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1 Introduction

The measurement of probabilistic beliefs of traders has become increasingly common

both in academia and in practice of prediction (Manski 2004, Wolfers and Zitzewitz 2004,

Surowiecki 2005, Armantier and Treich 2013). In particular, prediction markets are now

considered as one of the most efficient tool to elicit people’s beliefs.1 They have been

repeatedly used to predict the outcome of political elections, like with the Iowa electronic

market (www.biz.uiowa.edu/iem/). They are also increasingly used by private companies

like Microsoft, Google and Chevron for instance to elicit their employees’ beliefs about

future sales or industry trends.

Technically, prediction markets are simple financial markets in which traders bet on the

outcomes of uncertain events. Asset prices in prediction markets are typically interpreted

as probabilities. For instance, Arrow et al. (2008) introduce prediction markets as follows:

“Consider a contract that pays $1 if Candidate X wins the presidential election in 2008.

If the market price of an X contract is currently 53 cents, an interpretation is that the

market ‘believes’ X has a 53% chance of winning” (Arrow et al. 2008).

Given the development of prediction markets, it is important to better understand

when prediction markets are expected to be biased at predicting future events. We say

that the prediction market is biased when its market equilibrium state price is different

from the mean probabilities of traders’ beliefs of the state (and unbiased otherwise).2

In this paper, we consider a simple prediction market in which risk averse traders have

heterogeneous beliefs in probabilities of different states and examine under which condition

the prediction market is biased. In other words, we study when the prediction market is

1See for instance Hahn and Tetlock (2006). Prediction markets have been used to forecast market

capitalization prior to an IPO (Berg et al. 2009), to test double auction in complex environments with

few traders (Healy et al. 2010), and to evaluate the information aggregation and manipulation behavior

(Jian and Sami 2012). See Goel, Reeves and Pennock (2009) for a more contrasted view about the

performance of prediction markets.
2This definition is consistent with the early economic papers on prediction markets (Slovic 2000

Forsythe et al. 1992, Hanson 2006 and Arrow et al. 2008) that compared the equilibrium price to the

mean beliefs of traders.
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not well calibrated on average (Page and Clemen 2013).

This paper makes two main contributions to the literature. Firstly, we derive the

exact necessary and sufficient condition for prediction market to be unbiased for general

distributions of beliefs. Specifically, we show that the binary prediction market is unbiased

for all distributions of beliefs on the states if and only if the utility function is logarithmic.

We also provide a sufficient condition on the prediction market to be unbiased for all utility

functions. In addition we present several examples in which the (joint) distributions of

traders’ beliefs, wealth and risk preferences lead to a systematic violation of the unbiased

prediction market. Secondly, when prediction market is biased, we provide indications

about the direction of the bias. Most significantly, we exhibit the necessary and sufficient

condition for the equilibrium price of a state to be always below/above the mean belief

of the state for all symmetric belief distributions, depending on risk preferences and the

mean beliefs. More precisely, for all symmetric beliefs, there exists a favorite-longshot

bias, meaning that the high-likelihood events (or states with the mean beliefs of the

states above 1/2) are underpriced and the low-likelihood events (or states with the mean

beliefs of the states below 1/2) are overpriced, if and only if the traders’ risk preferences

are such that twice absolute risk aversion is less than absolute prudence. Under constant

relative risk aversion (CRRA) with risk aversion coefficient γ this condition is equivalent

to γ < 1. That is, when traders are less risk averse (than logarithmic utility), we provide

a rationale to the well documented favorite-longshot bias (Ali 1977). In contrast, there is

a reverse favorite-longshot bias when the utility functions of traders are either CARA or

CRRA with γ > 1. In a discussion on the extension of two state to many states prediction

market, we show with the help of an example that the equilibrium state price not only

depends on the distribution of beliefs about that state, but also about other states.

There is already a significant literature on the favorite-longshot bias in prediction

markets. Started with Ali (1977), many models have been developed to explain the

favorite-longshot bias, including Gjerstad (2004), Manski (2006), Wolfers and Zitzewitz

(2006), and Page and Clemen (2013). When traders are risk neutral and have limited

investment budgets, Manski (2006) presents a first formal analysis of this question. He
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shows that the equilibrium price of the prediction market can differ from the mean beliefs

of traders. When traders are risk averse, Wolfers and Zitzewitz (2006) show theoretically

that the prediction market is unbiased when the utility function of traders is logarithmic.

Moreover, Wolfers and Zitzewitz (2006) explore numerically how the equilibrium price is

affected by belief heterogeneity for several utility functions and several beliefs distribu-

tions.3 In this paper, we follow Manski (2006), Gjerstad (2004) and Wolfers and Zitzewitz

(2006) and show that the logarithmic utility is not only sufficient but also necessary to

ensure the prediction market to be unbiased for all belief distributions. More interestingly,

we provide the necessary and sufficient condition theoretically for the equilibrium prices

to be systemically biased to the mean beliefs of traders for all symmetric belief distribu-

tions. This condition depends critically on the risk preferences and the mean beliefs. It

provides a theoretical foundation to the numerical results in Wolfers and Zitzewitz (2006)

and a complete characteristization of the theoretical results in Gjerstad (2004).

This paper is also related to but different from some recent papers providing an infor-

mational explanation to the favorite-longshot bias (Ottaviani and Sorensen, 2009, 2010,

2015). In a game-theoretic model of parimutuel betting, Ottaviani and Sorensen (2009)

assume that traders have a common prior but incorporate in a Bayesian fashion the in-

formation revealed by the bets placed at the equilibrium. This model is generalized in

Ottaviani and Sorensen (2010) to allow for noise and private information. Recently, Otta-

viani and Sorensen (2015) study the price underreaction when traders with heterogeneous

prior beliefs react to public information. In all these models, Ottaviani and Sorensen

derive theoretical conditions leading to the favorite-longshot bias in a binary prediction

market. A prediction market is a simple financial market. Therefore this paper is also

closely related to the models of asset pricing under heterogeneous beliefs (see, e.g., Varian

1985, Abel 1989, Jouini and Napp 2006 and 2007, Gollier 2007 and Roche 2011).4 These

3See Gjerstad (2004) for theoretical results under constant relative risk aversion (CRRA) utility func-

tions, and some numerical results. See also Fountain and Harrison (2011) for further numerical results

with wealth and beliefs heterogeneity. Thaler and Ziemba (1988) extensively discuss the favorite-longshot

bias.
4For a justification and implications of these models, see for instance the literature survey papers by
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models with heterogeneous beliefs have been used to explain various anomalies in financial

markets.

