
after all. First, after changing their types, firms will find themselves in the new
market configuration. Since the profit of price takers decreases with their number,
those price makers that decided to become price takers may end up with a lower
profit than before. Such outcome would not be satisfactory for them, forcing them
to switch back. Second, price dynamics in some market configurations does not
converge to the steady state. If so, the steady state profits may not be a right
basis for choosing types. We address these points in turn with the following two
definitions.

Definition 4.1. A market is called compositionally stable if none of the firms
on the market has an incentive to switch its type unilaterally. Formally, the market
with n price takers and N − n price makers is compositionally stable if

πPT (n) ≥ πPM(n− 1) and πPM(n) ≥ πPT (n+ 1) .

Otherwise, the market is called compositionally unstable.

On compositionally stable markets the two conditions are satisfied. First, no price-
taking firm has an incentive to become a price maker (assuming that all other
firms do not change their types). Second, no price-making firm has an incentive to
become a price taker (assuming that all other firms keep their types unchanged).21

Note that the definition of compositionally stable markets involves forward-
looking elements: Firms anticipate their steady-state profits after switching their
types.22 In Section 5 we will study the dynamics of a model, where firms choose

21When n = 0, i.e., every firm is a price maker, only the second inequality is relevant for com-
positional stability. Similarly, when n = N , only the first inequality is relevant. Our definition
is closely related to the notion of “dynamically-stable” states as introduced in Huang (2010).

22It is easy to see that compositionally stable markets are the pure strategy Nash equilibria of
a game where firms choose their types and then get the resulting steady-state profits.
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their types on the basis of past profits and, in this sense, are backward-looking. We
will observe that the notion we introduced here is useful to describe the long-term
outcome of such learning process, but only if firms can learn the steady state profit
quickly after switching. In particular, firms will not be able to learn those profits
at all, if price dynamics is unstable after switching. For this reason we ramify the
notion of compositionally stable markets as follows.

Definition 4.2. A market is called stable if it is compositionally stable and its
steady state is locally asymptotically stable.

In the rest of this section we will characterize compositionally stable and stable
markets. The next Lemma derives conditions on the number of price-taking firms
under which a firm has no incentive to switch its type unilaterally.

Lemma 4.1. Condition πPT (n) ≥ πPM(n− 1) is equivalent to

n ≥ 1 +
(

1 +
s

b

)√s

b

√
2 +

s

b
− s

b
(N − 1). (9)

Condition πPM(n) ≥ πPT (n+ 1) is equivalent to

n ≤
(

1 +
s

b

)√s

b

√
2 +

s

b
− s

b
(N − 1). (10)

Proof. See Appendix A.2.

From this lemma it follows that price-taking firms have incentive to become price
makers if the number of price takers is low. Instead, price-making firms would be
better-off by becoming price takers if the number of price takers is sufficiently high.
Using the results of Lemma 4.1 we get the following result about compositionally
stable markets.

Proposition 4.3. Mixed markets, in which there are price-taking as well as price-
making firms (0 < n < N) are never compositionally stable.
A market with only price-making firms (n = 0) is compositionally stable if and
only if

N ≤ 1 +
(

1 +
s

b

)√
1 + 2

b

s
. (11)

A market with only price-taking firms (n = N) is compositionally stable if

N ≥ 1 +

√
s

b

√
2 +

s

b
. (12)
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Figure 2: Equilibrium profits of price takers and price makers in case N = 2 for different
slopes of the supply function. Left: Flat supply, s = 3. Middle: Intermediate supply,
s = 1.5. In both cases, only the market with n = 0 is compositionally stable. Right:
Steep supply, s = 0.1. Both the markets with n = 0 and with n = 2 are compositionally
stable. The vertical dashed line in the middle and right panels shows the threshold above
which the price dynamics is unstable. Other market parameters: a = 10 and b = 1.

Proof. On mixed markets both conditions (9) and (10) should hold, but this is
obviously impossible. The market without price takers is compositionally stable
only if (10) with n = 0 is satisfied. This inequality is equivalent to (11). Finally,
the market without price makers is compositionally stable only if (9) with n = N
is satisfied. This inequality is equivalent to (12).

We illustrate these notions in Figure 2 for the duopoly case. The demand is
the same in all three panels, whereas the slope of supply, 1/s, is difference and
increases from the left panel to the right. The panels show the equilibrium profits
of price takers (disks connected by a thick line) and price makers (circles connected
by a thin line) as functions of the number of price takers, n. The vertical dashed
line in the middle and right panels shows the threshold nc from Proposition 4.2.
For the market in the left panel the steady state of price dynamics is stable for
every n. As supply becomes steeper, the steady state loses stability, first, in the
market with n = 2 (middle panel), and then in the market with n = 1 (right
panel).

Consider, first, the market with only price makers (n = 0), which is located
at the left edge of each panel. In all three cases this market is compositionally
stable23 and, hence, stable. Indeed, in all panels of Figure 2 the profit of price
makers for n = 0 (shown by the upper horizontal line) is higher than the profit
of the price taker in the mixed market (when n = 1). It implies that the mixed
market is compositionally unstable, as the price taker would always prefer to switch
to price-making strategy. Finally, consider the market located at the right edge

23It follows from (11) that a duopoly with no price takers is always compositionally stable.
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of each panel, where both firms are price takers earning profit πW as shown by
the lower horizontal line. Its compositional stability depends on the parameters.
The market is compositionally unstable in the left and middle panels (the price
maker in the mixed market gets higher profit than πW ), but it is compositionally
stable on the right panel. However, even in the latter case, the market without
price-makers is not stable, as the price dynamics diverge.

