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Abstract—In the spirit of twin parametric-margin support 

vector machine (TPMSVM) and support vector machine based 

on fuzzy membership values (FSVM), a new method termed as 

fuzzy based Lagrangian twin parametric-margin support vector 

machine (FLTPMSVM) is proposed in this paper to reduce the 

effect of the outliers. In FLTPMSVM, we assign the weights to 

each data samples on the basis of fuzzy membership values to 

reduce the effect of outliers. Also, we consider the square of the 2- 

norm of slack variables to make the objective function strongly 

convex and find the solution of the proposed FLTPMSVM by 

solving simple linearly convergent iterative schemes instead of 

solving a pair of quadratic programming problems as in case of 

SVM, TWSVM, FTSVM and TPMSVM. No need of external 

toolbox is required for FLTPMSVM. The numerical experiments 

are performed on artificial as well as well known real-world 

datasets which show that our proposed FLTPMSVM is having 

better generalization performance and less training cost in 

comparison to support vector machine, twin support vector 

machine, fuzzy twin support vector machine and twin 

parametric-margin support vector machine. 
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I. INTRODUCTION 

One of the popular machine learning algorithms, support 
vector machine (SVM) [1] is an excellent kernel-based tool 
used in past few decades for wide variety of applications like 
text categorization [2], handwritten digit recognition [3], 
activity detection[4], stock exchange prediction [5], brain- 
computer interface [6], credit scoring [7] etc. 

The computational complexity of SVM depends on solving 
a large sized quadratic programming problem (QPP) i.e. O(m3) 
where m is the number of training data samples. This is the 
main disadvantage of this method for large scale datasets. 
Based on same principle, an efficient approach called twin 
support vector machine (TWSVM) has been proposed by 
Jayadeva et al. [8] to reduce the training cost and improve the 
generalization performance where it finds two non-parallel 
hyperplanes by solving two smaller sized QPPs instead of 
finding a single hyperplane by solving a single larger one in 
case of SVM, which results in a reduced training cost by 
approximately four times [8]. A least squares variant of SVM, 
called least squares support vector machine (LSSVM) [9], has 
been proposed to decrease the training cost. Mangasarian and 

Musicant [10] has proposed an iterative method based on an 
implicit Lagrangian formulation and named it Lagrangian 
support vector machine (LSVM). Further, Balasundaram et al. 
[11] proposed a new approach for training Lagrangian twin 
support vector machine using unconstrained convex 
minimization. For Heteroscedastic noise structure, recently, 
Hao [12] has proposed a novel approach termed as parametric- 
margin v-support vector machine (Par-v-SVM) which is based 
on v-support vector machine (v-SVM) [13]. Further, Peng [14] 
has proposed a novel approach, twin parametric-margin 
support vector machine (TPMSVM), where it solves two 
smaller sized QPPs instead of solving a single larger QPP as in 
case of Par-v-SVM. Hence, the training cost of TPMSVM is 
much lesser than Par-v-SVM. 

In all the techniques discussed above, all the data samples 
belonging to one class contribute equally in finding the final 
classifier. But presence of outliers and noise in real-world 
datasets can effect in determining a more appropriate classifier. 
Hence, to lessen the effect of outliers and noise in finding the 
resultant classifier, a fuzzy-based SVM algorithm (FSVM) 
was proposed by Lin et al. [15]. In their algorithm, each 
training point is assigned a membership value which can be 
calculated using a suitable membership function depending on 
the nature of the problem. Samples with higher importance get 
a higher membership value whereas those who have less 
importance get a lower membership value. In due  course, many 
variants based on FSVM have been proposed. Batuwita 
& Palade [16] has proposed FSVMs for class imbalance 
learning (FSVM-CIL) to handle the problem of class 
imbalance. Furthermore, Tsujinishi et al. [17] has proposed a 
fuzzy least squares support vector machine for multiclass 
problems. Similarly, Wang et al. [18] has proposed a model 
Bilateral-weighted FSVM  (B-FSVM).  To  solve  bankruptcy 
prediction problem, a new fuzzy SVM is proposed [19]. 
Further, a fuzzy least squares support vector machine for object 
tracking is proposed by Zhang et al. [20]. 

