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Short Narrative abstract 13 

The human microbiome project has shown a remarkable diversity of microbial ecology within 14 

the human body. The vaginal microbiota is unique in that in many women it is most often 15 

dominated by Lactobacillus species. However, in some women it lacks Lactobacillus spp. and 16 

is comprised of a wide array of strict and facultative anaerobes, a state that broadly correlates 17 

with increased risk for infection, disease, and poor reproductive and obstetric outcomes. 18 

Interestingly, the level of protection against infection can also vary by species and strains of 19 

Lactobacillus, and some species although dominant are not always optimal. This factors into 20 

the risk of contracting sexually transmitted infections and possibly influences the occurrence 21 

of resultant adverse reproductive outcomes such as tubal factor infertility. The composition and 22 

function of the vaginal microbiota appear to play an important role in pregnancy and fertility 23 
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treatment outcomes and future research in this field will shed further translational mechanistic 24 

understanding onto the interplay of the vaginal microbiota with women’s health and 25 

reproduction. 26 

 27 

 28 

Capsule of 30 words or less: 29 

Insights into the composition and function of the vaginal microbiota will impact reproductive 30 

health management. 31 

 32 

Running title: Vaginal microbiota and reproduction. 33 

3-5 Keywords: sexually transmitted diseases, pelvic inflammatory disease, bacterial vaginosis, 34 

in vitro fertilization, contraception. 35 

36 



Introduction 37 

This review addresses recent advances into our understanding of the microbial ecosystem in 38 

the human vagina and its role on women’s health and reproductive outcomes. We have 39 

summarised the most recent knowledge, in the context of prior understanding of how the 40 

vaginal microbiota is influenced by menstrual cycle and sex hormones, contraceptives and 41 

influences the risk of infections and disease, adverse pregnancy and fertility treatment 42 

outcomes.  43 

 44 

Lactobacillus spp. often uniquely predominate the human vaginal microbiota 45 

It is now well accepted that microbes present in or on the human body can impact immunity, 46 

nutrition, and physiology (1-3). The human vagina is unique in that, in healthy states, it is most 47 

often characterized by reduced bacterial diversity and the dominance of Lactobacillus spp. 48 

(~107-109 per gram vaginal fluid in reproductive aged healthy women) compared to other 49 

microbiota (4). The presence of Lactobacillus spp., known to produce copious amount of lactic 50 

acid, is directly correlated with vaginal pH <4.5. Lactic acid driven acidity (low pH) has been 51 

strongly correlated with protection against cervico-vaginal infections, including HIV and other 52 

sexually transmitted infections (5-8).  53 

 54 

Lactobacillus spp. dominated vaginal microbiota have been intrinsically linked to estrogen 55 

production and the accumulation of glycogen in the upper layers of the stratified vaginal 56 

epithelium (9, 10).  Beyond lactic acid, Lactobacillus spp. beneficial properties are associated 57 

with the production of bacteriocins (antimicrobial compounds), adherence to the vaginal 58 

epithelia (competitive exclusion of other bacteria), and ability to competitively use available 59 

nutrients (11, 12). The physiology of the vaginal stratum corneum (SC), consisting of loosely 60 



associated cells with glycogen stores, and innate defence mediators (13), is thought to 61 

contribute to this site being a niche for Lactobacillus spp.. However, the exact reason for 62 

Lactobacillus spp. dominance in the human vagina remains to be fully elucidated. Interestingly, 63 

other mammals do not harbor Lactobacillus spp. in their vaginal microbiota, and 64 

consequentially their vaginal pH is not acidic. However, while the composition of the vaginal 65 

microbiota is different, it is hypothesized that it could perform the same functions (14). Factors 66 

such as diet and unique environmental exposures have been proposed as potential reasons for 67 

these compositional differences (14).  68 

 69 

The development of novel and high-throughput culture-independent methods to characterize 70 

the composition and structure of microbiota, supported by advances in next generation 71 

sequencing technologies and their reduced cost, have enabled a more in depth characterization 72 

of microbiota. In the vaginal microbiota (as discussed further in the next section) these 73 

advances have enabled the identification of strong correlations between different states of the 74 

vaginal microbiota and risk of infections (15). As a result, an improved understanding of the 75 

complexities of the microbial environment of the female reproductive tract is available. 76 