Thus in all three cases illustrated in Figure 2, there are no multiple stable
markets. It turns out that this is a general result.

Proposition 4.4. The only possible stable market in the model with N firms,
linear demand and quadratic cost function is the Cournot market, where each firm
is a price maker.

Proof. From Proposition 4.3 it follows that there might be at most two (composi-
tionally) stable markets. In Appendix A.3 we show that the market with only price
takers cannot be compositionally as well dynamically stable at the same time.

4.3 Discussion

As opposed to the seminal paper of Vega-Redondo (1997), in our model Cournot
markets represent the only possible stable configuration. This result can be at-
tributed to an important conceptual difference between the two models in terms
of the behavior of firms. In Vega-Redondo’s model firms are not strategic, com-
paring the profits the different options gave in the given period. In contrast, firms
are strategic in our model, i.e., they evaluate unilateral deviation on the basis of
profits in the new market composition.24 To illustrate this difference, consider the
case when the Walrasian equilibrium is locally asymptotically stable and suppose
that all but one firm are price takers. Would the price maker be willing to switch
to price-taking behavior? In our model, this switch does not pay off, because the
Walrasian equilibrium is compositionally unstable (as it follows from Proposition
4.4). On the other hand, price takers make a higher profit than the price maker
(Proposition 4.1), and if firms were imitating as in Vega-Redondo (1997), the price
maker would be willing to switch.

Proposition 4.4 shows that Cournot markets are the only possible stable mar-
kets. However, Proposition 4.3 implies that when the total number of firms N
increases, the Cournot market loses its compositional stability. In such situation

24Another difference is that firms choose behavioral types in our model and not the production
level as in Vega-Redondo (1997).
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Figure 3: Left: Equilibrium profits of price takers and price makers for different market
compositions. Right: Long-run average profits of price takers and price makers for
different market compositions. After 9000 transitory steps we compute averages over
the next 1000 periods. The steady state is stable to the left from the vertical line, i.e.,
for n ≤ 4. Market parameters: a = 10, b = 1, s = 1.5 and N = 10.

no stable market exists, as illustrated in the left panel of Figure 3 for N = 10 firms.
(The other parameters are the same as in the middle panel of Figure 2). When
n = 0, every firm has an incentive to be a single price taker. Thus the market
with n = 0 is compositionally unstable and there is no stable market composition
in this example.25

The notion of compositional stability is useful to identify the conditions when
the Cournot outcome is likely to be observed. However, there are several caveats
in using this notion. First, Definition 4.1 uses equilibrium profits. These profits
might not be a right measure if price expectations of firms are not rational. That
is why we introduced the notion of stable markets in Definition 4.2. Alternatively,
one could define compositional stability using the long-run average profits. The
right panel of Figure 3 shows the simulated long-run average profits for the same
market with N = 10 firms as in the left panel.26 We observe that price makers
do not want to switch in the market with n = 4 price takers. Thus, this market
configuration can also be considered as a candidate for stability, if firms have
non-rational expectations.

25Huang (2010) introduces a different kind of switching dynamics where firms evaluate unilat-
eral deviations and the type choice of one firm from each group is implemented at the same time,
leading to a new market composition. Under this switching mechanism not only stable markets
can occur but also more complicated attracting sets.

26For n ≤ 4 the averages coincide with the steady state profits. For n > 4 these are the
averages over the limiting 2-cycles, as described in Proposition 4.2.
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Nevertheless, we think that the notion of compositional stability, as an equilib-
rium notion, is more appealing, when defined through equilibrium profits. Even
if we do not find rational expectations plausible per se, the naive expectations for
the price takers is only one of many possible boundedly rational rules (though the
most popular in a model like ours). The same model under adaptive expectations
would have less strict conditions for asymptotic stability of the steady state.27

Indeed, our second caveat is that the notion of stable markets in Definition 4.2
depends on our specific assumption about naive expectations for price takers.

The notion of compositional stability is based on the assumption that firms
are strategic and forward-looking, i.e., they can a priori deduce their best type
and also coordinate. An alternative way to model firms’ behavior is to assume
that they are backward-looking, deciding their type on the basis of past profit of
price-making and price-taking behaviors. Our next step is to investigate whether
such learning model can support the strategic notion of compositional stability.

5 Endogenous Type Selection

In this section we consider a model where firms learn individually from their own
past experience.28 As each production rule (i.e., firm’s type) may be more or less
profitable, we assume that firms can reconsider their types from time to time.
Each firm then decides whether to use the more sophisticated price-making rule
(that requires information about the market composition and involves equilibrium
computations) or the less sophisticated price-taking rule (that only requires solving
a simple profit maximization problem). Each firm keeps track of the profits it
earned as a price maker or a price taker and uses them when deciding its type in
the spirit of reinforcement learning: The rule that was more profitable in the past
has a higher chance to be chosen.