In this paper, a new technique is proposed, termed as fuzzy 
based Lagrangian twin parametric-margin support vector 
machine (FLTPMSVM) to handle the outlier points which 
uses fuzzy membership values in decision learning. To find 
the resultant decision classifier, our proposed method 
FLTPMSVM solves simple  linearly convergent iterative 
schemes instead of solving a pair of quadratic programming 
problems (QPPs) as in TWSVM, FTSVM and TPMSVM. 
Here, we are using MOSEK toolbox to solve the QPPs in 
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SVM, TWSVM, FTSVM and TPMSVM. There is no need to subject to (K (X , D
t 
)w e b ) e , 0 (5) 

use  any  external  toolbox  for  our  proposed  FLTPMSVM. 
1 2 1   2 1 

Hence, FLTPMSVM improves the generalization performance where  , represent slack  

variables; 

C1 ,  C2 are  penalty 

of  the  decision  surface  and  takes  less  training  time  in parameters; D [X ; X ] ; e , e are   vectors   of   suitable 

comparison to others methods. Moreover, we have presented a 
comparative  analysis  of  results  in  terms  of  classification 

1 2 1 2 

dimension having all values as 1’s and 
K x

t    
D

t
 k x x k x x is a row vector in R

m 
, where 

accuracy and training time of SVM, TWSVM, FTSVM and (   , ) (  (  , 
1 ),..., (  ,  m )) 

TPMSVM  with  our  method  for  synthetic  and  real-world k(x, x ) (x)
t 
.(x ) 

R 
for i 1,..., m is an appropriately 

datasets. 

 
II. RELATED WORK 

 

A. Support Vector Machine (SVM) 

Let us suppose  X is the input matrix of training samples 

i i 

chosen kernel. 

By introducing the Lagrangian functions of problems (4) 
& (5) and applying the Karush-Kuhn-Tucker (K.K.T) 
necessary and sufficient conditions [21], the Wolfe dual of (4) 
and (5) are written as 

and Y is the label vector. Let us consider input matrices  X max e
t 
α 

1 
α

t 
H(G

t 
G)

1
H 

t
α (6) 

and X2     of size l1  

n 

and l  n ,  

where 

l1   is the number of 2    1 
2  

1 1 

data points belonging to positive class and l2     denotes the subject to 0 α1 C1 

number of data points belonging to the negative class such that 
the total number of data samples m l l and n is the total max 

t 1   t
  t 1     t 

1 2

 e12 
G(H H ) G 
2 

(7) 

number of attributes. The non-linear SVM maps the sample x 

to  a  higher  dimensional  feature  space  using  a  mapping 
 

subject to 
 

0 α C 

function 
(.) 

and  finds  the  hyperplane (x)w b 0  by 
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solving the following formulation where G [K (X1 , D ) e1 ] , H [K (X2 , D ) e2 ] ; 

min 
1 

|| w ||
2 
Ce
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

α (α ,...,α )
t 
 

R
l2
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and β (β ,...,β )
t 
 

R
l2
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are 
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subject to Y (( X )w eb) e , 

0 

(1) 
Lagrangian multipliers for i 1,2. 

where     represents   slack  variables;  C is  the  penalty 

parameters; e is a unit vector of suitable dimension. 

After finding the Lagrangian formulation of equation (1) 

We  compute  the  values  of 

following equations as 

w 

w1 

, 

w2 , b1  

and 

b2 using the 

and applying the Karush-Kuhn-Tucker (K.K.T) necessary and 
1 

(G
t 
G δ I )

-1 
H 

t
α (8) 

sufficient conditions [21], the Wolfe dual of (1) is derived as b
1 

max e
t 
α 

1 
α

t 
YXX 

t 
Yα w2  t 

 

 

-1       t 

2  (H H δ I ) G α2 (9) 

 

subject to t Y0 , 0  

α C 

 

(2) 
b
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where  is a small positive integer value and I is an identity 
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where  

R
m

 

is the vector of Lagrangian multipliers. A new matrix of appropriate dimension [8]. 

