
 
 “© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing this 

material for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works.” 



Feature Analysis for Discrimination of Motor Unit Action Potentials

Thuy T. Pham∗12, Diep N. Nguyen1, Eryk Dutkiewicz1,
Alistair L. McEwan2, and Philip H.W. Leong2, Andrew J. Fuglevand3,

1Faculty of Engineering and IT, University of Technology Sydney, NSW, Australia.
2Department of Electrical and Information Engineering, University of Sydney, NSW, Australia.

3Department of Physiology, University of Arizona, AZ, USA.

Abstract— In electrophysiological signal processing for intra-
muscular electromyography data (nEMG), single motor unit
activity is of great interest. The changes of action potential
(MUAP) morphology, motor unit (MU) activation, and recruit-
ment provide the most informative part to study the nature
causality in neuromuscular disorders. In practice, for a single
nEMG recording, more than one motor unit activities (in the
surrounding area of a needle electrode) are usually collected.
Such a fact makes the MUAP discrimination that separates
single unit activities a crucial task. Most neurology laboratories
worldwide still recruit specialists who spend hours to manually
or semi-automatically sort MUAPs. From a machine learning
perspective, this task is analogous to the clustering-based classi-
fication problem in which the number of classes and other class
information are unfortunately missing. In this paper, we present
a feature analysis strategy to help better utilize unsupervised
(i.e., totally automated) methods for MUAP discrimination. To
that end, we extract a large pool of features from each MUAP.
Then we select the top ranked candidates using clusterability
scores as selection criteria. We found spectrograms of wavelet
decomposition as a top-ranking feature, highly correlated to
the motor unit reference and was more separable than existing
features. Using a correlation-based clustering technique, we
demonstrate the sorting performance with this feature set.
Compared with the reference produced by human experts, our
method obtained a comparable result (e.g., equivalent number
of classes was found, identical MUAP morphology in each
pair of corresponding MU class, and similar histograms of
MUs). Taking the manual labels as references, our method
got a much higher sensitivity and accuracy than the compared
unsupervised sorting method. We obtained a similar result in
MUAP classification to the reference.

Index Terms— Spike sorting, feature learning

I. INTRODUCTION

Motor unit activity analysis provides crucial information
towards diagnosis and treatment of neuromuscular disorders.
In intramuscular electromyography data, when recording
small voluntary contractions with a needle electrode, the
electrical signal obtained is often a combination of more than
one motor unit (MU) from the surrounding area of the needle
tip. Therefore, a motor unit action potential (MUAP) consists
of several muscle fiber action potentials (MFAPs) within the
anatomical MU.

To obtain the changes of MUAP morphology, MU acti-
vation, and MU recruitment that yield valuable information,
one would require activities from a single MU. Neuropathic
conditions occur with decreased recruitment whereas myo-
pathic conditions happen with MUAP morphology changes.
As an example, a MUAP examination can confirm myopathic
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conditions and identify the differential to find an appropriate
biopsy site [1]. For each recording, most neurology labo-
ratories employ experts who spend hours to classify action
potentials (“spikes”) using commercial software tools (e.g.,
Spike2 [2], Cerebus [3]) . This de-facto standard practice
relies on human-based assessment which is subjective (hence
prone to mistake/errors of the expert) and time-consuming.
An unsupervised/automated classification method is hence
very much desirable.

A spike discrimination procedure involves three basic
phases: spike detection, feature extraction, and spike clus-
tering. Spike detection often involves aligning spikes to
a common temporal point. The feature extraction phase
provides principal information that highlights differences
among spikes. Common spike feature extraction algorithms
are based on principal component analysis (PCA) [4], the
discrete wavelet transform (DWT) [5], or discrete derivatives
[6]. A dimensionality reduction step may be used to select
only the few best coefficients. In the final phase, spikes are
assigned into different MU classes. Existing spike sorting
algorithms using distances (e.g., k-means clustering [7][8]),
mean shift [9][10]), likelihood (e.g., Bayesian classification
(BC) [11]), or super paramagnetic clustering (SPC) [12] have
all been proposed.