27Under adaptive expectations of price takers, the vertical line in Figure 3 would shift right.
28Our learning is similar to the one analysed in Weisbuch, Kirman, and Herreiner (2000),

though we allow firms to experiment independently from their past payoffs. In the models of
Brock and Hommes (1997, 1998), Vega-Redondo (1997) and Chiarella and He (2002), all agents
know the profitabilities of all types and learning is social. Section 2 of the Online Appendix
shows that our results obtained under individual learning remain valid under social learning. We
discuss the underlying intuition in Section 5.3. Section 3 of the Online Appendix studies the
mixed case when price makers are social learners while price takers learn individually. Indeed,
one can argue that social learning is plausible for price makers who have all information to
compute the profit of both decision rules, but not for price takers (unless the profit information
is public). In this paper we focus on individual learning for both types, as we do not want to
introduce an extra difference in addition to the difference in production rules.
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Formally, we model learning as follows. Assume that firms are allowed to
choose their types every m periods, where m > 1 is an integer number. That is,
if firms have chosen their types at the end of period t, they will keep their types
in periods t + 1, . . . , t + m, but will be able to revise their choice at the end of
period t + m. The assumption of keeping types for multiple periods is made for
two reasons. First, when a firm changes its production rule, it is worthwhile to
wait several periods to see how this rule performs before revising it again. Second,
we expect that firms more easily change their production level than the underlying
production rule.29

The types are chosen on the basis of performance measures. Suppose firms
can choose their types for period t. If firm i was a price maker in the previous m
periods, then the performance of price making for this firm is given by

UPM
i,t−1 = (1− η)(π̄i,t−1 − C) + ηUPM

i,t−1−m, (13)

where π̄i,t−1 = 1
2

(πi,t−2 + πi,t−1) is the average profit of firm i over the last two
periods,30 C ≥ 0 is a cost of price-making behavior,31 and η ∈ [0, 1] is a memory
parameter. If firm i was a price taker, a similar expression, but without cost, is
used to update UPT

i,t−1. The performance measure of the unused rule is not updated.

Firms choose their next-period type stochastically and independently from each
other by completing one of the following two processes:

1. Experimentation: Firm i experiments with a small probability λ ∈ [0, 1].
When it experiments, the firm chooses either type with 50% chance.

2. Learning : With probability 1−λ, firm i chooses its type on the basis of own
past experience. It decides to be a price taker in period t with probability

P PT
i,t =

eβU
PT
i,t−1

eβU
PT
i,t−1 + eβU

PM
i,t−1

, (14)

where UPT
i,t−1 and UPM

i,t−1 are the performances as defined in (13). The logit
function in (14) is based on the standard discrete choice model, see McFadden
(1981). Parameter β ≥ 0 is the intensity of choice, measuring how sensitive
firms are to profit differences.

29One can view “quantity produced” as a fast variable and “production rule” as a slow variable.
30We update performance measures with the average profit over the last two periods as under

a fixed market composition there is convergence either to the equilibrium or to the 2-cycle and
for the 2-cycle the average profit is relevant for assessing the performance of the rules.

31This parameter captures information gathering and computational costs associated with
price-making behavior.
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Timing in our model can be summarized as follows.

1. Initialization:
An initial price p0 is drawn from the uniform distribution on the interval
[0, a]. Firms’ types are predetermined initially: The number of price takers
is set to n1 = N/2 (when N is even) or to n1 = (N − 1)/2 (when N is odd).
The initial performance measures UPT

0,i and UPM
0,i are set to 100.32

2. In period t ≥ 1 :

i) Firms make their production choices as described in Section 3:

qPTt =
pt−1

s
and qPMt = max

{
a− bntpt−1/s

s+ b(N − nt + 1)
, 0

}
.

ii) Price and profits are calculated:
pt = max

{
a− b

(
ntq

PT
t + (N − nt)qPMt

)
, 0
}

and πi,t = ptqi,t − sq2i,t/2.

iii) If t is divisible by m, the performance measures are updated as in (13),
and firms choose their types as described above. This determines the
new market composition for periods t+ 1, t+ 2, . . . , t+m.

3. The simulation stops in period T.

In the next sections we simulate the model for the same market as in Section 4
(i.e., with a = 10, b = 1 and s = 1.5). Under these parameters the Cournot market
is stable when there are N ≤ 4 firms in the market.33

In Section 5.1 we focus on the case β = ∞ and η = 0, i.e., when firms choose
the rule with the highest average profit under the current market composition. We
start with this setup, as the firms’ incentives for type selection can be understood
most clearly in this case. Then in Section 5.2 we investigate the role of the different
parameters of the learning model. Finally, in Section 5.3 we analyze type selection
under social learning. In each section we simulate the market for T = 10, 000
periods. When we analyze the data from many runs, we always average results
from 100 simulations corresponding to different seeds, using the last 1, 000 periods
from each of these 100 simulations.

32To check the robustness of our results, we ran simulations with different initial numbers
of price takers too. The results were qualitatively the same. We set initial performance mea-
sures relatively high in order the firms could try both rules. We also simulated the model with
lower initial as well as with higher initial performances (-100, 0 and 1000). We did not observe
substantial changes in the results.

33This can be seen from (11) in Proposition 4.3. The middle panel in Figure 2 illustrates the
stable situation (N = 2). Figure 3 illustrates the unstable situation (N = 10).
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5.1 Results with β =∞ and η = 0

We focus on two questions in this section. First, can learning firms coordinate on
price-making behavior when the Cournot market is stable? In other words, can
backward-looking learning support equilibrium predictions? Second, which market
composition will occur when there are no stable markets? Will the market settle
down with a mixed composition or will the composition keep on changing?