data point x R
n 

is assigned to a given class ' i' as 

follows 

Further, a test data point x  

R
n

 

is assigned to a given 

class i sign|(x)
t 
w  

b| 

(3) 
class ' i' by using the following formula 

class i min |K (x ,D )wi  bi| for i 1,2 . (10) 
t t 

B. Twin Support Vector Machine (TWSVM) 

In TWSVM [8], two non-parallel hyperplanes are obtained 
such that each of them is nearer to one of the classes and as far 
as possible from the other class. In non-linear case, twin 
support   vector   machine   finds   a   pair   of   non-parallel 

t t t t 

C. Fuzzy Twin Support Vector Machine (FTSVM) 

In FTSVM, weights are given to the different data samples 
on the basis of fuzzy membership values and the training gets 
biased towards the samples of interest. To calculate the fuzzy 

hyperplanes K (x ,D )w1  b1  0 and K (x ,D )w2 b2  0 membership, we have considered the centroid measure for the 

from the solution of the following QPPs 
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1 
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t 
)w e b ||
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C e

t 


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data samples of each class where the membership values are 
assigned based on the distance of the data points from the 
centroid of that class [22]. The membership values are used as 
a basis for giving weights to the error tolerance parameter C 

subject to (K (X2 , D )w1 e2b1 )  
e2 

,  
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(4) for every data point. 
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where 
 

dcen    is the Euclidean distance of each data point from 
 

and 

subject to (X )w b e   

0 , 

 
0 

(17) 

the centroid of its class i.e. dcen  || xxi ||  if yi   1 and 

otherwise dcen || xxi || , where xand x are the centroids 
1 

w
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of positive and negative class respectively, and  is a 
small 
positive integer value. 
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(X1 ) 
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)  
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l2 

In  FTSVM,  the  non-linear  hyperplanes  are  obtained 
subject to (X2 )w2 b2e2  
0 , 

0 . (18) 

through the following problems One can write (17) and (18) in the form of dual QPPs by 
considering the Lagrangian multipliers and apply the KKT 
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0 
(12) 

1       (X1 , X1 )  1 

2 2       (X2 , X1 )  1 
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
C1

 , e
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e
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and 

subject to (K (X1 , D )w2 e1b2 ) η e1 , 0 (13) 
1   t t 2      t t 

where S , S   are vectors having the membership values of the mi
n 
K (X , X  
)

e1 K (X1 , X2 )2 

1 2 2 l 
data   samples   of   the   positive   and   the   negative   class 
respectively. 

subject to 0  


1 


C2 e , e

t   



(20) 

By introducing the Lagrangian functions of problems (12) 
&  (13)   and   applying   the   Karush-Kuhn-Tucker   (K.K.T) 

2 2    2 2 

2 

necessary and sufficient conditions [21], the Wolfe dual of respectively. After computing the values of  
,

by solving 

(12) and (13) are written as the QPPs (19) & (20), one can find the solution of (w ,b ) and 

1   t t 1 t t 

1      1 

(w2 , b2 ) in the following manner 
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Further, we compute the values of w1 , w2 , b1   and b2   as where 
Ni   is the index set of samples satisfying i  li  

w 


w 


for i 1,2. Finally, for any input sample x R
n 
, the 
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H 

t
α and 

2
 (H 
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H δ I )
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
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 
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

bi , i 1,2 

The resultant classifier is obtained by using the equation ( ) sig 
 



 (x)   


 




(10). 

D. Twin parametric-margin support vector machine 

 || wi ||  i 1, 2 || wi  
|| 



(21) 

(TPMSVM) 

Recently, Peng [14] has proposed an efficient twin 
parametric-margin support vector machine which is  an 
efficient  learning  approach  of  par-v-SVM.  It  finds  two 

III. PROPOSED FUZZY BASED LAGRANGIAN TWIN 

PARAMETRIC-MARGIN SUPPORT VECTOR MACHINE 

(FLTPMSVM) 

In this section, motivated by the work of Peng [14], we 

hyperplanes f1 (x) w1(x) b1    and f2 (x) w2(x) b in the 

2 

feature   space which are   obtained by   the following 
formulations: 

propose  a  new  variant  of  TPMSVM  which  is  based  on 
TWSVM, called fuzzy based Lagrangian twin parametric- 
margin support vector machine where fuzzy membership 
values are calculated as similar in FTSVM. For the non-linear 
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case,  our  proposed  FLTPMSVM  finds  the  positive  and 
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t t Q    HH 
t  , r  GH 

t
e and r   HG 

t
e which 
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and K (x ,D )w2 b2  0 . 

