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Abstract— Developing a heart disease detection model using
simple non-laboratory risk factors plays an important role
in preventive care, especially for high risk subjects. The
model allows physicians/epidemiologists to effectively diagnose
a person as having heart disease. In this work, we aim to
develop a non-invasive risk prediction model for automated
heart disease detection that involves age, gender, rest blood
pressure, maximum heart rate, and rest electrocardiography.
We examine four public datasets from 1071 participants who
were referred for a special X-ray of the heart’s arteries (i.e.,
to see if they are narrowed or blocked). The subjects also
undertook a physical examination and three non-invasive tests.
To estimate the heart disease status, we apply a generalized
linear model with regularization paths via coordinate descent.
Even without laboratory-based data (e.g., serum cholesterol,
fasting blood sugar), we observed a prediction accuracy as
high as 72%, compared with 76% of other comprehensive
models. This observation suggests that few non-invasive factors
utilizing recent advances in data analytics can replace the
current practices of heart disease risk assessment.

Index Terms— Heart disease, RBP, RestECG

I. INTRODUCTION

Heart diseases and conditions involving the heart and
blood vessels (i.e., cardiovascular disease, CVD) are the
most common ones leading to death. It has been reported
that 17.7 million deaths from CVDs in 2015 accounted for
approximately 31% of all deaths worldwide [1]. About half
of that were due to coronary heart disease [1].

Early detection of heart disease and appropriate manage-
ment are critical to people with heart disease [1]. One main
reason is that most CVDs can be prevented by adjusting
lifestyle (e.g., smoking, significant alcohol consumption,
unhealthy diet, and physical inactivity). However, current
practices to detect heart disease in population still have
challenges in terms of expenditure and facility availablity.

CVDs have been often diagnosed through several labo-
ratory experiment results, e.g., blood tests, chest X-ray, or
clinical assessments of electrocardiogram (ECG), echocar-
diogram. Recently, in a follow-up study cohort of 6186
people (over 21 years) [2], a non-laboratory-based model
was shown comparable to a laboratory-based when predicting
first-time fatal heart disease events. In the non-laboratory-
based model, cholesterol was replaced by body-mass index.
Another similar observation found in the LIPID study [3],
non-laboratory-based risk factors were significantly associ-
ated with the risk of developing a recurrent heart disease
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event [3]. However, these approaches still require “compli-
cated” information such as diabetes and current hypertension
treatment data as in the earlier work [2] or angina grade
and myocardial infarction history as in the work [3]. We
hypothesize that fewer non-laboratory-based risk factors such
as age, gender, rest blood pressure, maximum heart rate,
rest ECG ST-segment abnormality may also have comparable
performance, especially in automated heart disease detection.

Simplifying risk assessment tool is a critical step for
prevention strategies. Among cardiovascular deaths, 80%
occur in developing countries where laboratory-based risk
tools are costly and not practical because lack of facilities.
Meanwhile, non-laboratory-based information is easier and
less costly to collect. Moreover, simple analysis of data like
short ECG measurements can be automatically implemented
with nearly similar accuracy to manual clinical assessment.
On the other hand, using a very large number of subjects,
accurate probability models for CVD detection could be de-
rived and applied universally. Early efforts [3]–[5] introduced
probability algorithms built from several thousand patients. A
recent study [6] reported clinical data alone are insufficient
to predict the disease. Meanwhile, Hemingway et al., [7]
proposed to use linked electronic medical records to increase
the accuracy of coronary artery disease diagnostics. Our
study, in line with the application of data science to health
care, aim to propose a model for automated CVD detection
using only five non-laboratory factors: age, gender, rest blood
pressure (BP), maximum heart rate (MaxHR) achieved, rest
ECG analysis.

The main contributions of this work are:
• We utilize a maximum collection size of a large well-

known dataset for heart disease from multi-nation sites
[4]. In the literature, due to clinical factors suffered from
missing data across different hospitals, most related
works on this dataset could only use one of the four
databases of the dataset (i.e., Cleveland database [4]).

• We demonstrate that our proposed model includes fewer
non-laboratory-based risk factors but performs compa-
rably to models involving laboratory-based data inputs.

II. METHODS

A. Data Set
Our study used four public databases contributed by an in-

ternational collaboration concerning heart disease diagnosis
[4]. There are 303 instances from Cleveland Clinic Founda-
tion, 294 from Hungarian Institute of Cardiology, 123 from



V.A. Medical Center (California, USA) and 200 instances
from University Hospital (Switzerland) [4]. In general, 1071
participants who were referred for coronary angiography
undertook a physical examination and three non-invasive
tests. All participants had no history of myocardial infarction,
valvular or cardiomyopathy disease. The class distribution of
the predicted attribute among four hospitals is presented in
Table I. In this work, towards an automated heart disease
presence detection, we categorised them into two groups
Negative (i.e., Class 0 in the dataset) and Positive (i.e., any
of Class 1 to 4 in the dataset).