In order to compare the predictions of Section 4 with the outcome under learn-
ing, we set the learning parameters as follow. First, as we assumed in Section 4
that firms in equilibrium choose the type with the highest profit with certainty, we
set β =∞ and η = 0. In the learning model this corresponds to the binary choice
when firms choose the type which had the highest average profit in over the last
two periods. Second, as in the compositionally stable equilibria firms use equilib-
rium profits, we set m = 10 to let the price dynamics settle after every change of
types. Of course, if the price dynamics is not stable, firms will move towards the
stable 2-cycle. Finally, we set the cost for price making C = 0 as additional costs
were not considered in the definition of compositional stability. At the end of the
section we will discuss that imposing a small positive cost leads to qualitatively
the same results.

Figure 4 illustrates the long-run dynamics of price (upper panels) and of the
number of price takers (lower panels) in two markets that differ only in the total
number of firms. When N = 3 (left panels), the Cournot market is stable, and,
indeed, the market is most often in the Cournot equilibrium with no price takers.
Note, however, that the market with 2 price makers and 1 price taker also occurs
frequently. It starts with one experimenting firm becoming a price taker, and
staying with this rule for a while.34 A very different, cyclical pattern is observed
for N = 10 (right panels), when the Cournot market is compositionally unstable.
When the number of price takers is low, firms, one by one, switch to become price
takers. As the number of price takers exceeds 4, price dynamics become unstable
and the number of price takers quickly drops to 0 or 1. Then, after a while, firms
use the price-taking rule again, which results in the cyclical pattern.

We verify that the pattern we described is robust by simulating the model 100
times for N = 3 and for N = 10. We then calculate the average profits of price
makers and price takers under all observed market compositions, and also study
directional changes in the market compositions. Table 1 summarizes our findings.35

34Instead when experimentation causes all firms to adapt the price-taking rule, the price
explodes and the firms immediately switch to the price-making rule.

35Note that as firms can decide their types every m = 10 periods and we use only the last
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Figure 4: Time series of price (upper panels) and of the number of price takers (lower
panels) for different numbers of firms: N = 3 (left panels) and N = 10 (right panels).
Market parameters: a = 10, b = 1 and s = 1.5. Learning parameters: β = ∞, η = 0,
λ = 0.01 and m = 10.

For N = 3 the Cournot market gives rise to the highest (average) profit possible.
Panel (b) shows how the number of price takers changes under different market
compositions, indicating that firms rarely change their types when n = 0 and
n = 1. These markets are characterized by persistent price dynamics. In contrast,
markets with 2 or 3 price takers would not last long, as firms typically switch
to the price-making rule.36 When N = 10, the dynamics are quite persistent for
n ≤ 4, especially for n < 3. Indeed, panel (d) shows that in these cases the

1, 000 periods of each of the 100 simulations, Table 1 uses overall 10, 000 choices. To calculate
average profits, we considered the last 2 periods before firms were allowed to choose types, i.e.,
the same calculations that the firms use for updating performance measures in (13). To calculate
changes in the market composition, we compared the market compositions in those periods only
when firms were allowed to choose types.

36To see how often the different market compositions occurred, we refer the reader to Table 2.
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n πPM πPT

0 5.79 -
1 4.60 5.49
2 3.75 4.39
3 - −16.67

(a) Average profits, N = 3

n decrease remain increase
0 - 98.6% 1.4%
1 4.0% 92.8% 3.3%
2 52.3% 25% 22.7%
3 100% 0% -

(b) Switching directions, N = 3

n πPM πPT

0 1.12 0
1 1.01 1.2
2 0.91 1.09
3 0.83 0.99
4 0.76 0.91
5 0.75 0.74
6 2.07 −2.47
7 2.89 −3.44
8 - -
9 - -
10 - -

(c) Average profits, N = 10

n decrease remain increase
0 - 95.5% 4.5%
1 0.3% 91.7% 7.9%
2 3.1% 91.1% 5.8%
3 5.1% 85.9% 9.0%
4 16.3% 69.5% 14.1%
5 89.2% 9.6% 1.2%
6 100% 0% 0%
7 100% 0% 0%
8 - - -
9 - - -
10 - - -

(d) Switching directions, N = 10

Table 1: Average profits of price makers and price takers (panels a and c) and the direc-
tion of switching (panels b and d) for different market compositions. Market parameters:
a = 10, b = 1 and s = 1.5. Learning parameters: β =∞, η = 0, λ = 0.01 and m = 10.

market composition is very likely to remain. Note however from panel (c) that on
any such market, any price maker would get a higher profit from switching to the
price-taking rule. This explains why an increase in the number of price takers is
more likely than a decrease. When n ≥ 5 the switching price maker will get lower
profit from the price-taking rule, than it used to get as a price maker. Moreover,
as n > 5 all price takers experience a large loss (as the price is on the two-cycle).
Thus, the number of price takers will immediately significantly decrease.

We have seen that market compositions with a low number of price takers
(and hence with stable price dynamics) remain unchanged most of the time. It
is then interesting to know which market compositions are most likely to occur.
To address this question, we report in Table 2 the distribution of the number of
price takers under different total number of firms. We conclude from the table
that, when the Cournot market is stable (N ≤ 4), it will be the most frequent
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N n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
2 98.2 1.4 0.4 - - - - -
3 79.3 19.6 0.9 0.2 - - - -
4 76.3 22.3 1.1 0.2 0.1 - - -
5 12.2 31.5 55.3 0.9 0.1 - - -
6 19.2 39.6 28.8 11.9 0.5 - - -
7 19.5 40.2 28.8 10.9 0.6 - - -
8 15.4 44.2 32.8 6.0 1.2 0.4 0.1 -
9 18.1 38.3 29.7 11.4 2.0 0.6 - -
10 17.8 30.2 32.7 14.1 4.2 0.8 0.2 0.1

Table 2: Distribution of the number of price takers under different market size N.
Market parameters: a = 10, b = 1 and s = 1.5. Learning parameters: β = ∞, η = 0,
λ = 0.01 and m = 10.

realization under individual learning. In the opposite case, when there is no stable
market, there will be no single market composition that stands out from the others.
Still, the number of price takers will always be low and markets with unstable price
dynamics barely ever occur.