In order to find the both parametric-margin hyperplanes, 

will  lead  to  following  pair  of  classical  complementary 
problems [23]: 

we have considered the following formulation 0  
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So,  we  can  solve  the  problem  (30)  by  writing  as  the 
following iterative scheme: for i=0,1,2… 
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Now,  one  can  apply  the  Karush-Kuhn-Tucker  (K.K.T) 
necessary and sufficient conditions to find the Wolfe dual of 

when 0 
C1 

and 0 
C2 

,   the   above   iterative 

equations (22) and (23) as schemes will converge to the solutions and  


respectively 
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[24]. The final classifier is defined by the equation (21). 
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our 
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TWSVM
, FTSVM 
and 
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M 

 

 

2 0   

2 
2 S 
C 

 2 2  1 2 on well-known real-world datasets as well as one artificial 

2    2  dataset  i.e.  Ripley’s  dataset  [25].  All  the  experiments  are 
conducted on a PC with 64 bit, 3.40 GHz Intel© Core™ i7- 

After computing the values of   
and 

from (26)  
and 

3770 CPU and 4 GB RAM, running Windows 7 operating 

(27),  we  find  the  positive  and  negative  class  hyperplanes system.  The  software  package  used  is  MATLAB  R2008a 

[K (X ,D
t 
) e1 ]u1  0 and [K (X , D

t 
) e2 ]u2  0 respectively along  with  MOSEK  optimization  toolbox  for  TWSVM, 

where u1  G 1 1H e2  and u2  H 2  2G e1 . FTSVM and TPMSVM, available at https://www.mosek.com. 
t t t t 

The  datasets  are  normalized  to  the  range [0,1] before 

To predict the class of new data sample x  

R
n

 

in case of experiment  is  performed  on  them.  In  this  experiment,  we 

FLTPMSVM, we find the class label by using equation (21). 

These dual QPPs (26) and (27) are of the form 

implemented  all  the  methods  for  non-linear  case  using 
Gaussian kernel which is given by 

min 
1 
α
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Q α 
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The optimum value of kernel parameter  is  

. 

http://www.mosek.com/
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from the set {2
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 ,..., 2
5} ,  C (i 1,2) are also obtained from 

for k 1,2 respectively, where S1
C

1  the set {10
5 
,...,10

5
} and for TPMSVM and FLTPMSVM, the 

i 



optimum   values   of / 
C 

(i 1,2) are   selected from 

i i 

{0.1,...,0.9} by using 10-fold cross-validation of the training 

data. 

We set average accuracy and average training time as the 
performance evaluation criteria for all the algorithms. 
Statistical result analysis is performed on testing data to 
calculate the average accuracy, standard deviation of result 
and average training time. We have considered the artificially- 
generated Ripley’s synthetic dataset. The Ripley’s dataset is a 

synthetic dataset in R 
2
 that contains 250 training samples and 

1000  samples  for  testing.  In  the  figure,  the  positive  class 

samples and the negative class samples are depicted using ‘  

’ 

and ‘ ’ symbols respectively. Support vectors are marked 
using circles around them. The learning results of our 
experiment on artificial Ripley’s dataset for SVM, TWSVM, 
FTSVM, TPMSVM and FLTPMSVM are shown in Figures 
1(a-e). 

One can observe that FLTPMSVM obtains better decision 
classifiers in comparison to SVM, TWSVM, FTSVM, and 
TPMSVM. In Table 1, we show the predicted accuracies, 
optimum parameters with learning time for FLTPMSVM with 
others methods. One can notice from Table 1 that our 
proposed FLTPMSVM has best classification result among 
these algorithms as well as the learning time of our proposed 
method is less which show that FLTPMSVM takes less 
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(e) 

Fig. 1. Discriminant boundaries of FLTPMSVM with TWSVM, FTSVM 
and TPMSVM on Ripley’s dataset using Gaussian kernel 

computation time when compared with the other considered 
methods. 