We organize the paper as follows. In the next section we introduce a simple binary

prediction market model and derive a sufficient condition for the equilibrium state price

to be unique. In Section 3, we derive a necessary and sufficient condition for prediction

market to be unbiased on the utility function for all heterogeneous beliefs. We also provide

a sufficient condition on prediction market to be unbiased for all utility functions. Then

in Section 4 we examine the conditions leading to the favorite-longshot bias. Finally in

Section 5 we provide a discussion on the generalization of the previous results in binary

prediction market to the market with more than two states. The last section concludes.

All the proofs are given in the appendices.

2 The model

We consider a simple binary prediction market in which risk averse traders can buy and

sell a risky asset paying $1 if a specific event or state occurs, and nothing otherwise. The

main assumption of the model is that the beliefs of the traders about the occurrence of

the specific event are heterogeneous. That is, we consider a model in which traders “agree

to disagree”, and therefore have different prior beliefs across states. Namely, the hetero-

geneity in beliefs does not come from asymmetric information but rather from intrinsic

differences in how traders interpret information. This assumption has been common in

economic models of prediction markets cited in the previous section. Moreover, to focus

on the specific effect of beliefs’ heterogeneity, we assume in all the Propositions of this

paper that the utility function and the wealth of traders are homogenous.5 In this section,

we derive some properties of the individual asset demand, and then of the equilibrium

price in this specific model.

Varian (1989), Scheinkman and Xiong (2004) and Hong and Stein (2007).
5The effect of heterogeneity in wealth and utility function on prediction market bias is more compli-

cated, see Remark 1 and Example 2 in the next section for a related discussion.
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In our model, each trader maximizes his expected utility based on his own beliefs.

Let u(·) be the trader’s vNM utility function, which is strictly increasing, strictly concave

and three times differentiable. Formally, when a trader decides how much to invest in the

financial asset paying $1 if the event occurs, he maximizes the following expected utility

max
α

[pu(w + α(1− π)) + (1− p)u(w − απ)], (1)

in which w is his initial wealth, p ∈ (0, 1) his subjective probability or belief that the

event occurs, α his asset demand and π the price of this asset.6 The first order condition

of this optimization is given by

p(1− π)u′(w + α(p, π)(1− π))− (1− p)πu′(w − α(p, π)π) = 0, (2)

in which α(p, π) is the solution of (2). Differentiating equation (2) with respect to p,

0 = (1− π)u′(w + α(p, π)(1− π)) + πu′(w − α(p, π)π)

+αp(p, π)[p(1− π)2u′′(w + α(p, π)(1− π))

+(1− p)π2u′′(w − α(p, π)π)], (3)

we obtain

αp(p, π) =
(1− π)u′(w + α(p, π)(1− π)) + πu′(w − α(p, π)π)

−p(1− π)2u′′(w + α(p, π)(1− π))− (1− p)π2u′′(w − α(p, π)π)
> 0, (4)

that is, the asset demand increases with belief p. Since α(p, p) = 0, we conclude that

α(p, π) ≥ 0 if and only if p ≥ π. Namely, the trader buys (respectively sells) the asset

yielding $1 when the event occurs and 0 otherwise if and only if he assigns a probability

for this event higher (respectively lower) than the asset price.

Let p̃ be the random variable representing the distribution of beliefs on the event in

the population of traders, and let π∗ be the equilibrium price. The equilibrium condition

6The individual asset demand α can be seen as the net asset demand of one asset in a model with

two Arrow-Debreu assets. To see that, let αs and πs denote respectively the demand for and the price of

Arrow-Debreu assets in state s = 1, 2. The objective can then be written: maxα1,α2
[pu(w+ α1 − π1α1 −

π2α2) + (1 − p)u(w + α2 − π1α1 − π2α2)]. Denoting α = α1 − α2 and observing that π1 + π2 = 1 by

arbitrage then leads (with π = π1) to (1).
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is

Eα(p̃, π∗) = 0, (5)

in which E denotes the expectation operator with respect to p̃, the belief distribution

of traders on the event.7 Our main objective is to compare π∗ to Ep̃. In particular, in

Section 3 we derive condition so that prediction market is unbiased when π∗ = Ep̃. Since

α(p, p) = 0, notice immediately that, when p̃ is degenerate and equal to homogeneous

belief p with probability 1, then π∗ = p and there is no trade at the equilibrium. This is

a trivial case always leading to unbiased prediction market. We rule out this case (until

Section 5 with more than two states), and consider nondegenerate p̃ in the following.

It is easy to see that an equilibrium always exists in such a prediction market. Indeed,

when π tends to 0 (respectively tends to 1) α(p, π) becomes positive (respectively negative)

for all p, so its expectation over p̃ also becomes positive (respectively negative). Therefore

when π increases, the function Eα(p̃, π) must go from a positive to a negative region and

thus cross zero somewhere in between at least once.

We first discuss the uniqueness of the equilibrium, that is whether Eα(p̃, π) only crosses

the origin once. We know that α(p, π) has this single crossing property at π = p. But

that does not guarantee that Eα(p̃, π) also has the single crossing property, as illustrated

by the following example.

Example 1 (Multiple equilibria): Consider traders with a quadratic utility function

u(w) = −(1 − w)2 for 0 ≤ w ≤ 1 and initial wealth w = 1/2. Following the first order

condition the optimal asset demand is then equal to α(p, π) = p−π
2(p−2pπ+π2)

. In a prediction

market with only two traders with respective beliefs of the event denoted p1 = 0.1 and

p2 = 0.9, the equilibrium condition is equivalent to 9− 68π+150π2 − 100π3 = 0. Solving

for this equation, it is found that there are three equilibrium prices in this prediction

market: π∗ = (0.235, 0.5, 0.764).

7The distribution of traders’ beliefs can be discrete or continuous.
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A sufficient condition for the uniqueness of the equilibrium however is απ(p, π) < 0

everywhere. Indeed, this implies that the function Eα(p̃, π) is strictly decreasing in π,

and therefore crosses zero at most once. Differentiating (2) with respect to π, we have

απ(p, π) = (6)

−pu′(w + α(p, π)(1− π))− (1− p)u′(w − α(p, π)π)

−p(1− π)2u′′(w + α(p, π)(1− π))− (1− p)π2u′′(w − α(p, π)π)

−α(p, π)
p(1− π)u′′(w + α(p, π)(1− π))− (1− p)πu′′(w − α(p, π)π)

−p(1− π)2u′′(w + α(p, π)(1− π))− (1− p)π2u′′(w − α(p, π)π)
.

The first term is strictly negative but the second term is of ambiguous sign under risk

aversion, so that the demand may increase when the price π increases, as it is the case

in Example 1. We now provide a sufficient condition for uniqueness by ensuring that the

second term is also negative. We show that this is the case under decreasing absolute risk

aversion (DARA).

Proposition 1 The equilibrium price π∗ is unique if u satisfies the assumption of DARA.