Approaches that do not rely on amplifying and sequencing specific taxonomically informative 77 

genes (i.e., 16S rRNA gene, cpn60 (16)), such as metagenomics (17) (sequencing of all genes 78 

and genomes in a microbial community) or metatranscriptomics (18) (sequencing all gene 79 

transcripts expressed in a microbial community) are contributing to the functional 80 

characterization of the microbiota and its interaction with the human host.  81 

 82 

Molecular, culture, and sequencing  contributions to understanding the ecology of the 83 

human vagina 84 



High-throughput 16S rRNA gene sequencing studies examining vaginal bacterial species 85 

composition and abundance in reproductive-aged women have shown that there are at least 86 

five major types of vaginal microbiota, termed community state types (CST) (19, 20). Four of 87 

these CSTs are dominated by either Lactobacillus crispatus (CST I), L. gasseri (CST II), L. 88 

iners (CST III), or L. jensenii (CST V). Additionally, CST IV does not contain a significant 89 

species or quantity of Lactobacillus but instead comprised of a polymicrobial mixture of 90 

strict and facultative anaerobes including species of the genera Gardnerella, Atopobium, 91 

Mobiluncus, Prevotella and other taxa in the order Clostridiales (19-21). Further examination 92 

of CST IV has revealed distinct clusters within this polymicrobial community type, which 93 

have since been denoted subgroups CST IV-A and CST IV-B (20). Subgroup IV-A can 94 

contain moderate amounts of Lactobacillus spp. (typically L. iners) as well as strict anaerobes 95 

including Corynebacterium, while conversely CST IV-B contains a higher proportion of 96 

species associated with bacterial vaginosis (BV). The frequency of these CSTs has been 97 

shown to differ in different ethnic backgrounds (19, 22), with CST I more common in 98 

Caucasian women and CST IV more common (~40%) in African-American and Hispanic 99 

women. The frequency of these CSTs differs not only by ethnicity but also by geographical 100 

origins (22-24).   101 

Daily (or frequent) fluctuations in the composition of the vaginal microbiota have been 102 

documented by microscopy and cultivation studies (25-27). These findings were confirmed 103 

and extended in longitudinal culture-independent analyses performed on vaginal swabs 104 

collected twice weekly for 16 weeks (20, 28), or daily for 10 weeks (29)  or 4 weeks (4). It was 105 

observed that some vaginal microbial communities transitioned in and out of CST IV. The 106 

amount of time spent in a particular CST could vary individually as some women experienced 107 

consistent and stable CST longitudinal patterns, while others frequently transitioned between 108 

CSTs, most frequently to CST IV (20, 29). In some cases, CST transitions were triggered by 109 



menstruation or sexual behaviors, but in other cases they seem to be driven by uncharacterized 110 

factors (20). In another longitudinal study, presence of Gardnerella was found to be predictive 111 

of an impending CST change (30). Phase in the menstrual cycle greatly affects community 112 

stability. During ovulation, when estradiol production peaks, stability is highest, while during 113 

menstruation, Lactobacillus spp. tend to decrease in relative abundance (31), with the exception 114 

of L. iners (20). In general, molecular and culture-based methods are somewhat in agreement 115 

that menses significantly alters the composition of the vaginal microbiota (27, 32-34), but 116 

change appears to depend on the initial CST present, as well as other factors (20) such as the 117 

use of menstrual pads or tampons (20, 35). See Figure 1 that shows the interplay of microbiome 118 

status throughout the menstrual cycle, (reproduced from (20)). These longitudinal studies 119 

highlight the highly dynamic nature of vaginal microbial communities during the menstrual 120 

cycle and emphasize the need to better understand the underlying biological factors modulating 121 

fluctuations in composition and functions that affect host physiology. Bayesian network 122 

analysis was used to further understanding of the complex interplay between behaviours in 123 

menstrual hygiene and microbiota (36). The study highlighted that despite the relatively 124 

reduced complexity of the vaginal microbiota, novel approaches integrating more elements of 125 