Further, we have considered 10 UCI benchmark well- 
known real-world datasets i.e. Australian-Credit, Breast- 
Cancer, BUPA liver, Cleveland, Haberman, Heart-Statlog, 
Ionosphare, Pima-indians-diabetes, Transfusion, Wpbc from 
UCI repository [26]. The classification accuracy along with 
optimum parameters and training time of all algorithms are 
presented in Table 2. Our proposed FLTPMSVM is performed 
better in 6 out of 10 datasets. The solution of the proposed 

(c) 



 

TABLE I. The result of FLTPMSVM, TWSVM, FTSVM and TPMSVM on Ripley’s dataset 

 

Dataset 

(Train size, 

Test size) 

Ripley 

(250x2, 

1000x2) 

SVM 

(C, ) 

Time 

90.3 

(10^-5, 2^2) 
1.5464 

TWSVM 

(C  C , ) 
1 2 

Time 

88.9 

(10^0, 2^-1) 
0.124 

FTSVM 

(C  C , ) 
1 2 

Time 

88.7 

(10^1, 2^1) 
0.1268 

TPMSVM 

(C C C , ,/ 
C) 

1 2 

Time 

90 

(10^-3, 2^-3,0.4) 
0.1212 

FLTPMSVM 

(C C C , ,/ C) 
1 2 

Time 

90.9 
(10^0, 2^-3, 0.9) 

0.1137 

 

 

TABLE II. The results of FLTPMSVM with TWSVM, FTSVM and TPMSVM using Gaussian kernel on real-world datasets 

 

Dataset 

(Train size, Test 

size) 

SVM 

(C, ) 

Time 

TWSVM 

(C  C , ) 
1 2 

Time 

FTSVM 

(C  C , ) 
1 2 

Time 

TPMSVM 

(C C C , ,/ 
C) 

1 2 

Time 

FLTPMSVM 

(C C C , ,/ C) 
1 2 

Time 

Australian-Credit 

(413x14, 277x14) 

 

Breast-Cancer 

(149x9, 550x9) 

 

BUPA liver 

(241x6, 104x6) 

 

Cleveland 
(178x13, 119x13) 

 

Haberman 
(183x3, 123x3) 

 

Heart-Statlog 

(161x13, 109x13) 

 

Ionosphare 

(246x34, 105x34) 

Pima-indians- 

diabetes 

(307x8, 461x8) 

Transfusion 

(448x4, 300x4) 

 

Wpbc 

(116x33, 78x33) 

79.4974 ± 8.1208 
(10^-5, 2^-3) 

1.3881 

96.3636 ± 2.2677 
(10^-5, 2^-1) 

5.4858 

49.7273 ± 18.388 
(10^-5, 2^3) 

0.2019 

78.1061 ± 9.08 
(10^-5, 2^-2) 

0.2595 

68.3974 ± 12.4044 

(10^-5, 2^3) 
0.2761 

79.8182 ± 10.3012 
(10^-5, 2^0) 

0.2209 

83.6364 ± 11.5311 
(10^-5, 2^-1) 

0.2089 

77.6781 ± 8.1724 
(10^-5, 2^5) 

3.8896 

80.3333 ± 19.0807 
(10^-5, 2^4) 

1.6251 

76.9643 ± 22.3583 

(10^-5, 2^-2) 

0.117 

84.4444 ± 8.5695 
(10^-2, 2^1) 

0.1193 

96.3636 ± 3.3195 
(10^-5, 2^-1) 

0.4643 

56.1818 ± 18.615 
(10^-2, 2^-1) 

0.0248 

83.1818 ± 5.5762 
(10^0, 2^3) 

0.0314 

75.7051 ± 12.6211 

(10^-1, 2^0) 
0.0262 

79.7273 ± 12.182 
(10^-2, 2^0) 

0.0224 

93.2727 ± 4.6592 
(10^-2, 2^0) 

0.0287 

77.8908 ± 7.5103 
(10^0, 2^1) 

0.3198 

77.6667 ± 19.5031 
(10^-1, 2^1) 

0.135 

79.4643 ± 16.544 
(10^-2, 2^-1) 

0.015 

85.2116 ± 7.811 
(10^-5, 2^-1) 

0.1435 

96.7273 ± 3.1840 
(10^-5, 2^-1) 

0.4654 

58.3636 ± 20.7384 
(10^0, 2^-1) 

0.0257 

84.0909 ± 6.0501 
(10^-5, 2^2) 

0.0269 

74.8077 ± 11.3109 

(10^-5, 2^0) 
0.0328 

79.7273 ± 12.9139 
(10^1, 2^2) 0.0297 

93.2727 ± 4.6592 
(10^-2, 2^0) 

0.028 

77.6735 ± 6.7968 
(10^0, 2^2) 

0.3304 

77.6667 ± 20.3093 

(10^-5, 2^0) 
0.1357 

79.4643 ± 16.544 
(10^-2, 2^-1) 