Let us now elaborate on how a positive cost for price making affects the re-
sults. Notice that dynamic stability does not depend on C. Imposing costs affects
profitability only: Price making will be less profitable so the corresponding profit
curve in Figure 3 shifts downwards. When the number of firms N is low such that
the Cournot market is compositionally stable, then the Cournot market may lose
its compositional stability if the cost of price making is sufficiently high, as it will
be profitable for a firm to switch to price taking unilaterally. Simulations37 show
that in this case the market converges towards a fixed composition with a small
but positive number of price takers.

When the Cournot market is compositionally unstable, then costs do not affect
our results qualitatively. Since price makers make a lower profit under stable
dynamics already for C = 0, imposing a small cost increases the profit difference
between the decision rules. On the other hand, price makers make substantially
larger average profits under unstable dynamics. Consequently, if C is not too high,
then price makers have a profit advantage also in this case. Simulations show that
the same cyclical process occurs. Price makers tend to become price takers, this
destabilizes the dynamics and then firms switch back to the price-making rule.
Due to experimentation, more and more firms become price takers again and the
cycle starts again.

37We report simulation results under C > 0 in Section 4 of the Online Appendix.
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Figure 5: Frequency of different market compositions over 1, 000 periods after 9, 000
transitory periods of 100 different initializations when firms do not experiment (λ = 0).
Rows correspond to different values of η (0 and 0.25) whereas columns correspond to
different values of β (1, 5 and 10). Other parameters: m = 10, a = 10, b = 1 and s = 1.5.

5.2 Effects of Individual Learning parameters

To understand the effects of the model parameters, we consider three different
values for the intensity of choice parameter β (1, 5 and 10), three different values
for the memory parameter η (0, 0.25 and 0.5) and two different values for the
probability of experimentation λ (0 and 0.01). We focus on the case of N = 10
firms, when there are no stable markets. All other parameters are the same as in
the previous section. Figures 5 and 6 show the histograms of market compositions
under these parameter combinations.

By comparing the two sets of figures, we can immediately conclude that ex-
perimentation has a large influence on the market outcome. In particular, if β is
high, and firms cannot experiment (Figure 5), the market almost always arrives at
the Cournot outcome, but if they can experiment (Figure 6), the Cournot outcome
does not stand out so clearly. The reason for this difference is the following. When
firms do not experiment, they might get locked up with price making in case if their
price-taking experience was bad. This is what happens in our simulations: When
too many firms switch to price taking, then the dynamics is destabilized, resulting
in very low profits. Firms start to perceive price-taking as very unprofitable and
hence will always choose price-making. In contrast, if firms may experiment, then
they can switch back to price-taking and might find it more profitable to do so.
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Figure 6: Frequency of different market compositions over 1000 periods after 9000
transitory periods of 100 different initializations under experimentation (λ = 0.01).
Rows correspond to different values of η (0, 0.25 and 0.5) whereas columns correspond
to different values of β (1, 5 and 10). Other parameter values: m = 10, a = 10, b = 1
and s = 1.5.

We conclude that experimentation has a crucial role in the learning process as
without experimentation firms may get locked up with a specific rule simply be-
cause the alternative rule performed badly in a period when they used it.38 Thus,
firms must experiment to get a correct view about the profitability of the produc-
tion rules. For this reason we will focus on the simulations with experimentation
when analyzing the effects of β and η.

38The results with no experimentation are also sensitive to the initial number of price takers.
For the histograms in Figures 5 and 6 we started with n = 5 price takers in the first period. This
leads to unstable dynamics, so that all 5 firms will experience very low profit from price-taking,
and will never return to it again. However, if we start with another number of price takers, then
the firms that faced stable dynamics under price making may switch back to price taking at later
periods, and price-taking behavior will not be driven out by price making.

26



In simulations of Section 5.1 we considered a special case of the model with the
intensity of choice parameter β =∞. However, firms may choose types using also
some idiosyncratic information which corresponds to the finite positive value of
the intensity of choice. Figure 6 shows that markets with fewer price takers occur
more frequently as β increases. The intuition behind this result is the following.
As β increases, firms become more sensitive to profit differences. When there are
many price takers in the market, the price dynamics is unstable, resulting in low
profits for price takers. Consequently, price takers have higher incentives to switch
to being price makers when β is higher and more firms will switch to price making.

Memory has a similar effect: As η increases, the market composition shifts
towards a lower number of price takers. To understand this result, let us recall
that price takers make somewhat higher profits than price makers when the number
of price takers is low but they make a much lower (average) profit when there are
too many price takers in the market. Higher memory has two opposing effects in
this case. First, when the dynamics become unstable and price takers make lower
profits than before, then fewer price takers will switch their decision rule because
they remember the higher past profits they earned as price takers. Second, when
many firms switched to be price makers due to the low profitability of price taking,
then experimentation does not necessarily turn a price maker into a price taker. If
a firm switches to price taking due to experimentation, then it will earn a higher
profit. But as it remembers the low profit it earned earlier as a price taker, it
might switch back to price making. Based on the histograms the second effect is
dominating. This is due to the fact that profit differences between the decision
rules are much larger under unstable dynamics, most firms will switch to price
making when the dynamics is destabilized.