the complex biological system will ultimately improve our understanding of the interactions 126 

that drive the vaginal ecosystem and ultimately women’s health. 127 

 128 

Impact of hormonal contraception on vaginal microbiota 129 

Because estrogen cycling appears to be linked to vaginal microbiota stability and to some 130 

extend composition, several studies have evaluated the effect of contraception (oral, injected, 131 

and implanted) methods on the composition of the microbiota.  A large cohort study of 266 132 

healthy women initiating contraception and aged 18-35 years in Harare, Zimbabwe, used 133 



quantitative PCR (polymerase chain reaction) measurement of vaginal bacteria. No significant 134 

impacts of most hormonal contraceptives were found on vaginal microbiota composition, 135 

including on the abundance of Lactobacillus spp. Interestingly, copper intrauterine devices 136 

were associated with a significant increase of BV-associated bacteria (assessed by species 137 

specific quantitative PCR) over the 180-day study (p=0.005) (37). This finding contradicts a 138 

study using Nugent and microscopic analysis of vaginal microbiota in Thai HIV-positive 139 

women, which found no association with these BV microbial indicators and intrauterine 140 

devices (IUDs) (38). In another study of 682 women using contraceptive measures in the 141 

United States, combined oral contraceptives (progestin and estrogen) (COC) (39) users were 142 

more likely to be colonized by Lactobacillus spp. and less likely to harbor BV-associated 143 

bacteria than when using other forms of barrier (condoms) or hormonal contraceptives (depot 144 

medroxyprogesterone acetate (DMPA), or the levonorgestrel-releasing intrauterine system 145 

(LNG-IUS)) (adjusted Odds Ratio 1.94, 95% CI 1.25-3.02). A systematic review of HIV 146 

acquisition studies that include microbiota and contraceptive usage in women identified that 147 

there is some (limited evidence) that the combined oral contraceptive may pre-dispose to 148 

candidiasis, which may in turn be a risk factor for HIV acquisition (40).  Other studies have 149 

reported the LNG-IUS can increase Candida colonization and temporally decrease 150 

Lactobacillus dominance (41), enhance susceptibility to herpes simplex virus (HSV) infection 151 

(42) or delay clearing Chlamydia trachomatis infection (43). Mitchell et al., in a small study 152 

of 32 women have reported that after 12 months of use, DMPA was associated with a decreased 153 

in vaginal Lactobacillus phenotyped by culture as producing H2O2, a surrogate for non-154 

Lactobacillus iners species (44). In that study, DMPA did not increase vaginal mucosal CCR5+ 155 

HIV target cells but did decrease CD3+ T lymphocytes. Borgdorff et al., found that 156 

contraceptive use was not associated with vaginal microbiota composition, but they did find 157 

sexual behaviour (inconsistent sexual partner OR 3.2 CI 1.0-9.9) and ethnicity correlate with a 158 



polymicrobial BV-like microbiota when compared to a Lactobacillus-dominated microbiota 159 

(22). Bassis et al., analysed the vaginal microbiota before, at 6 and 12 months following 160 

insertion of copper (n=36) and progesterone (n=40) intrauterine devices, and found no 161 

correlation with the device and microbiota changes over this relatively large time frame (45). 162 

Interestingly, the literature is not always in agreement on the effect of contraception on the 163 

composition of the vaginal microbiota or susceptibility to sexually transmitted diseases. A 164 

major factor often not considered in several of these studies is ethnicity. Further studies are 165 

needed to evaluate the effect of contraceptive methods on disease susceptibility and the 166 

composition of the vaginal microbiota, while considering the previously reported association 167 

between ethnicity and vaginal microbiota (19). 168 

 169 

 170 

Vaginal infections, disease and the microbiota 171 

 172 

We have chosen to include a section on how the vaginal microbiota interplays with infections 173 

and disease, because these can result in infertility or adverse pregnancy outcomes and hence 174 

are important in the context of reproduction. Using microscopic observation, the composition 175 

of the vaginal microbiota has long been linked to disease risk, with the presence of 176 