This result is consistent with Proposition 4 of Ottaviani and Sorensen (2015), although

it is obtained in a different setting here. The intuition for this result is the following.

When the price of an asset increases, there are two effects captured by the two terms of

the right hand side of equation (6). First, there is a substitution effect that leads to a

decrease in its demand, but there is also a wealth effect that may potentially increase

its demand. Intuitively, as the terminal wealth distribution deteriorates, the investor’s

attitude towards risk may change, and this wealth effect might prove sufficiently strong to

increase the demand for the risky asset, as initially shown by Fishburn and Porter (1976)

in the case of a first-order stochastic dominance (FSD) shift. Under DARA however,

the negative wealth effect leads the trader to be more risk averse, and therefore further

decreases the demand for the risky asset. Under constant absolute risk aversion (CARA),

there is no wealth effect, and only the first negative effect is at play. Finally, we note

that Example 1 features multiple equilibria because the quadratic utility function has

increasing absolute risk aversion.
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When there is a unique equilibrium, one can make a simple comment on the effect of a

change in the distribution of beliefs on the equilibrium price. Indeed, from the equilibrium

condition Eα(p̃, π∗) = 0 and αp(p, π) > 0, any FSD improvement in the distribution of

beliefs must increase the equilibrium price.

3 A necessary and sufficient condition for unbiased

prediction market

In this section, we characterize the unbiased prediction market by answering the following

question: which utility functions lead to unbiased prediction market for any belief distri-

bution? Correspondingly, we provide a necessary and sufficient condition for prediction

market to be unbiased.

To answer the question, we consider a logarithmic utility function8 u(w) = logw

(which displays DARA). We can obtain a closed-form solution of the first order condition

(2):

α(p, π) = w
(p− π)

π(1− π)
.

This implies that the equilibrium condition (5) can simply be written π∗ = Ep̃. This shows

that the logarithmic utility function is sufficient for prediction market to be unbiased, a

result obtained in Gjerstad (2004) and Wolfers and Zitzewitz (2006). A natural question

is whether the utility function must be logarithmic to guarantee prediction market to be

unbiased independently of belief distribution among traders or whether this is possible

for other utility functions. That is whether u(w) = logw is also a necessary condition.

We show that this is indeed the case.

Proposition 2 We have π∗ = Ep̃ for all belief distributions p̃ if and only if u(w) = logw.

8Since the expected utility theory is defined up to an affine transformation, the statement u(w) = logw

should read in fact u(w) = a logw + b for constants a (> 0) and b. A similar observation applies for all

utility functions used in the Examples and for the results of Section 5.
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This result characterizes unbiased prediction market that is independent of belief dis-

tribution among traders. It is a knife edge case for the prediction bias examined in the

next section. We complement this result with three remarks about its limitation in more

general settings.

Remark 1 (Wealth heterogeneity): The result of Proposition 2 cannot be generalized

to non-identical wealth, as possible correlation between wealth and beliefs would invali-

date the result. Indeed, let w̃ be the random variable representing wealth heterogeneity.

Assuming a logarithmic utility function, we can obtain

π∗ = Ep̃+
1

Ew̃w̃
Cov(p̃, w̃). (7)

Therefore there is no utility function that can always ensure prediction market to be

unbiased when beliefs and wealth are potentially correlated. Observe that, despite this

impossibility result, the direction of the bias can be inferred if the analyst knows the sign of

the correlation between beliefs and wealth. The intuition for (7) is that richer individuals

invest more, and therefore have more influence on the equilibrium price. Thus, if wealth

is positively (respectively negatively) correlated with beliefs, the equilibrium price will be

higher (respectively lower). This result is closely related but different from the example

with logarithmic preferences of Ottaviani and Sorensen (2015) who show that, even with

logarithmic utility, the equilibrium price can underreact to information, leading to biased

price from the mean beliefs when traders with heterogeneous prior beliefs react to the

information in the same way.

Remark 2 (Stakes): Suppose each trader has a (positive or negative) stake ∆ in the

event he predicts, so that he now maximizes over α the following expected utility

pu(w +∆+ α(1− π)) + (1− p)u(w − απ).

Then it is easy to understand that the result of Proposition 2 is not guaranteed either.
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Indeed for the logarithmic utility function we have

α(p, π) = w
(p− π)

π(1− π)
−∆

π(1− p)

π(1− π)
,

leading to the equilibrium condition

π∗ =
wEp̃

w +∆(1−Ep̃)
.

The intuition is that when there is a positive (respectively negative) stake, the marginal

utility decreases (respectively increases) if the event occurs. As a result, the traders want

to transfer wealth to the state in which the event does not occur (respectively occurs), and

they typically use the prediction market as a hedging scheme to do this. The consequence

is that the equilibrium is biased downward (respectively upward). Observe that if the

stakes are individual-dependent but uncorrelated with beliefs, and if their mean across

individuals is equal to zero, then we retrieve prediction market to be unbiased under a

logarithmic utility function.

The previous proposition provides the condition on the utility function so that market

prediction is unbiased for all belief distribution p̃. We now study the dual problem: what

are the conditions on belief distribution p̃ to ensure prediction market to be unbiased for

all utility function u? We show that this depends on whether the probability distribution

of beliefs is symmetric about one half.

Proposition 3 If p̃ is symmetric about 1/2, then π∗ = Ep̃ for all u that imply a unique

equilibrium.

The intuition for Proposition 3 is simple. When p̃ is symmetric about one half, the

two states are formally indistinguishable. Therefore it cannot be that the price of an asset

yielding one dollar in one state is different from that of an asset yielding one dollar in the

other state, implying π∗ = 1/2.

We note, however, that if heterogeneity in individual utility functions is introduced,

prediction market bias may arise even when p̃ is symmetric about 1/2. The intuition is

12



essentially the same as the one presented in Remark 1. This is illustrated by the following

example which considers heterogeneity over (constant absolute) risk aversion.

Example 2 (Heterogeneous CARA): Let ui(w) = −e−riw in which ri > 0 represents the

CARA coefficient of trader i = 1, 2 with respective beliefs p1 = 0.1 and p2 = 0.9 of the

event. Under positive correlation between beliefs and risk aversion (r1, r2) = (1, 3), we

have π∗ = 1/4 < 1/2 = Ep̃, while under negative correlation (r1, r2) = (3, 1), we have

π∗ = 3/4 > 1/2 = Ep̃.

We have characterized conditions for prediction market to be unbiased for all belief

distribution p̃ in Proposition 2 and provided a sufficient condition for all utility function u

in Proposition 3. We can see that these conditions are rather stringent. We note, however,

that one can relax these conditions in the sense that it is possible to find well-chosen pairs

(u, p̃) also yielding unbiased prediction market. This is shown in the following example

which uses a specific constant relative risk aversion (CRRA) utility function and a specific

nonsymmetric distribution of beliefs.