The switching directions under different parameter combinations, reported in
Table 3, further support our findings about the model parameters. The table shows
the switching directions under different market compositions for β = 1, η = 0 and
λ = 0.01 (panel a), β = 1, η = 0.5 and λ = 0.01 (panel b), β = 10, η = 0 and
λ = 0.01 (panel c) and β = 10, η = 0.5 and λ = 0.01 (panel d). By comparing
panel (a) with (c) and panel (b) with (d) we find that higher β leads to less frequent
increase in the number of price takers for n ≤ 4 and to more frequent decrease in
the number of price takers when n > 4. Both of these effects lead to fewer price
takers when β is high. To see the effect of memory, we compare panels (c) and (d)
only as the histograms in Figure 6 show that memory has only very minor effect
on the market composition for β = 1. From the tables we can conclude that a
decrease in the number of price takers is always higher under higher memory and
that an increase in the number of price takers is lower for n ≤ 4. Both of these
results are in line with our previous discussion about the effect of memory.
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n decrease remain increase
0 - 38.1% 61.9%
1 14.6% 31.5% 53.9%
2 25.2% 29.4% 45.4%
3 41.2% 26.9% 31.8%
4 60.3% 21.8% 18.0%
5 81.6% 11.8% 6.6%
6 100% 0% 0%
7 100% 0% 0%
8 100% 0% 0%
9 - - -
10 - - -

(a) β = 1, η = 0, λ = 0.01

n decrease remain increase
0 - 18.6% 81.4%
1 8.8% 22.0% 69.2%
2 22.2% 23.9% 53.9%
3 33.5% 25.2% 41.3%
4 50.3% 23.3% 26.4%
5 73.8% 17.2% 9.1%
6 99.8% 0.2% 0%
7 100% 0% 0%
8 100% 0% 0%
9 100% 0% 0%
10 - - -

(b) β = 1, η = 0.5, λ = 0.01

n decrease remain increase
0 - 69.6% 30.4%
1 13.0% 48.6% 38.4%
2 27.7% 34.9% 37.4%
3 37.6% 31.2% 31.1%
4 62.3% 23.1% 14.7%
5 93.7% 5.9% 0.4%
6 100% 0% 0%
7 100% 0% 0%
8 - - -
9 - - -
10 - - -

(c) β = 10, η = 0, λ = 0.01

n decrease remain increase
0 - 77.7% 22.3%
1 19.2% 43.1% 37.7%
2 33.3% 35.5% 31.1%
3 46.7% 31.4% 22.0%
4 67.9% 21.5% 10.6%
5 94.5% 4.9% 0.6%
6 100% 0% 0%
7 100% 0% 0%
8 - - -
9 - - -
10 - - -

(d) β = 10, η = 0.5, λ = 0.01

Table 3: Direction of switching for different market compositions under different speci-
fications of the learning model. Other parameters: m = 10, a = 10, b = 1 and s = 1.5.

5.3 Social learning

So far we have assumed that firms are learning individually, i.e., their choice of
production rule depends on their own experience. However, as we know from the
literature, the outcome of a model may be quite different under individual and
social learning. Therefore we elaborate on how our results would change under
social learning, when firms know the profits of both types in each period. The
corresponding simulations are reported in Section 2 of the Online Appendix.
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As information about profitability spreads faster under social learning than
under individual learning, changes in the market composition will also be faster.
To see this, consider a market where both types, price makers and price takers,
are present. If the price dynamics is stable, price takers earn a higher profit than
price makers (Proposition 4.1) and due to social learning, each firm will become a
price taker as soon as firms can choose types.39 But this may destabilize the price
dynamics (case 2 in Proposition 4.2) in which case the profit of every firm is very
low. Consequently, each firm will later switch to the price-making rule and we
arrive at the Cournot market. After that a firm may become a price taker due to
experimentation. It will earn a higher profit and, hence, all other firms will switch
to the price-taking production rule again. Then the cycle repeats itself.

Social learning does not lead to the Walrasian equilibrium even when the latter
is dynamically stable (case 1 in Proposition 4.2). This is because the memory is
built in our learning model even when η = 0.40 Recall that profits of both types
of firms are decreasing in the number of price takers. Assume now that in the
initial period some firms are price makers while other firms are price takers. As
price takers make a higher profit, every firm becomes a price taker at the period
when they are allowed to choose types. Even though price dynamics are stable,
firms still make a lower profit than the price makers had in the initial periods. As
the performance measure of price-makers is not updated, every firm will become a
price maker next time when they can choose a type. Later a firm may experiment
and switch to the price-taking rule. As it will make a higher profit now, every firm
will become a price taker. But it means that again all firms ended up with a lower
profit than before, and they all will switch back to the price-making rule.

To sum up, under social learning the firms are at the Cournot equilibrium most
of the time with other market compositions occurring only temporarily, caused by
experimentation. Thus the outcome under social learning is the same as under indi-
vidual learning, though the transition towards the Cournot market is faster. This
discussion illustrates that the difference between our results and those of Vega-
Redondo (1997) stems from memory inherent for the learning process, regardless
whether it is individual or social. In Vega-Redondo’s model the Walrasian equi-
librium is stochastically stable because firms forget the higher profits they earned
with lower quantities. In our model the Walrasian equilibrium is unstable because
firms never forget the profit they earned as price makers, which is higher than in
the Walrasian equilibrium.