Lactobacillus spp. providing protection while a paucity in Lactobacillus spp. and the presence 177 

of a diverse set of Gram-negative anaerobic species associated with increased risk to disease. 178 

The latter is often defined as bacterial vaginosis, a conditions present in 29% women aged 14–179 

49 years in the general USA population, in over 50% of African-American women (46), and in 180 

over 70% of women attending sexually transmitted infection clinics (47). High-throughput 181 

molecular analyses afford a more in-depth and precise characterization of the vaginal 182 



microbiota and insight into the role of specific species or clades in disease risk. In this section, 183 

we address how these high-resolution analyses have advanced our understanding of disease 184 

risks for BV, Pelvic Inflammatory Diseases (PID), and sexually transmitted infections (STIs). 185 

 186 

Bacterial vaginosis  187 

Diagnosis of BV in a clinical setting relies on the Amsel criteria (48) and in research settings 188 

on the Nugent scoring system (49). Interestingly, despite the use of molecular analysis to define 189 

BV states (50, 51), no one taxa has been confirmed as the etiological agent of the condition, 190 

and BV remains ill-defined microbiologically as a polymicrobial state, basically characterized 191 

by the lack of predominant Lactobacillus spp. That said, several bacteria, such as Gardnerella 192 

(G.) vaginalis, have been shown to be associated with the condition in some studies but not 193 

others (52). Early studies failed to reproduce the disease after direct vaginal inoculation of G. 194 

vaginalis isolated from women with BV, while inoculation with whole vaginal secretions did 195 

(53, 54), supporting that the condition is either polymicrobial or other factors contribute. It is 196 

highly likely that the “pathogenic” potential of G. vaginalis might differ depending on the 197 

specific strain of G. vaginalis colonizing and possibly the vaginal immune state or ethnicity 198 

(55). Interestingly, it appears that G. vaginalis can be transferred sexually. A longitudinal study 199 

of young women in Australia found that Gardnerella was more likely to be found in those 200 

having penile sex (OR 11.82 95% CI:1.87-74.82; p= 0.009) (24).  Gardnerella was also found 201 

in approximately a third of girls (aged 10-12) in a pre-menarche vaginal microbiota study, 202 

indicating that this organism is not only acquired/facilitated by sexual activity, potentially 203 

could be transfer at birth from mother to daughter (56). Yet, G. vaginalis colonisation increased 204 

after sexual activity in a cohort of young women who were monitored pre- and post-sexual 205 

debut, (p=0.02) indicating sexual activity is a factor in the transmission of this bacteria (57). In 206 

support of the polymicrobial nature of BV, in a longitudinal study of women who have sex 207 



with women, BV incidence was associated with sexual behaviours, and most strongly 208 

correlated with a new sexual partner with BV-associated symptoms (adjusted hazard ratio 2.8 209 

CI;1.30-4.82) (58). Furthermore, a large cohort study of 1,093 women in general practice care 210 

in Australia found that either a recent new female sexual partner or multiple male partners were 211 

significantly associated with prevalent or incident BV cases (59). Interestingly, in this study  212 

estrogen contraceptives were protective (AOR 0.6 CI 0.4-0.9) (59). A similar study in the USA 213 

found that new sexual partners and oral vulvovaginal sex were both significant risk factors for 214 

BV, while a L. crispatus-dominated (CST I) microbiota was protective (HR 0.18, CI:0.08-0.4) 215 

(60). The lack of a clear definition for BV makes studying its etiology challenging. One study 216 

attempted to improve the definition of BV using molecular methods, combining bacterial 217 

composition (16S rRNA gene amplicon sequencing), eukaryotic composition (ITS 218 

sequencing), and Trichomonas characterization (sequencing of the tvk loci) (61), but it failed 219 

because of limitations associated with the study such as the lack of speciation of  Lactobacillus 220 

spp., highlighting the need for further development. An improved definition of BV would have 221 

major implications in women’s clinical management and women’s health as a whole.  222 