0.0199 

84.828 ± 9.5534 

(10^-2, 2^3, 0.1) 

0.1205 

97.0909 ± 2.5997 
(10^-2, 2^0, 0.2) 

0.4225 
59.1818 ± 18.1285 

(10^0, 2^0, 0.4) 

0.0222 
79.0152 ± 4.2564 

(10^-1, 2^5, 0.2) 

0.0259 
69.1667 ± 12.8754 

(10^-3, 2^-5, 0.5) 

0.0256 
81.5455 ± 7.8326 

(10^-3, 2^0, 0.5) 

0.0226 
92.5455 ± 7.2322 

(10^-2, 2^0, 0.2) 

0.0231 
75.7216 ± 8.0453 

(10^0, 2^2, 0.2) 

0.2965 
66 ± 28.8376 

(10^-2, 2^-1, 0.1) 

0.123 
78.2143 ± 18.3426 

(10^-1, 2^-1, 0.1) 

0.0155 

84.8413 ± 5.8409 

(10^-3, 2^3, 0.1) 

0.1176 

97.2727 ± 2.6068 
(10^-2, 2^3, 0.1) 

0.4131 
60.2727 ± 27.2897 

(10^-4, 2^4, 0.1) 

0.0176 
79.9242 ± 7.9315 

(10^0, 2^0, 0.2) 

0.0230 
75.8333 ± 11.8779 

(10^-2, 2^-2, 0.2) 

0.0241 
84.4545 ± 7.4035 

(10^-2, 2^1, 0.2) 

0.0198 
93.2727 ± 7.8928 

(10^-4, 2^0, 0.1) 

0.0182 
72.0352 ± 9.2246 

(10^-2, 2^0, 0.1) 

0.2780 
80 ± 18.8562 

(10^-5, 2^1, 0.5) 

0.1202 
81.9643 ± 17.6466 

(10^-4, 2^-1, 0.1) 

0.0135 

 

 

TABLE III. Average ranks of TWSVM, FTSVM, TPMSVM and FLTPMSVM using Gaussian kernel on real-world datasets 
 

 

Dataset 

(Train size, Test size) 

Australian-Credit 

Breast-Cancer BUPA 

liver Cleveland 

Haberman 

Heart-Statlog 

Ionosphare 

Pima-indians-diabetes 

Transfusion 

Wpbc 

Average Rank 

SVM TWSVM FTSVM TPMSVM FLTPMSVM 

5 4 1 3 2 

4.5 4.5 3 2 1 

5 4 3 2 1 

5 2 1 4 3 

5 2 3 4 1 

3 4.5 4.5 2 1 

5 2 2 4 2 

2 1 3 4 5 

1 3.5 3.5 5 2 

5 2.5 2.5 4 1 

4.05 3 2.65 3.4 1.9 

 



FLTPMSVM is obtained by using simple linearly convergent 
iterative approach instead of solving two QPPs as in the case 
of TWSVM, FTSVM and TPMSVM. Hence, FLTPMSVM 
achieves a comparatively lower training cost as compared to 
the others. Further, the average ranks of all the methods are 
shown in Table 3, where rank is calculated on the basis of 
accuracies. One can observe from this table that proposed 
FLTPMSVM has the lowest average rank among all methods. 

 
V. CONCLUSION 

In this paper, a fuzzy-based Lagrangian twin parametric- 
margin support vector machine (FLTPMSVM) is proposed to 
lessen the effect of the outliers, by applying the concept of 
fuzzy support vector machine (FSVM) [15] on twin 
parametric-margin support vector machine (TPMSVM) [14]. 
Furthermore, the solution of FLTPMSVM is obtained by 
solving simple linearly convergent iterative schemes instead of 
solving a pair of QPPs as in case of TWSVM, FTSVM and 
TPMSVM. Experiments are carried out for non-linear case on 
publicly available real-world datasets as well as on one 
artificial dataset. Result shows that FLTPMSVM delivers 
comparative or better classification accuracy with the other 
considered methods and also suitable for heteroscedastic error 
structure. Moreover, our proposed method could achieve a 
faster training time as compared to all the other reported 
algorithms for all the datasets considered. Similar to 
TPMSVM, our proposed method loses the sparseness that can 
be one of the future works. 
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