In the literature of MUAP discrimination, the relevance
and clusterability of the above existing features have failed
to be addressed. Most previous automated efforts often
only yielded excellent performance for subject-dependent
settings. We hypothesize that higher correlated and more
separatable features across classes may improve the clas-
sification performance of unsupervised subject-independent
MUAP classifiers. We propose to evaluate feature candidates
using our voting-based selection approach for the MUAP
sorting application. This hybrid selection scheme is a data-
driven approach and can compare a comprehensive set of
candidates including existing features and novel variants. The
strategy has been shown successfully in detecting respiratory
artefacts in lung function data [13] and freezing of gait
epochs in acceleration data [14]. However, under the context
of MUAP sorting, the classification involves an unknown
number of class discrimination. In this work, we demonstrate
that such feature analysis approach is also applicable to
MUAP discrimination. The main contributions of this work
are:
• This is the first reported feature analysis approach using

clusterability criterion for MUAP sorting in nEMG data.
• The spectrograms of wavelet decomposition is more



relevant and discriminative than existing features.
• The accuracy of our proposed is comparable with the

manual reference.
The rest of the paper is as follows. The method details

including data collection, the feature analysis process, sorting
algorithms, and performance metrics are presented in Section
II. The obtained results are reported and discussed in Section
III and IV. Conclusion is drawn in Section V.

II. METHODS

A. Data Collection

1) Physiologically-Based Synthetic Data: We used the
nEMG simulation algorithm by Hamilton-Wright and
Stashuk [15] for our development phase. Note that the
algorithm was shown to produce nEMG data consistent with
those acquired from real muscle (the developed muscle)
[15]. We run the simulator on a Microsoft Windows per-
sonal computer for a concentric electrode during a 10%
contraction maximal voluntary (MVC). Figure 1 illustrates a
synthetic epoch of 100 ms. The voltage range is −516.05→
1019.84 µV . The full settings used for the experiments can
be found in [15].

2) Human Recorded Data: We also collected a real data
set recording from a healthy young male at the Fuglevand
Laboratory [16] using a rack-mounted electro-physiological
recording system CED [2]. Data were sampled at 55.5 kHz.
The experiment settings for force used to create nEMG data
was: time interval of 0.1 ms for force, scale of 0.0023, unit of
“N”. We used the concentric needle electrode. A neurologist
manually provided labels of MUAP appearances together
with its associated MU. Note that though most of the manual
labeling procedure was aided by a commercial software tool
(Spike2 [2]), the human operator is still needed for the final
template matching and adjusting. These labels are referred
to as “reference” during our evaluation.

B. Feature Analysis

1) Selection Scheme: Given a large exploratory feature
pool, a voting process with different selection levels and
criteria (saliency, robustness, and accuracy) is used to figure
out the best feature. After each level, selected candidates be-
come more favourable. Specifically, the first round suggests
the most salient and discriminative subset of features using
mutual information (MI) and separability calculated using
the Euclidean distance (DIS). These features are evaluated
against the reference for detection performance assessment.

Selection criteria, i.e., MI and DIS are calculated as
follows. Let X be a discrete random variable X ∈ X and
C be a target variable (c ∈ C, class label set). The entropy
Hb(X) of X measures its uncertainty [17].

Hb(X)
def
= −∑

x∈X
p(x) logb p(x)

where b is the base of the logarithm. In this work, b = 2,
and hence entropy will be measured in bits.

Let C be a target variable (c ∈ C, class label set). The
conditional entropy of X given C is defined by:

H(X |C) =−∑
c∈C

p(c) ∑
x∈X

p(x|c) log p(x|c).

The mutual information [17] between X and C, MI(X ;C),
measures the amount of information “shared” by X and C.
MI is then interpreted as the relevance of X and C:

I(X ;C) = ∑
x∈X

∑
c∈C

p(xc) log
p(xc)

p(x)p(c)

To assess discrimination of features, relevant candidates
are considered having nearest instances (by Euclidean dis-
tances) of same class closer and having nearest ones of other
classes more far apart. The weighting of these distances,
called DIS, is calculated using the RELIEF algorithm [18]
(as similarly implemented in [19] or built-in packages of
MATLAB, The MathWorks Inc., Natick, MA, 2000).

2) Feature Pool: We extracted twelve groups of features
in both time and frequency domains (Table I). In the table,
existing features include amplitude range information of
EMG data, DWT, top ten selected by KS tests [20] of
DWT, top ten percentage selected by ICA or PCA. Our new
feature candidates are singular value decomposition (SVD)
of spectral analysis and spectrograms of raw amplitude data
or DWT transformed data.

TABLE I: List of candidates in the EMG feature pool.

