
818

Invariants of Quantum Programs:
Characterisations and Generation

Mingsheng Ying

Centre for Quantum Computation and
Intelligent Systems (QCIS), University of

Technology Sydney, Australia
Tsinghua University, China

Institute of Software, Chinese Academy
of Sciences, China

Mingsheng.Ying@uts.edu.au

Shenggang Ying

Centre for Quantum Computation and
Intelligent Systems (QCIS), University of

Technology Sydney, Australia

Shenggang.Ying@uts.edu.au

Xiaodi Wu

University of Oregon, USA

xiaodiwu@cs.uoregon.edu

Abstract

Program invariant is a fundamental notion widely used in program
verification and analysis. The aim of this paper is twofold: (i) find
an appropriate definition of invariants for quantum programs; and
(ii) develop an effective technique of invariant generation for ver-
ification and analysis of quantum programs. Interestingly, the no-
tion of invariant can be defined for quantum programs in two d-
ifferent ways – additive invariants and multiplicative invariants –
corresponding to two interpretations of implication in a continuous
valued logic: the Łukasiewicz implication and the Gödel implica-
tion. It is shown that both of them can be used to establish partial
correctness of quantum programs. The problem of generating ad-
ditive invariants of quantum programs is addressed by reducing it
to an SDP (Semidefinite Programming) problem. This approach is
applied with an SDP solver to generate invariants of two important
quantum algorithms – quantum walk and quantum Metropolis sam-
pling. Our examples show that the generated invariants can be used
to verify correctness of these algorithms and are helpful in optimis-
ing quantum Metropolis sampling. To our knowledge, this paper is
the first attempt to define the notion of invariant and to develop a
method of invariant generation for quantum programs.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages - Program
Analysis; D.2.4 [Software Engineering]: Software/Program Veri-
fication

General Terms Algorithms, Theory, Verification.

Keywords Quantum programming, Partial correctness, Program
invariants, Inductive assertions, Invariant generation.

1. Introduction

Quantum Programming: Research on quantum programming has
already been conducted for two decades, as surveyed in [18, 42,

50]. Several high-level quantum programming languages were
de- fined as early as in the later 1990’s and early 2000’s; for
exam- ple, the first quantum programming language QCL was
designed
by Ö mer [37], a quantum programming language qGCL in the
style of Dijkstra’s guarded-command language was proposed by
Sanders and Zuliani [40], and the first quantum language QPL of
the func- tional programming paradigm was defined by Selinger
[43]. Moti- vated by the rapid progress in quantum computing

hardware in the last few years, several more practical and
scalable quantum pro- gramming languages have recently been
defined and their compil- ers have been implemented, including
Quipper [23], Scaffold [2] and Microsoft’s LIQUi|⟩ [48]. Various
semantics of quantum pro- gramming languages have also been
intensively studied; for exam- ple, a denotational semantics for
higher order quantum computa- tion (i.e. quantum lambda
calculus with recursion) was discovered by Hasuo and Hoshino
[29] and Pagani et al. [38]

Verification of Quantum Programs: Also, various techniques,
including program logics [3–5, 14, 30] and model-checking [15, 19,
52], have been extended for verification of quantum programs and
quantum cryptographic protocols. For example, the notion of weak-
est precondition for quantum programs was introduced by D’Hondt
and Panangaden in [13]. Furthermore, a logic of the Floyd-Hoare
style was developed in [49] for reasoning about both partial and
total correctness of quantum programs, and its (relative) complete-
ness was established. A theorem prover was implemented in [36]
for quantum Floyd-Hoare logic based on Isabelle/HOL. An alge-
braic theory of quantum computation was built by Staton in [46]
that provides a framework for equational reasoning about quantum
programs.

Invariants and Inductive Assertions: As is well-known, the
notions of invariant and inductive assertion are essential for verifi-
cation of programs as well as analysis of algorithms. An invariant
of a program at a location is an assertion that is always true when
the location is reached. It can be used to establish partial correct-
ness of programs. On the other hand, an assertion is inductive at
a location of a program if it is true for the first time the location
is reached, and is preserved by every cycle back to the location. A
standard method for proving an assertion O to be an invariant is to

find an assertion O′ that is stronger than O and is inductive [17].
Such a method of proving correctness of programs has also been
developed by McIver and Morgan [35] in probabilistic program-
ming.