While new antibiotics are being developed or tested to treat BV (62-64), leveraging the vaginal 223 

microbiota for the development of live biotherapeutic formulations to modulate the microbiota 224 

is also considered (65) to restore a Lactobacillus-dominated protective vaginal microbiota. As 225 

drug-based treatment failure can be high,  with antibiotic resistance appearing (66), and 226 

recurrence very common (67, 68), alternative approaches are needed.  Vaginally delivered live 227 

biotherapeutics are safe and can be used in combination therapy after antibiotic treatment (69-228 

71), however success has been limited, certainly because formulations do not take into account 229 

the ecology of the vaginal microbiota and often rely on one strain of Lactobacillus, mostly L. 230 

crispatus or non-vaginal Lactobacillus strains (70-73). Nonetheless, further work is needed to 231 

develop and optimize an efficacious formulation.   232 



The majority of trials in this space have been in the context of BV. An analysis of several trials 233 

of probiotics, orally administered with presumed rectal transfer, or vaginally distributed 234 

supported that greater than 108 cfu of leading probiotic strains for more than 2 months helped 235 

some participants resolve BV (74). However, a trial comparing metronidazole treatment with 236 

combined metronidazole and a vaginal probiotic of Lactobacillus acidophilus with estrogen 237 

did not find a significant impact on BV recurrence (69). One interesting approach used an ex 238 

vivo model to provide further evidence of Lactobacillus defence against HIV (75), further 239 

supporting the potential for developments in this field to live biotherapeutics.  240 

Alternative strategies, such as metabolite or receptor competitive molecules, along with 241 

precision medicine approaches are likely to emerge. One example that has been proposed for 242 

family members with a genotypically driven dectin-1 deficiency linked to recurrent vulvo-243 

vaginal candidiasis was supplementation with dectin-1 (76, 77). Also, antimicrobial proteins 244 

and peptides that are mimics of those already produced as innate defence and used as vaginal 245 

supplements are possible future therapeutic option (reviewed (76)). 246 

 247 

Pelvic Inflammatory Disease 248 

The composition of the vaginal microbiota appears to play a role in the development of another 249 

important disease, pelvic inflammatory disease (PID). PID is associated with inflammation in 250 

the upper reproductive tract in women, characterized by sudden onset of pain along with 251 

cervical, adnexal, or uterine tenderness. Risk factors for PID include those that also affect the 252 

composition of the vaginal microbiota, such as history of multiple sexual partners, or early age 253 

of commencement of sexual activity (78). Microbial risk factors for PID include sexually 254 

transmitted infections and bacterial vaginosis (79, 80). In addition to the endometrial presence 255 

of sexually transmitted pathogens such as C. trachomatis, Mycoplasma genitalium and 256 

Neisseria gonorrhoeae,  a polymerase chain reaction (PCR) testing for BV-associated bacteria 257 



in endometrial samples identified bacteria such as Sneathia sanguinegens, Sneathia amnionii, 258 

Atopobium vaginae and BV-associated bacteria 1 (BVAB1) in women with PID (81). It is 259 

common to fail to identify known “pathogens” in women with PID, although frequently many 260 

other organisms are detected in the upper reproductive tract (reviewed (82)). Hence, it is likely 261 

that a Lactobacillus-dominated vaginal microbiota could be protective for PID. However, as 262 

yet there are no reports of extensive molecular analyses of the vaginal microbiota in the context 263 

of PID and the question remains open. 264 

 265 

Sexually transmitted infections 266 

Risk for contraction of sexually transmitted pathogens has been associated with the 267 

composition of the vaginal microbiota. The most insights have come from studies into 268 

incidence and prevalence of C. trachomatis. Chlamydia is one of the most common sexually 269 

transmitted bacterial pathogens and has been found in three independent studies to be more 270 

likely detected in association with L. iners (CST III) (e. g. OR of 2.6 - 4.4) and/or CST IV (OR 271 

4.2) (83-85). This may relate to availability of metabolites produced by these types of 272 

microbiota that benefit the pathogen, as found in one study (86). On the other hand, the vaginal 273 

microbiota, in particular L. crispatus (CST I), may have specific anti-chlamydial, anti-274 

gonococcal, and immune enhancing properties, as evidenced in vitro and on a porcine epithelial 275 

model (87-89). N. gonorrhoeae infections are less common (compared to Chlamydia) in 276 

women. Whilst there is little information on the composition of the vaginal microbiota in the 277 

context of gonococcal infections, it has been shown in vitro that Lactobacillus spp.(especially 278 