39We explain the intuition behind the results assuming that β =∞ and η = 0. The incentives
and choices of firms are the clearest in this case.

40Indeed, the performance of the rule that is not used in a given period is not updated and
stays the same as it was during the last period when the rule has been used.
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6 Conclusion

Theoretical literature distinguishes between competitive price-taking and strategic
price-making firms’ behavior. It is typical to study the models where all firms are
price takers or, alternatively, all firms are price makers, but it is, in practice,
unclear how firms can coordinate on their mode of behavior. We have addressed
this question in this paper using a mixture of analytical tools (with forward-looking
equilibrium notions) and simulations (with backward-looking learning).

We have considered the oligopolistic industry where firms are heterogeneous in
their type or “mode” of behavior. Some firms follow the price-taking production
strategy. They set production in a competitive way taking price as given. Other
firms follow the price-making production strategy by studying the market compo-
sition, i.e., how many firms are price-taking and how many firms are price-making,
and playing an equilibrium best response.

We have introduced the notion of stable markets to characterize market compo-
sitions in which none of the firms have an incentive to switch their types unilaterally
and the resulting equilibrium is locally stable under naive price expectations. We
have formally proved that the only possible stable market is the Cournot market,
where each firm is a price maker. On the contrary, the market with price tak-
ers only is never stable, and, therefore, we do not find support for the Walrasian
equilibrium. The Cournot market loses its stability as the number of firms in the
market increases. This is due to the fact that it will be more profitable for a firm to
switch to price-taking when the number of firms is high enough. In such situation
there are no stable markets because as the number of price takers increases, price
dynamics is destabilized.

In order to investigate whether firms can learn to be price makers when the
Cournot market is stable, we have run computer simulations. We have also in-
vestigated how the market composition evolves when there are no stable markets.
Our results show that backward-looking learning, when firms independently choose
their production types based on the past profits, frequently leads to the Cournot
market when it is stable. Thus, firms can coordinate on price-making behavior.
When there are no stable markets, then the market does not evolve to a fixed com-
position but the number of price takers is typically low. In such cases the market
composition follows a cyclical pattern which is related to the (in)stability of naive
expectations. When there are only a few price takers, then some firms switch to
the price-taking rule due to experimentation. They then earn a higher profit than
price makers and stay as price takers. At some period, however, the number of
price takers will be too high and this destabilizes price dynamics, leading to low
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profits for the price-taking firms. Then most price takers switch back to being a
price maker and the cycle repeats itself. This pattern is quite robust: We have
seen it both under individual and social learning and for different parameteriza-
tions. Our simulations have shown that experimentation has a crucial effect in
this process. When firms do not experiment with their types, then they might get
locked up with price making if they once earned low profits with price taking.

The analysis in this paper can be extended in several ways. We focused on
specific demand and cost structures and we assumed that price takers form naive
expectations. It would be interesting to know whether our results can be gener-
alized to other demand and cost structures and expectational schemes (adaptive
or heterogeneous expectations). In order to compare our equilibrium reasoning of
Section 4 and learning of Section 5, we assumed that price makers know the market
composition in each period. However, it might be reasonable to assume that price
makers form expectations about the new market composition and base their pro-
duction choice on these expectations. This extension is definitely interesting but
we leave it to future work. Similarly to Huang (2007, 2008b,a) one could consider
a model where price takers follow cautious quantity adjustment, with an upper
bound on the rate of output change. Huang (2008a) shows that more complex
dynamics can occur under cautious adjustment and that price takers may earn a
higher average profit than price makers even when the static equilibrium is locally
unstable.

Another important extension of the model could be to analyze whether policy
makers can stabilize the market composition when the Cournot market is com-
positionally unstable. This could be implemented by adjusting profit taxes, as
proposed by Schmitt and Westerhoff (2015). The rationale for stabilizing the mar-
ket composition is to reduce price volatility. Also, policy makers could drive the
market composition towards the one that gives rise to the highest consumer surplus
or total surplus under the given number of firms. As the main focus of our paper
is how firms can coordinate their mode of behavior in the market, this extension is
out of the scope of our current paper and therefore we leave it for future research.
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APPENDIX

A Proofs and derivations

A.1 Proof of Proposition 4.2

From (3) it can be seen that on the market with fixed number n of price takers,
the slope of price dynamics is given by

∂pt
∂pt−1

= −b
(
n

s
− (N − n)

bn/s

s+ b(N − n+ 1)

)
= −bn

s
· s+ b

s+ b(N − n+ 1)
.

This derivative is negative and the local stability condition is

bn

s
· s+ b

s+ b(N − n+ 1)
< 1 . (A.1)

Consider, first, the case when Nb/s < 1. Then, since n ≤ N , we have

bn

s
· s+ b

s+ b(N − n+ 1)
≤ bN

s
· s+ b

s+ b(N −N + 1)
=
bN

s
< 1 ,

so that the local stability condition (A.1) holds. Next, assume Nb/s ≥ 1. The
condition (A.1) can be rewritten in terms of n as n < nc, where the critical value
nc is defined as

nc :=
s

b
· s+ b(N + 1)

2s+ b
=
N + 1 + s/b

2 + b/s
(A.2)

Generally when n < nc the steady state is stable and when n > nc it is unstable.
When nc is integer, the case when n = nc is a boundary situation. As the map is
linear, the steady state is not asymptotically stable. Indeed, there is a continuum
of cycles of period 2 in this case. Note that since s/b ≤ N , the value in (A.2) is
less than or equal to (N + 1 +N)/(2 + 1/N) = N .