The first contribution of this paper is to define the notions of
invariant and inductive assertion for quantum programs. A first

mailto:Mingsheng.Ying@uts.edu.au
mailto:Shenggang.Ying@uts.edu.au
mailto:xiaodiwu@cs.uoregon.edu

819

√
2

|0⟩−|1⟩

2

thought might be that they can be defined by a straightforward gen-
eralisation from classical programs. Actually, this is not the case,
and we show that invariants and inductive assertions for quantum
programs can be introduced in two different ways, corresponding to
two different interpretations of implication in a continuous valued
logic [39]:

• Additive invariants, defined by the Łukasiewicz implication:
a →L b = min(1, 1 − a + b) for a, b ∈ [0, 1]; (1)

• Multiplicative invariants, defined by the Gödel implication:

resented showing how additive invariants of quantum walk on an
n-circle and quantum Metropolis sampling are generated using the
technique developed in Section 6. However, the generation problem
of multiplicative invariants is left for future research.

1.1 Preliminaries and Notations

In this subsection, we briefly review several of the basic notions
in quantum theory that are frequently used in this paper; for more
details, the author can consult the previous quantum programming
literature [13, 18, 43, 49, 50].

The state space of a quantum system is a Hilbert space H, i.e.

a →G b = min
(

b
)

1,
a

for a, b ∈ [0, 1]. (2)
a complex vector space with an inner product that is complete
in the sense that every Cauchy sequence has a limit. For finite

n, an n-dimensional Hilbert space is essentially the space Cn of

As in classical programming, we prove in Sections 4 and 5 that
both additive and multiplicative invariants can be employed to
establish partial correctness of quantum programs, and additive-
ly/multiplicatively inductive assertions are additive/multiplicative
invariants. These results are obvious for classical programs, but
their proofs in the quantum case are much more involved. It seems

complex vectors. We use Dirac’s notation |φ⟩, |ψ⟩, ... to denote
vectors. The inner product of |φ⟩ and |ψ⟩ is denoted ⟨φ|ψ⟩. A pure
quantum state is represented by a unit vector, i.e. a vector |ψ⟩ with

length ∥|ψ⟩∥ =
√

⟨ψ|ψ⟩ = 1; for example, a qubit (quantum
bit) can be in the basis states |0⟩, |1⟩ of 2-dimensional Hilbert

space, and it can also be in their superposition |+⟩ =
|0⟩+|1⟩

and

that the idea of defining invariants using different implications also
applies to probabilistic programs, but this is out of the scope of the |−⟩ = √

2
. A mixed state is represented by an ensemble E =

present paper.

Invariant Generation: Discovering invariants is crucial for ver-
ification of programs, but it is a highly nontrivial task [32]. In the
literature, there are mainly two approaches to invariant generation
for classical programs: abstract interpretation and constraint solv-
ing. The abstract interpretation technique generates an invariant
through an approximate symbolic execution of the program until
an assertion is reached that remains unchanged by further execu-
tion [10, 11]. As its name suggests, the constraint-based technique
of Colón et al. [8, 41] reduces invariant generation to a constraint
solving problem by encoding the defining conditions of inductive
assertions as constraints. Several automatic tools for invariant gen-
eration have been developed; for example, the Stanford Invariant
Generator StInG [45] implements both the abstract interpretation
and constraint-based techniques; and InvGen [27] can more effi-
ciently generate linear arithmetic invariants using the constraint-
based technique. Recently, the constraint-based technique was gen-
eralised by Katoen et al. [31] for generating invariants of proba-
bilistic programs.

The second contribution of this paper is to extend the constraint-
based approach of Colón et al. [8, 41] to the case of quantum pro-
grams. We will only consider how to generate additive invariants,
but leave the generation problem of multiplicative invariants for
further research. It is shown that additive invariant generation for
quantum programs can be reduced to an SDP (Semi-Definite Pro-
gramming) problem. This approach is applied with an SDP solver
to generate invariants of two important quantum algorithms – quan-
tum walk on a circle [1] and quantum Metropolis sampling [47].
We show that the generated invariants can be used to verify correct-
ness of these algorithms and, in particular, are helpful in optimising
quantum Metropolis sampling.