L. gasseri (CST II), and L. jensenii (CST V)) can directly compete with N. gonorrhoeae for 279 

epithelial binding (90, 91). A large nested case-control study in African women identified that 280 

there are several taxa within the vaginal microbiota that are associated with increased risk of 281 

HIV acquisition (92). Bacterial vaginosis, STIs such as Chlamydia and Herpes, and vaginal 282 



washing have also been associated with increased risk of transmission and/or acquisition of 283 

HIV (93, 94). Altogether, these data support mechanisms such as competition, low pH, specific 284 

anti-bacterial molecules (bacteriocin) (95, 96), through which the vaginal microbiota is a major 285 

driver of protection to infectious agents.  286 

 287 

Pregnancy outcomes and the cervicovaginal microbiota 288 

In pregnancy the lack of menses and the increase in circulating estrogen are associated with a 289 

microbiota characterized by an increased dominance of Lactobacillus spp. as gestation 290 

progresses (97). This is a feature of the vaginal microbiota in pregnancy that has been 291 

established by several studies of varied power and sampling intensities, both in the US and in 292 

Europe (97-101). Interestingly, this inherent stability of the microbiota in pregnancy was also 293 

true at other body sites (97). Post-partum, and up to a year after delivery, the vaginal microbiota 294 

was characterized by a paucity of Lactobacillus spp. (CST IV), even in pregnancies where 295 

Lactobacillus spp. were dominant during gestation (97, 98). While these finding support the 296 

hypothesis that adverse postpartum outcomes such as endometritis and sepsis might be 297 

mediated by vaginal microbes, its biological and reproductive implications remain unknown. 298 

Overall summary of this data is presented in Figure 2, showing that generally Lactobacillus 299 

spp. abundance increases, and community diversity decreases during pregnancy, with a shift 300 

post-partum to high diversity.  301 

Several studies have documented the composition of the vaginal microbiota associated with 302 

adverse pregnancy outcomes such as pre-term birth (97, 102-110). While certain studies 303 

found association with a few bacteria (mostly anaerobes), others did not, and no consistent 304 

signature has been identified. Deciphering cause from effect remains a challenge in these 305 



studies and it is likely that most suffered from a low number and poor phenotype (not all 306 

preterm births were spontaneous) of preterm birth cases.   307 

Preterm premature rupture of membranes (PPROM) is one adverse pregnancy outcomes that 308 

have strongly correlated with the cervicovaginal microbiome in distinct studies. In one study, 309 

and consistent with several others, women who experienced PPROM were less likely to have 310 

Lactobacillus, or lower abundance of Lactobacillus in the vaginal microbiome composition 311 

and high diversity of the microbiota (108). Furthermore, the presence of Mollicutes such as 312 

Mycoplasma or Ureaplasma (although these are also common in healthy vaginal 313 

microbiomes) have been found to be more frequently present in the vaginal microbiome of 314 

women who experienced PPROM (108).  Early and late miscarriages have long been 315 

associated with BV or the presence of specific flora in the vagina (111-114). 316 

Chorioamnionitis or intra-amniotic infections have also been associated with the vaginal 317 

microbial community state, including a recent history of BV (115-117).  Further research is 318 

desperately needed and would involve well-powered prospective study designs, include 319 

ethnically diverse populations, and aim at identifying predictive signatures in the cervico-320 

vaginal microbiota or its products, thereby ultimately providing novel strategies to restore a 321 

protective vaginal microbiota.  322 

 323 

The cervico-vaginal microbiota in infertility and fertility treatment 324 

The composition of the vaginal microbiota is thought to influence fertility and outcomes of 325 

fertility treatment. Most published studies were performed in the context of in vitro fertilization 326 

procedures, which could be well-controlled. In these studies, BV-associated bacteria in the 327 

vagina have been shown to be associated with a reduced pregnancy rate (118-120). The study 328 

by Haahr and colleagues focused on using Nugent score and PCR detection of BV-associated 329 



bacteria in the vagina and comparing to IVF success in 130 women. They found that Nugent 330 

and PCR correlated highly, and that women with PCR detected BV-associated bacteria were 331 

significantly less likely to obtain a clinical pregnancy (9%) compared to the overall rate of 35% 332 