Example 3 (Unbiased prediction market under CRRA and nonsymmetric beliefs). Con-

sider traders with utility function u(w) = −1/w. Two groups of traders participate in the

prediction market: one group has beliefs p1 = p, and the other group has beliefs p2 = 1−p.

Denoting a the proportion of traders in the first group, we have Ep̃ = ap+(1− a)(1− p).

Note that the belief distribution among traders may not be symmetric about 1/2. One

may then easily obtain that Eα(p̃, π) = 0 implies
√
π(1− π){ap+(1−a)(1−p)−π} = 0

leading to π∗ = Ep̃. This example shows a different result from the price underreaction to

information obtained in Ottaviani and Sorensen (2015). This illustrates the importance

of information and heterogeneous concordant beliefs.

Examples 2 and 3 indicate that symmetric beliefs about 1/2 is neither necessary nor

sufficient for prediction market to be unbiased in general, in particular when traders have

heterogeneous risk preference.
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4 A necessary and sufficient condition for the favorite-

longshot bias

In the previous analysis, we have examined under which conditions the prediction market

is unbiased in the sense that the equilibrium price π∗ is equal to the mean belief Ep̃. We

have seen that these conditions are rather stringent, implying a bias of the equilibrium

price to the mean belief is expected in prediction markets in general (Ottaviani and

Sorensen, 2015). It is therefore interesting to see how to characterize such bias. In this

section, we derive a necessary and sufficient condition for prediction bias, meaning that

the equilibrium price π∗ is systematically above or below the mean belief Ep̃.

The analysis developed in this section may provide a rationale for the favorite-longshot

bias, namely for the empirical observation that longshots tend to be over-valued and that

favorites tend to be under-valued (Ali 1977). More explicitly, consider a horse race with

only two horses, and call the first horse the favorite (resp. longshot) if the mean beliefs that

this horse wins are such that Ep̃ ≥ 1/2 (resp. Ep̃ ≤ 1/2). As we will see, the necessary

and sufficient condition so that this horse is under-valued, i.e. π∗ ≤ Ep̃, critically depends

on whether it is a favorite or a longshot and on the risk aversion of traders. This result

is presented in the following Proposition 4 in which A(w) = −u′′(w)/u′(w) denotes the

Arrow-Pratt’s coefficient of absolute risk aversion and P (w) = −u′′′(w)/u′′(w) denotes the

coefficient of absolute prudence (Kimball 1990). Essentially, these coefficients respectively

capture the intensity with which the utility and the decisions are affected by a change in

risk.

Proposition 4 We have π∗ ≥ Ep̃ for all symmetric beliefs 9 p̃ about the mean belief

Ep̃ if and only if (1/2 − Ep̃)(P (w) − 2A(w)) ≥ 0 for all w and u that imply a unique

equilibrium.

9Here the symmetry is about the mean probability of state 1; for example, p̃ = (1/3− 1/6, 1/3, 1/3+

1/6) of three traders’ beliefs on the probability of state 1 is a symmetric belief about the mean probability

1/3 of state 1.
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The difference between the mean belief Ep̃ and the equilibrium price π∗ therefore de-

pends on whether the mean belief is less than 1/2, and on whether the absolute prudence

is greater than twice the absolute risk aversion. The sign of P −2A is a familiar condition

on utility functions derived from comparative statics analysis within expected utility mod-

els (Gollier 2001). In particular, for CARA utility functions, P = A(< 2A). For CRRA

utility functions u(x) = x1−γ/(1 − γ), P < 2A is equivalent to the constant relative risk

aversion γ > 1, while P > 2A is equivalent to γ < 1, and P = 2A is equivalent to γ = 1,

which corresponds to the logarithmic utility function.

Figure 1: The equilibrium price π∗ as a function of mean beliefs p. Under symmetric

beliefs, there is a “favorite-longshot bias” for the class of utility functions u satisfying

P (w) > 2A(w).

The result in Proposition 4 is illustrated in Figure 1. The horizontal axis represents

the mean belief Ep̃ and the vertical axis represents the equilibrium price p̄ = π∗. The

diagonal therefore represents prediction market accuracy, which holds everywhere if and

only if P = 2A (i.e., u is logarithmic). The result therefore shows that there is a favorite-

longshot bias if and only if the utility function displays P > 2A, or equivalently γ < 1
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for the CRRA utility functions. This implies that, for all symmetric belief distributions,

there is a longshot bias if and only if the traders are less risk averse (than the logarithmic

utility function). When the traders are more risk averse, a reverse longshot bias occurs.

Therefore, we provide a theoretical foundation for the favorite-longshot bias. The result

also generalizes the numerical simulations presented in Wolfers and Zitzewitz (2006) for

CRRA utility functions and a set of specific distributions of beliefs.

Observe that the result in Proposition 4 is consistent with Propositions 2 and 3.

Indeed, this result shows that prediction market is unbiased under two extreme and

separate conditions on the utility functions and the distribution of beliefs: either as in

Proposition 2 when the utility is logarithmic (P = 2A) or as in Proposition 3 when mean

beliefs equal one half for symmetric belief distributions.

When traders are risk neutral, Ottaviani and Sorensen (2015, Proposition 2 and Corol-

lary 1) show that underreaction leads to the favorite-longshot bias under the assumption

of bounded wealth. They show that underreaction and hence the favorite-longshot bias

becomes more pronounced for wider heterogeneous beliefs (measured by mean preserving

spread). When traders are risk averse, Ottaviani and Sorensen (2015, Proposition 6) show

a sufficient condition on price underreaction to information is the strict DARA, which is

equivalent to P > A. They further illustrate the favorite-longshot bias for logarithmic

utility. For CARA utility characterized by P = A, they show that there is no price un-

derreaction. For all symmetric beliefs, the condition P > 2A for the favorite-longshot

bias in Proposition 4 is not only sufficient but also necessary. This result is different

from Ottaviani and Sorensen (2015, Proposition 6). In particular, when A ≤ P < 2A

(including CARA utility), we obtain a reverse favorite-longshot bias. Therefore our re-

sults on the favorite-longshot bias in Proposition 4 complements the price underreaction

to information in Ottaviani and Sorensen (2015).

One may wonder whether the condition (1/2−Ep̃)(P (w)− 2A(w)) ≥ 0 is also neces-

sary and sufficient for all distributions p̃, not only symmetric ones. To see this, note first

that π∗ ≥ Ep̃ is equivalent to Eα(p̃, p) ≥ 0, and since α(p, p) = 0, by Jensen’s inequality

the necessary and sufficient condition for all p̃ is simply given by αpp(p, p) ≥ 0 for all p
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and p. The computation of αpp(p, p) (in (A.1) of Appendix A) shows that the condition

(1/2−Ep̃)(P (w)−2A(w)) ≥ 0 is indeed necessary for the favorite-longshot bias. However

this condition is not sufficient, as the following example shows.