Group
ID

Domain Description New
or
not?*

Feature
ID

1 Time Maximum amplitude of
EMG

No 1

2 Time Minimum amplitude of
EMG

No 2

3 Time Range amplitude of
EMG

No 3

4 Frequency DWT level d3 No 4-128
5 Frequency DWT level d4 No 129-253
6 Frequency DWT level a3 No 254-378
7 Frequency SVD of spectral analy-

sis
Yes 379-386

8 Time ICA (ten percentage) No 387-398
9 Time PCA (ten percentage) No 399-410
10 Frequency KS test of DWT (top ten

coefficients)
No 411-420

11 Frequency Spectrograms of raw
amplitude

Yes 421-
1065

12 Frequency Spectrograms of DWT Yes 1066-
1710

Several methods used for the new feature extraction (i.e.,
they have not been proposed for nEMG spike sorting) are
described as follows. Discrete wavelet analysis that repre-
sents signals in both frequency and time is a very useful tool
in the neuroscience field [21]. Transient differences in high
frequency features (sharp edges and steep leading or trailing
slopes) and/or in low frequency features (duration of the
repolarization phase) can present the morphology of spikes.
In this work, MUAPs are first decomposed into wavelet
coefficients using the DWT method [5]. These coefficients
represent differences among spikes based on the quantifica-
tion of energy found in specific frequency bands at specific
time locations. We implemented a 4-level decomposition and
Haar window using built-in functions of MATLAB (The
MathWorks Inc., Natick, MA, 2000).

Due to the multi-modal distribution of coefficients [22],
we rank these candidates by scores calculated by devia-
tion from normality, using a modification of Kolmogorov-



Fig. 1: Example of a 100-ms epoch of the simulated nEMG.

Smirnov (KS) test [20]. Let X be a data set, the score is
max(|F(x)G(x)|) where F(x) is the cumulative distribution
function of X and G(x) is a Gaussian cumulative distribution
function with the same mean and variance. To minimize
the effect of overlapping spikes, for each coefficient, only
values within three standard deviations (both directions) are
considered [22]. In order to create a compressed input to
the sorting process, only the ten largest score candidates are
selected to best separate spikes.

Finally, these selected coefficients are transformed to a
series of spectral snapshots (spectrograms) using the short
Fourier transform (STFT [23]). Specifically, let v be the
wavelet feature of a spike. A Hamming window is used with
STFT to transform v into an image of spectrogram. Hence,
distance between spikes are the correlation coefficients be-
tween these images.

C. Automated Spike Sorter

1) Preprocessing: Intramuscular data is corrupted by
spike-like correlated noise. Thus, we need to make data
points statistically independent (“pre-whitening”). A prac-
tical approach employs a linear prediction filter [24] to
whiten the input signal itself before we extract any MUAP.
In this work, we use a third-order forward linear predictor
(FIR filter) that predicts the current value of the real-valued
original data based on past three samples [24]. Using timing
labels from the reference, we extract the spike set together
with labels of MU classes. All spikes are extracted with the
same window size of 8 ms.

To focus on sorting evaluation, overlapping spikes (i.e.,
have more than two MU in the same window) relate more to
spike detection than sorting algorithms. Thus, we removed
overlapping spikes with small delay by detecting multiple
peaks within a spike window. For overlaps without delay
(i.e., they may look like the firing of a new neuron), we do a
re-sorting step as described in the post-preprocessing section.

2) x-Class Sorter: After feature extraction steps, based on
MUAP morphology, the correlation between spikes is used
as the similarity measure for an number x-class sorting ap-
plication [25], [26] where x is unknown. Instead of using the
Euclidean distance metric, to account for electrode drift and

normalized values that suit for subject-independent settings,
we proposed to use the correlation metric that ranges from
0 to 1.

Let IX and IY be two feature vectors of MUAP X and
MUAP Y , respectively. rX ,Y is the correlation between two
feature vectors of X and Y rX ,Y = C {X ,Y}

σX σY
where rX ,Y is

the correlation coefficient between MUAP X and MUAP Y .
C {X ,Y} is the covariance of two feature vectors X and Y . σX
and σY are the variances of X and Y , respectively. The class
assignment variable of X is defined by the correlation based
sorting scheme. The sorter starts with a single class contains
all spikes having high correlation rX ,Y with the initial spike
given a desired threshold level (e.g., 0.9). Then the sorter
stops when the unsorted pool of remaining spikes is empty.