There are 13 risk factors provided in the dataset including
laboratory-based and non-laboratory-based risk factors. Vari-
ables obtained from clinical test include chest-pain, serum
cholesterol, resting blood pressure (in mm Hg) and fasting
blood sugar (FBS). Whereas, non-invasive tests provide
information about maximum heart rate (MHR), the slope of
the peak exercise. Table II depicts the baseline characteristics
of all 13 factors for 411 people who were diagnosed negative
with CVDs and 509 patients who were positive. Patients with
the disease appeared to be older, more likely to be men, and
had a higher rest blood pressure, lower cholesterol than those
in control group. People with positive CVDs also tend to
have fasting blood sugar greater than 120 mg/dl. The index
of all 13 selected variables was statistically different in two
groups.

B. Generalized Linear Models with Regularization Paths via
Coordinate Descent

To classify a subject has heart disease or not we use a
generalized linear model (GLM) with convex penalties [8].
This is a binary classifier based on logistic regression (i.e.,
a quadratic approximation to the log-likelihood). There are
three common penalties to generalize the model: l1 (the
Lasso), l2 (ridge), and mixtures of the two (the elastic
net) [8]. While the former does the shrinkage and variable
selection at the same time, the latter may not select any
subset of variables (i.e., may include all or none of them).
These two approaches have different assumptions on the
relationships between input and output data. For example,
the ridge refers to a normal distribution for the coefficients
of the linear transformation while the Lasso refers to the
Laplace distribution. Thus, in this work, we compare both
two models with different penalties: Ridge and Lasso. Let λ

be the regularization parameter (i.e., control the weight of
penalty).

C. Performance Metrics

The accuracy of proposed model in heart disease detection
is evaluated as follows. Subjects who were labeled the
same as annotation of positive are True Positives (TP).
Subjects who were labeled as Positive but did not agree
with the ground truth are False Positives (FP). Subjects who
were labeled as Negative by the proposed method but were
annotated as Positive are False Negatives (FN). The subject
that was labeled as Negative by both are True Negative (TN).

The sensitivity was calculated as T P
T P+FN and the specificity

was calculated as T N
T N+FP .

III. RESULTS

1) Fitting GLM models: Fig. 1 visualizes the coefficients
of fitted models using GLM approaches. In the figure, each
variable is illustrated by a curve line against the l1-norm
when varying λ values. The top axis represents the number
of non-zero coefficients at the current λ (or can be referred
to as degrees of freedom (df) for the Lasso).

2) Model Selection with Cross-validation: We imple-
mented a ten-fold cross-validation using the misclassification
error criterion. The grid of λ extends to a range of 100
values. Fig. 2 illustrates the cross-validation curve with
the standard deviations (i.e., error bars). In the figure, two
vertical dotted lines present two selected λ : λmin (i.e., λ that
gives the minimum error) and λSE (i.e., for one standard
error range of the minimum error). These (λmin, λSE ) values,
found through the cross-validation, are (0.03611, 0.1005)
and (0.13598, 0.8741) for the Lasso-based and the Ridge
regularization, respectively.

3) Selected GLM models: Table III lists the corresponding
coefficients of fitted models at the best cross-validation
parameter λmin for five non-laboratory-based risk factors. We
noticed that in the model using the Lasso regularization, the
rest blood pressure and the abnormality of ST-T segment in
ECG analysis do not play an important part. By contrast, in
the model using the Ridge approach, these did contribute in
the model.

Table IV depicts accuracy performance of two models
during training period and hold-out test stage. We found that
the performance of both models was consistent and greater
than 70% through training and test sets.

IV. DISCUSSION

In this work, we have examined the possibility of reducing
the number of risk factors, especially those require costly
and invasive laboratory-based results, to detect heart disease.
We found that age, gender, rest blood pressure measurement,
maximum heart rate, and the abnormality of ST segment in
the rest ECG can be used to feed into a simple generalized
linear model and achieved closely comparable accuracy
as earlier works that utilized a more comprehensive input
set. For example, authors of the well-known work [4] that
included laboratory based data only yielded approximately
a 77% classification accuracy (using a logistic regression
approach). Furthermore, research advances in processing
massive datasets may provide a useful real-time tool and
massive information learning platform that cardiologists can
assess an individual patient’s risk for heart disease more
accurately with less laboratory cost and faster. It is worth
noting that the above ECG data used in our method can be
obtained easily given the recent advances in wearable sensor
for automated ECG analysis.