Example 4 (Nonsymmetric beliefs): Consider two groups of traders with u(w) =
√
w

(i.e., P > 2A) and heterogeneous beliefs p1 = 0.1 and p2 = 0.9. When the proportion

of traders with beliefs p1 = 0.1 is 75% then π∗ = 0.272 < Ep̃ = 0.3 (i.e., the longshot

is undervalued), and when the proportion of traders with beliefs p1 = 0.1 is 25% then

π∗ = 0.727 > Ep̃ = 0.7 (i.e., the favorite is overvalued).

We believe that the general results and selected numerical examples presented so far

provide a fairly complete picture of the properties of equilibrium prices of a prediction

market in the two-state case. This is the case that has been usually considered in the

handful of theoretical papers on prediction markets that we have found in the literature.

We next extend our discussion to a prediction market with more than two states.

5 A discussion on the prediction market with many

states

We have so far considered a prediction market with only two states. In this section we

provide a discussion on unbiased prediction market for any finite number S of states with

S > 2. We examine whether the previous results obtained for two states can be generalized

to the case with more than two states. Consistent with previous notations, we denote

by the vector pi = (pi1, ..., pis, · · · , piS) the trader i’s beliefs over states s = 1, ..., S for

i = 1, 2, · · · , N , and by πs the equilibrium price of state s. Similar to the two-state case,

the prediction market is unbiased for state s when πs =
1
N

∑N
i=1 pis.

As indicated in Section 3, a well-known result in the literature is that under a loga-

rithmic utility function u(w) = logw prediction market is unbiased in the 2−state case

17



(Gjerstad 2004, Wolfers and Zitzewitz 2006). It turns out that this sufficiency result can

be generalized in the sense that all S state prices equal the mean of traders’ beliefs for

each state under u(w) = logw. Since we have shown in Section 3 that u(w) = logw is

also necessary for prediction market to be unbiased in the 2−state case, we can therefore

state the following result.

Proposition 5 (Generalization of Proposition 2) Prediction market is unbiased for all

distributions of beliefs in the general S−state case if and only if u(w) = logw.

This result should not suggest, however, that the previous results can be directly gen-

eralized to the S−state case. Consider the previous observation that if all traders have the

same beliefs about a particular state (and hence the same beliefs about the other state),

then the market is unbiased. This result is no longer valid in the general case. Indeed,

we next show with the help of an example that, even if all traders have the homogeneous

belief over one state, the equilibrium price of that state could nevertheless be different

from its homogeneous belief.

Example 5 (Prediction market bias under homogeneous beliefs of a state): Let N = 2

and S = 3, and assume the following traders’ beliefs: p1 = (1 − 2p, p − ǫ, p + ǫ)

and p2 = (1 − 2p, p + ǫ, p − ǫ). Observe that the two traders have homogeneous be-

liefs 1 − 2p over state 1. Under CARA u(w) = −e−rw with r > 0, we have however

π1 =
1−2p

1−2p+2
√

p2−ǫ2
> 1− 2p for any ǫ 6= 0.

We now make another observation using the previous example. With the same nu-

merical values for individual beliefs and utilities, we consider an alternative prediction

market. Assume that there are only two Arrow-Debreu assets: an asset that pays $1 if

state 1 occurs, and another asset that pays $1 if either state 2 or state 3 occurs. We have

therefore a binary prediction market. But since the traders’ beliefs over the two states

(1− 2p, 2p) are now homogeneous, we obviously retrieve the unbiased prediction market.

Therefore, this simple observation shows that the equilibrium state price varies depending
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on the number of states on which it is possible to bet. In other words, this means that

the “design” of the prediction market matters for equilibrium state prices.10 This makes

sense since the design of the prediction market may affect trading opportunities under

heterogeneous beliefs. Following this observation, one may ask: when is an equilibrium

state price always independent from the design of the prediction market? It can be easily

shown that this is the case when all traders believe that all other S− 1 states are equally

likely (see Proposition 6 below).

Example 5 also shows that the equilibrium price of one state depends on the distri-

bution of beliefs in other states (through the parameter ǫ). Note that this is inconsistent

with a result in Varian (1985) stating that the equilibrium price in state s depends only on

the distributions of subjective probabilities that the state will occur.11 One may therefore

ask: when does the equilibrium price of one state depend only on the beliefs about that

state? Interestingly the answer to this question is exactly the same as the one to the

question asked above about the prediction market design. Indeed, if the equilibrium price

of one state in a S−state prediction market is always equal to the equilibrium price of

that state in a prediction market, this precisely means that the distribution of beliefs in

all the other states is irrelevant for that equilibrium state price. We state this result in

the following proposition.

Proposition 6 For all u, the equilibrium price of one state, say π1 for s = 1, in a

S−state prediction market only depends on the beliefs about that state pi1 if and only if

10To illustrate this interpretation, consider the horse race illustration. Example 5 and the last observa-

tion indicate that in a race with S > 2 horses, the equilibrium state price that one specific horse wins the

race depends on whether it is possible to place bets separately on each of the other horses participating

in the race.
11Varian’s result is obtained in a S−state complete market setting with heterogeneous beliefs and het-

erogeneous initial wealth. Our prediction market model in this section is thus a particular case of Varian’s

model since we assume a common initial wealth (thus removing any initial risk-sharing motivations for

trade). Therefore Varian’s result should also apply to our simpler setting. Note that Ingersoll (1987,

p. 214) also presents a similar result as that of Varian: “The Arrow-Debreu price for an insurable state

depends only on agregate wealth in that state and the pattern of beliefs about that state”.
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pis = pi for all s = 2, ..., S, and for all i = 1, ..., N (i.e. if and only if states 2 to S are

judged as equally likely by all traders).

Example 5 has shown that prediction market may be biased despite homogeneous

beliefs in that state. The next example shows the dual result that prediction market may

be unbiased despite heterogeneous beliefs. Specifically, Example 6 identifies a case with

symmetric beliefs where prediction market is unbiased for any CRRA utility functions.

Example 6 (Prediction market is unbiased under heterogeneous beliefs): Let N = 2 and

S = 3, and assume the following traders’ beliefs: p1 = (1/2 + 1/4, 1/3− 1/6, 1/6− 1/12)

and p2 = (1/2−1/4, 1/3+1/6, 1/6+1/12). Then under u(w) = w1−γ/(1−γ) with γ > 0,

prediction market is unbiased for all states, i.e., π1 = 1/2, π2 = 1/3 and π3 = 1/6.