The price function in (4) is linear, and when n > nc its slope becomes less than
−1. Dynamics will then diverge until either price or the quantity of price makers
reach their lower bound 0. Let us first assume that at some point t the quantity
qPMt = 0. From (2) it follows that (a − bnqPTt )/(s + b(N − n + 1)) < 0 which is
possible only when a− bnqPTt < 0. But then pt = max{a− bnqPTt , 0} = 0. Thus it
is sufficient to assume that at some period t price pt = 0 and study the dynamics
in the following periods.
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Let pt = 0. Then qPTt+1 = 0 and qPMt+1 = a/(s+ b(N − n+ 1)), and therefore

pt+1 = a− b(N − n)
a

s+ b(N − n+ 1)
=

a(s+ b)

s+ b(N − n+ 1)
> 0 .

Then in the next period we have

qPTt+2 =
1

s
· a(s+ b)

s+ b(N − n+ 1)
and qPMt+2 = max

{
a− bnqPTt+2

s+ b(N − n+ 1)
, 0

}
,

and find price

pt+2 = max
{
a− b(nqPTt+2 + (N − n)qPMt+2 ), 0

}
≤ max

{
a− bnqPTt+2, 0

}
.

Since we are in the case of unstable steady state, the inequality in (A.1) has an
opposite sign and, hence,

a− bnqPTt+2 = a− bn

s
· a(s+ b)

s+ b(N − n+ 1)
= a

(
1− bn

s
· s+ b

s+ b(N − n+ 1)

)
< 0 .

Thus qPMt+2 = 0 and pt+2 = 0. Hence, the dynamics is on the two-cycle with two
interchanging points:

(p1, q
PT
1 , qPM1 ) =

(
0,

1

s
· a(s+ b)

s+ b(N − n+ 1)
, 0

)
and

(p2, q
PT
2 , qPM2 ) =

(
a(s+ b)

s+ b(N − n+ 1)
, 0,

a

s+ b(N − n+ 1)

)
.

We compute profits of both types of the firms in the points of the cycle:

when p = p1 : πPT1 = − a2(s+ b)2

2s(s+ b(N − n+ 1))2
, πPM1 = 0 ,

when p = p2 : πPT2 = 0, πPM2 = a2
s/2 + b

(s+ b(N − n+ 1))2
.

The average profits on the cycle for price takers and price makers are given by

π̄PT = − a2(s+ b)2

4s(s+ b(N − n+ 1))2
and π̄PM = a2

s/2 + b

2(s+ b(N − n+ 1))2
, (A.3)

respectively.
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A.2 Proof of Lemma 4.1

We will show that condition πPT (n) ≥ πPM(n−1) is equivalent to (9). The second
part of Lemma will then follow automatically by rewriting (9) for the market with
n + 1 price-taking firm as πPT (n + 1) ≥ πPM(n) and then flipping the inequality
sign.

Using (6) we have πPT (n) = απPM(n) and πPT (n− 1) = βπPT (n), where

α =
(s+ b)2

s(s+ 2b)
and β =

(
s2 + bs(N + 1) + b2n

s2 + bs(N + 1) + b2(n− 1)

)2

.

Hence πPM(n−1) = βπPT (n)/α, and inequality πPT (n) < πPM(n−1) is equivalent
to α < β. Note that α = 1+b2/(s2+2bs) and β = (1+b2/M)2, where the constant
M = s2 + bs(N + 1) + b2(n− 1) > 0. Then we have the following inequality:

α < β ⇔ 1 +
b2

s2 + 2bs
< 1 + 2

b2

M
+

b4

M2
,

which simplifies to

M2 − 2(s2 + 2bs)M − b2(s2 + 2bs) < 0. (A.4)

The discriminant of the last expression is D = 4(s2 + 2bs)(s+ b)2 > 0. Thus, there
are two real roots of the quadratic function in the left part of (A.4):

M± = s2 + 2bs± (s+ b)
√
s2 + 2bs .

Condition (A.4) is satisfied if M− < M < M+. It is easy to see that M− is always
negative, so the condition M− < M holds. The condition M < M+ leads to

s2 + bs(N + 1) + b2(n− 1) < s2 + 2bs+ (s+ b)
√

2bs+ s2 ⇔

⇔ n− 1 <
1

b2

(
(s+ b)

√
2bs+ s2 − bs(N − 1)

)
⇔

⇔ n < 1 +
(

1 +
s

b

)√s

b

√
2 +

s

b
− s

b
(N − 1).

which is condition (9).

A.3 Proof of Proposition 4.4

We will show that the market without price makers (n = N) is never stable.
Indeed, if it stable, then N should at the same time satisfy inequality (12) and
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also be less than s/b (from Proposition 4.2). This implies that

s

b
> 1 +

√
s

b

√
2 +

s

b
.

Let us denote s/b as x. Then the inequality above implies that

x > 1 +
√
x
√

2 + x ⇔

{
x > 1

x2 − 2x+ 1 > 2x+ x2
.

The latest inequality implies that x < 1/4 which is impossible when x > 1. In
Proposition 4.3 we showed that mixed markets are never compositionally stable.
Hence, there is only one possible stable market: the one with price makers only.
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