Relevancy of each component of the proposed information
set has been long supported in clinical studies. Aging has
been suggested one of the highest risk factors for CAD



(a) Fitted GLM with Lasso penalty.

(b) Fitted GLM with ridge penalty.

Fig. 1. Fitted generalized linear models with regularization paths.



(a) Cross-validation for GLM with Lasso penalty.

(b) Cross-validation for GLM with ridge penalty.

Fig. 2. Cross-validation for generalized linear models (GLM) with different regularization paths. The top axis denotes the number of non-zero coefficients
at a given λ . λmin (λSE ) are depicted by dotted lines. Error bars are upper and lower standard deviations.



TABLE I
MULTI-CLASS DISTRIBUTION (N PEOPLE) AND PREVALANCE % OF Absence =Negative OR Presence= Positive AMONG DATABASE LOCATIONS.

Database Multi-Class (n people) Total Class Prevelance (%)
0 1 2 3 4 Negative Positive

Cleveland 164 55 36 35 13 303 54.1% 45.9%
Hungarian 188 37 26 28 15 294 63.9% 36.1%

Switzerland 8 48 32 30 5 123 6.5% 93.5%
California 51 56 41 42 10 200 25.5% 74.5%

TABLE II
BASELINE CHARACTERISTICS OF 13 RISK FACTORS (THE WHOLE DATASET).

Factors Class P-value
Negative Positive
(n=411) (n=509)

Age 50.547 (9.4) 55.904 (8.7) < 0.001
Sex Men 267 (65 %) 459 (90.2 %) < 0.001

Women 144 (35 %) 50 (9.8 %)
Chestpain (yes) Typical 26 (6.3 %) 20 (3.9 %) < 0.001

Atypical 150 (36.5 %) 24 (4.7 %)
Non-aginal 131 (31.9 %) 73 (14.3 %)
Asymptomatic 104 (25.3 %) 392 (77.0 %)

Rests blood pressure 129.9 (16.87) 133.979 (20.552) 0.002
Cholesteral 227.9 (75.8 ) 176.48(127.518) < 0.001
Fasting blood sugar > 120mg/dl 44 (11.1 %) 94 (21.7 %) < 0.001
RestECG Normal 268 (0.652) 283 (0.558) 0.003

Abnormal ST 61 (0.148) 118 (0.233)
LVHypertrophy 82 (0.2) 106 (0.209)

Max heart rate 148.8 (23.6) 128.262 (24.02) < 0.001
CPETAgina (yes) 55 (14.1 %) 282 (59.55 %) < 0.001
Oldpeak 0.418 (0.716) 1.263 (1.197) < 0.001
Slope 1.49 (0.62) 1.93 (0.56) < 0.001
CA 0.279 (0.640) 1.132 (1.012) < 0.001
Thal 3.99 (1.68) 5.92 (1.656) < 0.001

TABLE III
COEFFICIENTS OF FITTED MODELS (AT THE BEST CROSS-VALIDATION

PARAMETER λmin) FOR FIVE NON-LABORATORY-BASED RISK FACTORS.

Risk factors Coef. by Lasso a Coef. by Ridge b

Age 0.029 0.029
RestBP 0 0.003
MaxHR -0.021 -0.016
SexMale 0.998 0.871
Rest ECG
normal-ST

0 -0.187

a Coefficients estimated by GLM with Lasso regularization
b Coefficients estimated by GLM with Ridge regularization

[5], [6], [9]. Authors of [9] showed the genetic relationship
between aging and heart disease. Comparing with commonly
used laboratory-based risk scores: Atherosclerotic Cardio-
vascular Disease (ASCVD) [10], Framingham Risk Score
(FRS) [11], and SCORE (Systematic Coronary Risk Evalu-

ation) [12] a non-laboratory-based risk tool [13] has shown
to have a very high correlation (N=47,466 people, cross-
sectional collection from nine countries). More recently, non-
laboratory Framingham score [14], which substitute BMI for
lipids in FRS [11], was shown as the best performance among
non-laboratory algorithms (internal validity only). However,
these non-laboratory scores only eliminated blood-test based
factors while maintain a larger number of inputs than our
proposed model. Hence, using our approach, Big data based
systems can be utilized for heart disease detection without
laboratory-based values. This risk assessment approach is
applicable to population where laboratory testing is not easily
accessible (e.g., developing countries or regions with limited
resources).
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