(p=0.004) (118). Interestingly, women undergoing IVF with tubal factor infertility (a pathology 333 

associated with infections) were found to be more likely to have a vaginal microbiota consistent 334 

with BV by analysis of smears (120), supporting a connection between these etiologies. 335 

Although the authors acknowledge the lack of cause and effect in an infertility context, this 336 

finding supports that precision medicine approaches around fertility treatment and the vaginal 337 

microbiota could well inform practise in the fertility clinic. Further to this finding, using next 338 

generation sequencing of the vaginal microbiota, women with idiopathic infertility were found 339 

to have a microbiota profile consistent with BV compared to healthy women (121). Another 340 

study identified trends for distinct microbiota in women with a history of infertility compared 341 

to women with a history of fertility, albeit a retrospective study on a small sample size (122). 342 

A study of the composition of the vaginal microbiota on the day of embryo transfer in women 343 

undergoing IVF found that a lower vaginal microbiota diversity index correlated with a 344 

resultant live birth (123). However, this study did not profile the taxa present but rather 345 

compared the diversity index, providing a relatively limited insight into the role of the vaginal 346 

microbiota in reproductive outcomes. It is likely that analysis of the upper reproductive tract 347 

microbiota will shed further insights into fertility and fertility treatment outcomes, and this 348 

topic is reviewed in this issue (119, 120, 124-126). However, additional studies are needed to 349 

better understand fertility outside the controlled context of IVF procedures. Studies involving 350 

time to pregnancy and detailed monitoring of the composition and function of the vaginal 351 

microbiota would be extremely informative and would provide the evidence necessary to 352 

develop ways to improve natural conception outcomes.  353 

 354 



 355 

Future perspectives  356 

The vaginal microbiota critically interplays with women’s health and reproduction. We have 357 

summarised the factors reviewed here which are thought to drive or be associated with vaginal 358 

microbiota dysbiosis or eubiosis in Figure 3. It is becoming critical to further our understanding 359 

of the cervicovaginal microbiota from a mechanistic and functional aspect, so that causal 360 

relationships can be established between the microbiome and adverse outcomes. These 361 

mechanistic understandings could be leveraged to develop improved protective and curative 362 

strategies, or to optimize the vaginal microbiome using rationally designed live biotherapeutic 363 

products or metabolites. To achieve these goals, improved study designs and sampling 364 

strategies are needed that would maximize power and frequency of sampling in prospective 365 

study design. The applications of advanced and high-resolution approaches such as 366 

metagenomics, metatranscriptomics, metabolomics, and/or proteomics, detailed 367 

immunological characterizations in combination with novel systems biology, modelling and 368 

statistical approaches will be critical to advancing the field and improving women's 369 

reproductive health.  370 
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Figure Legends 734 

Figure 1. Vaginal microbiota stability and sex hormone levels during the menstrual cycle. 735 

Reproduced from ‘Temporal Dynamics of the Human Vaginal Microbiota, Gajer P, Brotman 736 

RM, Bia G, Sakamoto J, Schutte UME, Zhong X, Koenig SSK, Fu L, Ma Z, Zhou X, Abdo Z, 737 

Forney LJ, Ravel J, Sci Transl Med, 2012, 4(132): 132ra52’ (20).  Reprinted with permission 738 

from AAAS. The highest stability correlates with high estrogen or progesterone levels, but can 739 

be affected by the community state type of the vaginal microbiota, behaviours, and other host  740 

factors (20).  741 

 742 

Figure 2. The vaginal microbiota decreases in diversity during pregnancy, often with an 743 

increased relative abundance in Lactobacillus spp.. In the post-partum phase an immediate 744 

increase in vaginal microbiome diversity and decrease in Lactobacillus spp. has been observed. 745 

 746 



Figure 3. Factors driving or associated with dysbiosis or eubiosis of the vaginal 747 

microbiota in reproductive age women.  748 
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