3) Post-processing: Because the firing behaviour of an
individual MU relates to its recruitment threshold [27] [28],
the size of a valid cluster corresponding to a MU should
exceed a parameter. According to the recruitment threshold
assignment derived from the work of Fuglevand [29]) and
popular settings found in the literature, we set this parameter
to 40. All clusters with size smaller than 40 were merged
into a group, called catch-all class. We assume that these
small clusters may associate with overlapping spikes without
delay. To assign the labels for clusters (or individual spike
if that is the catch-all cluster), we measure the correlation
between the mean waveform of the cluster and the one of
the reference group. A label is chosen if the match has the
highest correlation score.

D. Reference Works

The objective reference clustering results are available for
the synthetic data as the simulator is controlled during data
generation. However, this is usually not available for the
recorded data. Ideally the reference could be derived from
simultaneous intra-cellular recording, but availability of such
data is limited. The most common practice in physiology
laboratories involves using commercial software (e.g., Spike2
in our work) and manual checking by an (human) operator.
This approach was used to obtain the reference in this work
for real recordings.



We also compare our proposed method with a relevant
work using the DWT extraction and super paramagnetic
clustering (SPC) [12]. We applied settings for the SPC
method as recommended in [30]. Specifically there were
q = 20 states, K = 11 nearest neighbours, and N = 500
iterations for clustering. The range of temperature was from
0 to 0.201 in steps of 0.01. The implementation was provided
by the authors of [12] (MATLAB packages, The MathWorks
Inc., Natick, MA, 2000) .

E. Performance Metrics

Performance metrics for a multi-class classification task
are derived from the confusion matrix. Let M be the con-
fusion matrix of sorting outcome. The successful predicted
events (True) for a class are on the diagonal of M. All other
members of M are incorrectly predicted events (False). Let
Mi j denote the number of test outcomes (i.e., ground truth
labels, Groundi) of class i, that were predicted as class j,
Predicted j. The successful predicted events (True) for class
i, denoted Tii, are on the diagonal of M. All other members
of M are incorrectly predicted events (False), denoted Fi j
where i 6= j.

M =

Predicted1 . . . Predictedi . . . PredictedC


T11 . . . F1i . . . F1C Ground1

...
. . .

... . . .
...

...
Fi1 . . . Tii . . . FiC Groundi
... . . .

...
. . .

...
...

FC1 . . . FCi . . . TCC GroundC

(1)
The sensitivity and positive predictive value (PPV) of class

i, Seni and PPVi, are defined as follows.

Seni =
Tii

Tii +∑ j 6=i Fi j
(2)

PPVi =
Tii

Tii +∑ j 6=i Fji
(3)

III. RESULTS

A. Selective Features

Ranking over the entire exploratory pool, each feature
candidate was found with a ranking score by aforementioned
saliency criteria (Fig. 2; sorted from high to low scores.
The higher saliency score indicated the higher ranking order.
Among the top quarter (i.e., highest 25% ranking) of the
pool, the distribution of feature groups (Fig. 2b) shows that
the list includes DWT and Spectrograms of DWT coefficient
features (Table I).

As can be seen, scores dropped quickly outside of the
top 25 percent candidates by DIS criterion and only after
80 percent candidates by the MI score. We found that, by
MI criterion, except for the single feature of Group 1, all
other members of the top 25 percent belong to Group 12.
Meanwhile, by DIS criterion, though the top 25 percent
includes several groups, Group 12 still dominates the high
score area. Hence, we proposed to use the feature set Group
12 for the next evaluation in terms of sorting performance.

(a) Ranking of the entire feature pool.

(b) The histogram of the top 25 percent candidates.

Fig. 2: Example of feature ranking by DIS criterion.
(a) Ranking scores for the entire feature pool. Vertical:
saliency scores; Horizontal: ranking order (highest = 1,
lowest = 1710). (b) The histogram of the top 25 percent

highest-score candidates by feature groups (Table I).

B. Sorting Performance

1) Synthetic Data: After preprocessing, spike sets were
prepared for the sorting stage as in Table II. In the refer-
ence set, the MU1 class has much larger amplitude range
than other four classes . Classes MU2-5 have only slight
difference in the waveforms. Our sorter produced five clusters
that match with five reference classes. After assigning labels,
the histograms were compared with the reference histogram
(Fig. 3). In terms of the confusion matrix, the general
classification accuracy and class-wise sensitivities as well as
predictivities are reported in Table III.

TABLE II: Spike set inputs. Class proportions are in order
of the MU names in the labels.