Proposition 4 implies for symmetric beliefs of two-state and under CRRA utility func-

tions that there is underpricing if and only if γ > 1, and thus that prediction market

is unbiased only in the knife-edge logarithmic case, i.e. γ = 1. In contrast, Example 6

illustrates that the equilibrium state price can be an unbiased estimation of the mean

beliefs even when beliefs are symmetric and P 6= 2A. Hence the prediction market bias

in S−state markets can be very different from 2-state markets.

6 Conclusion

In the last decades, academics as well as private-sector operators have increasingly used

financial prediction markets with the primary objective to better predict future uncertain

events. But under which conditions should prediction markets be biased?

This paper has derived generic theoretical conditions so that equilibrium state prices

in prediction markets is biased from the mean of the beliefs of traders. We have shown

that even in a setting with homogenous traders, the conditions on risk preferences and/or

on distributions of beliefs that lead to biased prediction market. We also provided a set of

additional conditions that are informative about how prediction market prices vary with

20



the belief distributions and the utility functions of participants as well as with the “design”

of the prediction market. In particular, the paper has identified an exact condition on risk

aversion such that the favorite-longshot bias (Ali 1977) always holds for any symmetric

belief distributions, and an exact condition on beliefs such that the equilibrium price of

one state only depends on the heterogeneity of beliefs about that state (Varian 1985).

A central assumption in our model is that traders do not update their subjective

probabilities. With that assumption, we have followed the common setting adopted in

the early economic papers on prediction markets (Gjerstad 2004, Manski 2006, Wolfers

and Zitzewitz 2006). We believe that we have in turn provided in this paper a fairly

complete picture of prediction market bias in this specific setting. In a set of important

papers, Ottaviani and Sorensen (2009, 2010, 2015) provide an alternative informational

explanation to the prediction market bias without relaxing standard Bayesian updating.

For sure, in many environments, investors do update their beliefs based on new informa-

tion. On the other hand, there is a lot of evidence that people are not Bayesian. Typically,

the extensive research on the “confirmation bias” in psychology show that people tend to

search for, interpret or recall information in a way that confirms their prior beliefs. This

suggests that the mechanism underlying the prediction market bias may depend on the

specific prediction market characteristics and participants. Ultimately, this is an empir-

ical question. Since our paper identifies a simple mechanism that relates the prediction

market bias to traders’ risk preferences, we believe that it can provide a good basis for

empirical testing.
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Appendix A: Proof of Propositions 1-4

A.1 Proof of Proposition 1

We are done if we can show that the second term of the right hand side in (6) is negative.

As this is simple to show, we only provide a sketch of the proof. Let x̃ = (1 − π,−π; p)

denote a random variable x̃ which takes values of 1− π and −π with probabilities p and

1 − p, respectively. Then the first order condition (2) can be written more compactly

E[x̃u′(w + αx̃)] = 0. We thus are done if we can show that this last equality implies

−αE[x̃u′′(w+αx̃)] ≤ 0, that is, the second term of the right hand side in (6) is negative.

Then it is direct to see that this implication means that −u′ is more risk averse than u,

which is equivalent to nonincreasing absolute risk aversion. �

A.2 Proof of Proposition 2

We just need to prove the necessity. Namely, let p = Ep̃, we must show that if Eα(p̃, p) = 0

for all p̃, then u(w) = logw. Since Eα(p̃, p) = 0 for all belief distribution p̃, this must

also hold for a specific class of probability distribution in p̃. We consider the class of

“small” risk, that is we assume that p̃ is close enough to p in the sense of a second-order

approximation: Eα(p̃, π) = α(p, π) + 0.5E(p̃− p)2αpp(p, π). Using this last equality, the

necessary condition Eα(p̃, p) = 0 implies α(p, p) + 0.5E(p̃ − p)2αpp(p, p) = 0. Since for

all p, we have α(p, p) = 0, the necessary condition becomes αpp(p, p) = 0. Differentiating

again (3) with respect to p to compute αpp(p, p) we obtain

0 = 2αp(p, π){(1− π)2u′′(w + α(p, π)(1− π))− π2u′′(w − α(p, π)π)}

+ αpp(p, π){p(1− π)2u′′(w + α(p, π)(1− π)) + (1− p)π2u′′(w − α(p, π)π)}

+ αp(p, π)
2{p(1− π)3u′′′(w + α(p, π)(1− π))− (1− p)π3u′′′(w − α(p, π)π)}.
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Taking π = p in the last expression, we have αp(p, p) = 1
p(1−p)

× u′(w)
−u′′(w)

from (4), then

rearranging yields

αpp(p, p) =
(1− 2p)

p2(1− p)2

[
u′(w)

u′′(w)

]2[
u′′′(w)

−u′′(w)
− 2

−u′′(w)

u′(w)

]
. (A.1)

Therefore a necessary condition is u′′′(w)
−u′′(w)

= 2−u′′(w)
u′(w)

. Finally, integrating this differential

equation gives u(w) = logw. �

A.3 Proof of Proposition 3

We want to show that if p̃ is symmetric about 1/2 then Ep̃ = π∗ for all u. Observe

from the first order condition (2) that α(p, π) = −α(1 − p, 1 − π). This implies that the

equilibrium condition can be written Eα(p̃, π∗) = Eα(1 − p̃, 1 − π∗) = 0. Observe then

that p̃ symmetric about 1/2 means that p̃ is distributed as 1− p̃. Consequently the equi-

librium condition implies Eα(p̃, π∗) = Eα(p̃, 1− π∗). Since the equilibrium is assumed to

be unique, this last condition implies π∗ = 1− π∗, that is π∗ = 1/2 = Ep̃. �

A.4 Proof of Proposition 4

Recall that, when the equilibrium is unique, π∗ ≥ p if and only if Eα(p̃, p) ≥ 0. For

symmetric distributions, this holds true if and only if for all p (hereafter denoted p) we

have

g(δ) = α(p+ δ, p) + α(p− δ, p) ≥ 0, (A.2)

in which α(p+ δ, p) is the unique solution of

(p+ δ)(1− p)u′(w + α(p+ δ, p)(1− p))− (1− p− δ)pu′(w − α(p+ δ, p)p) = 0 (A.3)

and α(p− δ, p) is the unique solution of

(p− δ)(1− p)u′(w + α(p− δ, p)(1− p))− (1− p+ δ)pu′(w − α(p− δ, p)p) = 0 (A.4)
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for δ ∈ [0,min{p, 1− p}].
Observe that g(0) = 0 and g′(0) = 0. Moreover, we have g′′(0) = 2αpp(p, p). Then,

taking αpp(p, p) from (A.1), we can see that g′′(0) ≥ 0 is equivalent to (1/2− p)(P (w)−
2A(w)) ≥ 0 for all w. This provides the necessity part of the Proposition.