Organisation of the Paper: For convenience of the reader, the
syntax and operational and denotational semantics of quantum pro-
grams written in a quantum extension of the while-language are

{(p1, |ψ1⟩), ..., (pk, |ψk ⟩)} meaning that the system is in state |ψi⟩

with probability pi, where 0 ≤ pi and
∑

i pi = 1. Intuitively, it can
be seen as a quantum generalisation of a probability distribution
over states. A crucial mathematical tool in quantum mechanics is
(linear) operators on a Hilbert space. The trace of an operator A
is the complex number tr (A) =

∑
i⟨i|A|i⟩, where {|i⟩} is an

orthonormal basis of the space, and ⟨i|A|i⟩ stands for the inner
product of |i⟩ and A|i⟩. The external product A = |φ⟩⟨ψ| of two
vectors |φ⟩, |ψ⟩ is an operator defined as follows: A|η⟩ = ⟨ψ|η⟩|φ⟩
for each vector |η⟩. In the n-dimensional space Cn, an operator is

represented by an n × n complex matrix A and tr (A) =
∑

i Aii

(the sum of the entries on the main diagonal); if |φ⟩, |ψ⟩ ∈ Cn,
then its external product is the multiplication |φ⟩⟨ψ| of column
vector |φ⟩ and the row vector ⟨ψ| (the adjoint, i.e. conjugate and
transpose of |ψ⟩). An operator A is positive if ⟨ψ|A|ψ⟩ ≥ 0 for
every vector |ψ⟩. A positive operator ρ on H is called a partial
density operator if tr(ρ) ≤ 1; in particular, a density operator ρ is
a partial density operator with tr(ρ) = 1. We write D(H) for the
set of partial density operators in H. Mathematically, a mixed state
represented by ensemble E can also be described by the density
operator ρE =

∑
i pi|ψi⟩⟨ψi|; in particular, a pure state |ψ⟩ can be

identified with the density operator ρ = |ψ⟩⟨ψ|. If we consider a

partial ensemble E with
∑

i pi ≤ 1, then ρE is a partial density
operator and its trace is the total probability that the system is

in this mixed state: tr (ρE) =
∑

i pi. A key difference between
mixed quantum states and probability distributions over classical
states is that two different ensembles may generate the same density

operator, as shown by the simple example: ρ1 = 0.4|0⟩⟨0| +

0.6|1⟩⟨1| and ρ2 = 0.4|+⟩⟨+| + 0.6|−⟩⟨−| are different, but
ρ3 = 0.5|0⟩⟨0| + 0.5|1⟩⟨1| and ρ4 = 0.5|+⟩⟨+| + 0.5|−⟩⟨−| are the same.

An operator U is unitary if U †U = UU † = I, where U †

is the adjoint of U , and I is the identity operator. It describes
the evolution of pure states: |ψ⟩ 1→ U |ψ⟩. For example, the
the Hadamard matrix

recalled, and the notion of partial and total correctness for quan-
tum programs are reviewed in Section 2. In Section 3, we intro-
duce the notion of super-operator valued transition system (SVTS)

1
(

1 1
)

√

1 −1
(3)

and show how it can be used to model the control flow of quan-
tum programs. Then additive and multiplicative invariants and the
corresponding inductive assertion maps are defined in Sections 4
and 5, respectively. Generation of additive invariants of quantum
programs is considered in Section 6, where two examples are p-

is an unitary operator in the 2-dimensional Hilbert space, and it
maps qubit states |0⟩, |1⟩ to |+⟩, |−⟩, respectively. By a super-
operator we mean a mapping E from D(H) into itself, which is
completely positive and satisfies the condition: tr(E(ρ)) ≤ tr(ρ)
for all ρ ∈ D(H). It models the evolution of mixed states: ρ
1→

H =

820

i

i

i

m

m

2

6

6

E(ρ). In a sense, a super-operator can be seen as a quantum coun-
terpart of a transformation of probability distributions over classical
states. The Löwner order ⊑ between two operators A, B is defined
as follows: A ⊑ B if and only if B − A is a positive operator. Each
super-operator E has a Kraus representation in terms of operators:
E(ρ) =