Synthetic data Recorded data
Number of spikes 1230 1220
Number of classes 5 3
Class proportion 336:269:226:207:192 440:483:535

2) Recorded Data: Table IV depicts the distribution of
spikes in large clusters corresponding to the reference classes
from the recorded dataset. Both automatic clustering methods
had about 19% catch-all spikes . There were three reference
classes. While the amplitude range of spikes in MU1 and



Fig. 3: Agreement in histograms of automatic methods against the reference for synthetic data.

TABLE III: Synthetic data MUAP sorting comparisons
between automatic methods and the reference. Accuracy

measures (in %) use simulation settings as reference.
True/False are MU matching or not with the reference

labels.

Include catch-all Not include catch-all
Metrics Class name SPC-

based
Our
method

SPC-
based

Our
method

MU1 39.3 92.5 100.0 100.0
MU2 85.1 67.6 100.0 98.4

Sensitivity MU3 74.7 75.2 98.8 98.3
MU4 71.9 69.5 99.3 88.9
MU5 19.3 88.0 0 72.9
MU1 100.0 100.0 100.0 100.0
MU2 81.2 98.9 98.2 98.9

PPV MU3 54.5 80.2 54.5 80.2
MU4 98.6 97.9 54.6 97.9
MU5 10.4 44.9 0 100.0

Average accuracy 58.2 79.3 81.9 94.8

MU2 are ±0.5 µV, MU3 ranges much larger (±1 µV).
Sorting performance for each MU and the general accuracy
were depicted in Table V.

TABLE IV: Distribution of spike count in large clusters
corresponding to the reference classes from the recorded

dataset.

Clusters Our method SPC-based Manual reference
MU1 MUAPs 314 368 383
MU2 MUAPs 283 335 408
MU3 MUAPs 378 284 429
un-sorted MUAPs 245 233 0

In contrast with our superior results against the SPC
when applied to the synthetic data, results of both automatic
techniques were comparable with recorded data. However,
it might be due to the small size of dataset and a small
number of active MUs recorded. We may also need an inter-
rater measurement to alleviate the human subjectivity of the
manual reference in evaluation. These should be addressed
in future work for the method. In general, all performance
measurements we achieved in this study are among the most
accurate outcomes in spike sorting evaluation works.

IV. DISCUSSION

Given a large exploratory feature pool, to select the best
feature, a voting process consists of three levels: saliency,

TABLE V: Comparison of sorting performance using
recorded data between automatic methods. Accuracy

measures (in %) use manual labels as reference. True/False
are MU matching or not with the reference labels.

Include catch-all Not include catch-all
Metrics Class name SPC-

based
Our
method

SPC-
based

Our
method

MU1 99.7 99.7 99.7 99.6
Sensitivity MU2 89.9 68.6 100.0 99.6

MU3 74.6 83.9 100.0 100.0
MU1 71.8 65.8 100.0 99.6

PPV MU2 99.7 99.6 99.7 99.6
MU3 100.0 100.0 100.0 100.0

General accuracy 87.6 83.7 99.9 99.8

robustness, and accuracy selection. This strategy has been
successfully demonstrated with anomaly detection scenarios
in our earlier works [13], [14]. However, both of the cases are
two-predefined-class detection tasks. Though MUAP sort-
ing involves an unknown-class-number classification task,
the feature analysis scheme still addresses the best feature
candidate for the clustering purpose. Synthetic and human
recorded datasets of motor unit action potentials were used
to demonstrate the performance. Compared with the manual
reference, our MUAP sorting method is comparable (regard-
ing to the number of MUs found and histograms of MUs).
Moreover, in the compared method (SPC-based),the tempera-
ture terminology used for reviewing outcome is less intiuitive
than the correlation as in our method. The correlation values
range 0→ 1 while the measure of temperature is difficult to
tune.

V. CONCLUSION

In this work, a feature analysis approach for spike sorting
in MUAP is reported. We analyzed a large pool of candidates
for MUAP feature extraction. We used ranking scores by sev-
eral saliency criteria including mutual information, Euclidean
distance based discrimination. This hybrid selection scheme
is a data-driven approach and can compare a comprehensive
set of candidates including existing features and novel vari-
ants. The most selective features learnt from this process are
most applicable to the unsupervised and subject-independent
applications. We demonstrated the classification performance
with this feature using both synthetic nEMG and human
recorded data. Compared with the reference produced by



Fig. 4: Agreement in histograms of automatic methods against the reference for recorded data.

human experts, our method obtained a comparable result
(e.g., equivalent number of classes was found, identical
MUAP morphology in each pair of corresponding MU class,
and similar histograms of MUs).
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