We now prove the sufficiency. From (A.4), condition (A.2) is equivalent to

(p− δ)(1− p)u′(w − α(p+ δ, p)(1− p))− (1− p+ δ)pu′(w + α(p+ δ, p)p) ≥ 0. (A.5)

Denoting φ(x) = 1/u′(x) and α = α(p+ δ, p) ≥ 0, π∗ ≥ p is therefore satisfied if

(p+ δ)(1− p)φ(w − αp)− (1− p− δ)pφ(w + α(1− p)) = 0 (A.6)

implies

(p− δ)(1− p)φ(w + αp)− (1− p+ δ)pφ(w − α(1− p)) ≥ 0. (A.7)

We now introduce two random variables:

x̃ =





w + αp, p−δ

2p

w − αp, p+δ
2p

, ỹ =





w + α(1− p), 1−p−δ

2(1−p)

w − α(1− p), 1−p+δ
2(1−p)

.

Then it can be verified that Ex̃ = Eỹ = w−αδ and x̃ is a mean-preserving spread of ỹ if

and only if p ≥ 1/2. Note that φ′′(x) ≥ 0 if and only if P ≤ 2A. Therefore, when p ≥ 1/2

and P ≤ 2A, we have

Eφ(x̃) ≥ Eφ(ỹ), (A.8)

which is equivalent to

1

2p

[
(p− δ)φ(w + αp) + (p+ δ)φ(w − αp)

]

≥ 1

2(1− p)

[
(1− p− δ)φ(w + α(1− p)) + (1− p+ δ)φ(w − α(1− p))

]
.

This last inequality then leads to

(1− p)(p− δ)φ(w + αp)− p(1− p+ δ)φ(w − α(1− p))

≥−
[
(1− p)(p+ δ)φ(w − αp)− p(1− p− δ)φ(w + α(1− p))

]
= 0,
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where the last equality is given by (A.6). This shows that the condition (A.7) is satisfied.

Hence π∗ ≥ p when p ≥ 1/2 and P ≤ 2A. Moreover, when p ≤ 1/2, ỹ is a mean-preserving

spread of x̃, and φ′′(x) ≤ 0 is equivalent to (A.8), leading to π∗ ≥ p. The case π∗ ≤ p

under (1/2−p)(P−2A) ≤ 0 can be demonstrated in an analogous fashion. This concludes

the proof. �

Appendix B: Proof of Results in Section 5

In this appendix, we setup a S-state prediction market, derive the equilibrium state prices,

and provide the proofs of the propositions and details of the examples in Section 5.

B.1 The S-state model

Consider a prediction market with N traders, indexed by i = 1, · · · , N , and S states,

indexed by s = 1, · · · , S. Traders have the same utility function u(·), however they have

heterogeneous beliefs in the probability distribution over the states of nature, denoted

by pi = (pi1, pi2, · · · , piS) for trader i. Let πs be the price of the Arrow-Debreu asset s

that delivers $1 in state s and $0 in other states for s = 1, · · · , S. Trader i chooses a

portfolio αi = (αi1, · · · , αiS) of the Arrow-Debreu assets to maximize his expected utility

of portfolio wealth based on his belief pi. This leads to the standard first-order condition

(FOC):

pisu
′

i(wis) = λiπs, (B.1)

where λi is the Lagrange multiplier,

wis = wo + αis −
S∑

j=1

πjαij , i = 1, · · · , N ; s = 1, · · · , S

is the portfolio wealth of trader i in state s, and wo is the initial wealth.
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B.2 The equilibrium state prices

Based on the setup in subsection B.1, the equilibrium state prices {πs} are determined

by the market clearing condition

N∑

i=1

αis = 0, s = 1, · · · , S.

To derive the equilibrium state prices, we consider three types of utility functions and the

results are summarized in three Lemmas.

Lemma 1. For u(x) = log(x), the equilibrium state prices are given by

πs =
1

N

N∑

i=1

pis, s = 1, · · · , S, (B.2)

that is, the state price is the mean probability belief of traders in the state.

Proof : With u(x) = log(x), the FOC (B.1) becomes

wo + αis −
S∑

k=1

πkαik =
1

λi

pis
πs

, i = 1, · · · , N ; s = 1, · · · , S, (B.3)

which leads to

αis = αiS +
1

λi

(
pis
πs

− piS
πS

)
, s = 1, · · · , S.

Substituting the above expressions into (B.3) for s = S, we obtain that λi = wo. This

implies that the Lagrange multiplier λi is a constant in this case. Applying the market

clearing condition to (B.3) then leads to the equilibrium state prices (B.2). �

Lemma 2. For CARA utility u(x) = −e−rx/r with r > 0, the equilibrium state prices

are given by

πs =
p∗s∑S
k=1 p

∗

k

with p∗s =

( N∏

i=1

pis

)1/N

for s = 1, · · · , S. (B.4)
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Proof : With u(x) = −e−rx/r, the FOC (B.1) becomes

pis
πs

e−rwis = λi, i = 1, · · · , N, s = 1, · · · , S.

This leads to

αis −
S∑

k=1

πkαik = −wo +
1

r

[
log

(
pis
πs

)
− log(λi)

]
, s = 1, · · · , S. (B.5)

Applying the market clearing conditions to (B.5), we obtain

rwo +
1

N

N∑

i=1

log(λi) = log

(
p∗s
πs

)
, s = 1, · · · , S, (B.6)

where p∗s is defined by log(p∗s) =
1
N

∑N
i=1 log(pis) for s = 1, · · · , S. Also, from (B.5),

αis = αiS +
1

r

[
log

(
pis
πs

)
− log

(
piS
πS

)]
, (B.7)

for s = 1, · · · , S. Substituting (B.7) into (B.5) for s = S, we have

S∑

s=1

πs log

(
pis
πs

)
= rwo + log(λi), i = 1, · · · , N. (B.8)

Aggregating (B.8) over i then leads to

rwo +
1

N

N∑

i=1

log(λi) =
S∑

s=1

πs log

(
p∗s
πs

)
. (B.9)

Substituting (B.9) into (B.6), we then have

log

(
p∗s
πs

)
=

S∑

k=1

πk log

(
p∗k
πk

)
, s = 1, · · · , S.

Therefore p∗s/πs = β is a constant, independent of the state. Then (B.4) follows from
∑S

s=1 p
∗

s =
∑S

s=1 πsβ = β. �

Lemma 3. For CRRA utility u(x) = x1−γ/(1 − γ) with γ 6= 1. the equilibrium state

prices πs satisfy

π1/γ
s =

1

N

N∑

i=1

p
1/γ
is∑S

k=1 πk

(
pik
πk

)1/γ , s = 1, · · · , S. (B.10)
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Proof : With the CRRA utility function, the FOC (B.1) becomes u′(wis) = w−γ
is =

λiπs/pis. Hence, with g = −1/γ, wis =
(

λi

pis
πs

)g
. This, together with wis = wo +

αis −
∑S

k=1 πkαik, leads to

αis = −wo +

S∑

k=1

πkαik +

(
λi

pis
πs

)g

. (B.11)

Equation (B.11) implies that, for s = 1, · · · , S,

αis = αiS +

[(
λi

pis
πs

)g

−
(

λi

piS
πS

)g]
. (B.12)

Substituting (B.12) into (B.11) for s = S and using the market clear condition, we obtain

wo =

S∑

s=1

πs

(
λi

pis
πs

)g

, i = 1, · · · , N (B.13)

Also, applying the market clearing condition to (B.11), we have

wo =
1

N

N∑

i=1

(
λi

pis
πs

)g

, s = 1, · · · , S. (B.14)

Combining (B.13) with (B.14) leads to the state prices πs in (B.10). �

B.3 Proofs of Propositions 5 and 6

The proof of Proposition 5 follows easily from the equilibrium state prices (B.2) in Lemma

1 for u(x) = log(x). To prove Proposition 6, we first show that pis = pi for s = 2, ..., S and

i = 1, ..., N implies π2,S =
∑S

s=2 πs, where π2,S denote the state price of an Arrow-Debreu

security that delivers $1 if either state j = 2, ..., S occurs and $0 if state 1 occurs. If

pis = pi for s = 2, ..., S, we have from the FOC (B.1) that

u′(wij)

u′(wik)
=

πj

πk
, for all i = 1, ..., N and j, k = 2, ..., S.

Assume then by contradiction that πj > πk for some j, k = 2, ..., S and j 6= k. This

implies wij < wik, and hence αij < αik for all i = 1, ..., N . The last inequality cannot

hold at the equilibrium due to the market clearing condition. As a result we must have

πj = πk ≡ π for all j = 2, ..., S. It is immediate that each trader i must demand the same
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amount, say αi, for j, k = 2, ..., S. The problem of each trader i is then to select αi1 and

αi to maximize

pi1u(w + αi1 − αi1π1 − αi(S − 1)π) + (1− pi1)u(w + αi − αi1π1 − αi(S − 1)π).

This is equivalent to a binary-prediction market in which (S−1)π denotes the equilibrium

price of an Arrow-Debreu security that delivers $1 if either state j = 2, ..., S occurs.

Therefore we have
∑S

j=2 πj = (S − 1)π = π2,S. This implies the S-state problem is

equivalent to a reduced two-state problem by combining states 2 to S into one state.

Thus the equilibrium price of state 1 only depends on the beliefs of the state.

We now show that if there exists an individual i who assigns different probabilities

for two states j, k = 2, ..., S then we may always have π2,S 6= ∑S
j=2 πj. Consider a

simple example with 3 states and 2 traders, with the following structure of beliefs: p1 =

(1− 2p1, p1, p1) and p2 = (1− 2p2, p2 + e, p2 − e). Namely trader 1 judges states 2 and 3

as equally likely, while trader 2 judges states 2 and 3 as equally likely if and only if e = 0.

With CARA preferences, in the three-state prediction market we use the equilibrium

state prices in (B.4) of Lemma 2 and obtain πi = p∗i /(p
∗

1 + p∗2 + p∗3) for i = 1, 2, 3 with

p∗1 =
√

(1− 2p1)(1− 2p2), p
∗

2 =
√
p1(p2 + e) and p∗3 =

√
p1(p2 − e). However, in the

two-state prediction market where states 2 and 3 are combined into one state, the beliefs

p1 and p2 become p̄1 = (1 − 2p1, 2p1) and p̄2 = (1 − 2p2, 2p2), respectively. Hence

the corresponding state prices become (using obvious notations) π̄1 = p̄∗i /(p̄
∗

1 + p̄∗2,3) and

π̄2,3 = p̄∗2,3/(p̄
∗

1 + p̄∗2,3) with p̄∗1 =
√

(1− 2p1)(1− 2p2) and p̄∗2,3 = 2
√
p1p2. Therefore

π̄2,3 = π2 + π3 for all p1 and p2 if and only if e = 0. A similar example can be generated

for any arbitrary number of states. This completes the proof of Proposition 6.

B.4 Proofs of the results in Examples 5 and 6

In Example 5 with CARA utility function, we apply the equilibrium state price (B.4) in

Lemma 2 to traders’ beliefs and obtain that p∗1 = 1− 2p and p∗2 = p∗3 =
√

p2 − ǫ2, leading

to the state price π1 in the example.
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To show the result in Example 6, we apply the equilibrium state prices (B.10) in

Lemma 3 for CRRA utility function. With g = −1/γ, the state prices πs for s = 1, 2, 3

in this case satisfy

2 = (π1)
g
[
p−g
11 /∆1 + p−g

21 /∆2

]
, (B.15)

2 = (π2)
g
[
p−g
12 /∆1 + p−g

22 /∆2

]
, (B.16)

2 = (π3)
g
[
p−g
13 /∆1 + p−g

23 /∆2

]
, (B.17)

where

∆1 = π1(π1/p11)
g + π2(π2/p12)

g + π3(π3/p13)
g,

∆2 = π1(π1/p21)
g + π2(π2/p22)

g + π3(π3/p23)
g.

With the specified heterogeneous probabilities, ∆1 = (12)gδ1 and ∆2 = (12)gδ2, where

δ1 = π1(π1/9)
g + π2(π2/2)

g + π3(π3)
g,

δ2 = π1(π1/3)
g + π2(π2/6)

g + π3(π3/3)
g.

Correspondingly, equations (B.15)-(B.17) lead to

2(π1)
−g = 9−g/δ1 + 3−g/δ2, (B.18)

2(π2)
−g = 2−g/δ1 + 6−g/δ2, (B.19)

2(π3)
−g = 1/δ1 + 3−g/δ2, (B.20)

From (B.19) and (B.20), we obtain π3 = π2/2. Hence

δ1 = π1(π1/9)
g + (3/2)π2(π2/2)

g, (B.21)

δ2 = π1(π1/3)
g + (3/2)π2(π2/6)

g. (B.22)

Also, from (B.18) and (B.19),

3g[δ1 + 3gδ2]π
g
2 = 2g[3gδ1 + δ2]π

g
1 . (B.23)

Substituting (B.21) and (B.22) into (B.23), we obtain

[3g + 3−g][π1 − (3/2)π2]π
g
1π

g
2 = 3(2/3)1+gπ1+2g

2 [(π1/π2)
1+2g − (3/2)1+2g],

leading to π1 = (3/2)π2.
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