∑
i EiρE† for all density operators, where the set {Ei} of

operators satisfies the sub-normalisation condition:
∑

i E
†Ei ⊑ I

constructs in (4) are similar to their counterparts in a classical
or probabilistic programming language. The initialisation (5) sets

quantum variable q to a basis state |0⟩. The statement (6) means
that unitary transformation U is performed on quantum register
q, leaving the states of the variables not in q unchanged. The
program construct (7) is a quantum generalisation of classical case

statement. In executing it, measurement M = {Mm} is performed i
on q, and then a subprogram P is selected to be executed next

(the identity operator); in this case we often write E =
∑

i Ei ◦ E†.
m

according to the outcome of measurement. An essential difference
is defined by a single operator E, i.e. E = E ◦ E†

 between (7) and a classical case statement is that the state of
(or more precisely, E (ρ) = EρE†

 for all density operators ρ), then program variables is changed after performing the measurement in
we simply write E = E; for instance, a unitary operator U can be the former, whereas it is not changed after checking the guards in

seen as the super-operator E = U ◦ U †. Two super-operators E and F are equivalent, written E ∼= F, if tr(E (ρ)) = tr(F(ρ)) for all

ρ ∈ D(H). The Schrödinger-Heisenberg dual E∗ of super-operator

i is defined as follows: E∗(A) =
∑

i E
†AEi for

all operators A.
The way to extract information about a quantum system is called

a quantum measurement. In quantum computation, measurement is
usually used to read out a computational result. Mathematically,
a measurement is modelled as a set of operators M = {Mm}

the latter. The statement (8) is a quantum generalisation of while-
loop. The measurement in (8) has only two possible outcomes 0,
1. If the outcome 0 is observed, then the program terminates, and
if the outcome 1 occurs, the program executes the subprogram P
and continues the loop. The only difference between quantum loop
(8) and a classical loop is that checking the loop guard in the latter
does not change the state of program variables, but it changes the
state in the former.

Let us first consider a quantum variant of a simple probabilistic

with
∑

m M † Mm = I. If we perform a measurement M on program given in [31] so that the reader can better understand a system in state ρ, then an outcome m is observed with prob-

ability pm = tr(MmρM †), and after that, the system will be
the difference between a probabilistic program and a quantum
program.

in state MmρM † /p . Here, a major difference between classi- m m

cal and quantum systems occurs. Measuring a classical system
does not change its state, whereas the state of a quantum system-
s is changed after measuring it. For example, the measurement
on a qubit in the computational basis is M = {M0, M1}, where

Example 2.1 (Three Quantum Dials). Suppose that a slot machine
has three dials d1, d2, d3 and two suits ♡ and ♢, and spins the dials
independently so that they come to rest on each of the suits with
equal probability. It can be modelled as a probabilistic program:

(
1 0

) (
0 0

) flip ≡ (d1 := ♡ ⊕ 1 d1 := ♢); (d2 := ♡ ⊕ 1 d2 := ♢);
M0 = |0⟩⟨0| =

0 0 , M1 = |1⟩⟨1| = 0 1 . If we 2 2

perform M on a qubit in (mixed) state ρ = 2 |0⟩⟨0| + 1 |+⟩⟨+| = (d3 := ♡ ⊕ 1 d3 := ♢)

(
5 1

) 3 3
where P1 ⊕p P2 stands for a probabilistic choice which chooses

1

6 1 1
then the probability that we get outcome 0 is p(0) =

to execute P with probability p and to execute Q with probability

tr (M0ρM0) = 5 and then the quibit is in state |0⟩. Similarly, out-

come 1 is obtained with probability p(1) = 1 and after that the

1 − p. A quantum variant of flip can be defined as follows:

qflip ≡ H[d1]; H[d2]; H[d3]
qubit is in |1⟩.

2. Quantum Programs

For convenience of the reader, in this section, we recall the syntax
and operational and denotational semantics of quantum programs
as well as the notions of partial and total correctness for quantum
programs; for more details we refer to [49] (see also Chapters 3 and
4 of [50]).

2.1 Syntax

We consider a simple quantum programming language, the quan-
tum extension of while-language.

Definition 2.1 (Syntax [49, 50]). We assume a set Var of quantum
variables. Quantum programs are defined by the following gram-
mar:

P ::= skip | P1; P2 (4)

| q := |0⟩ (5)

| q := U [q] (6)

| if (Om M [q] = m → Pm) fi (7)

| while M [q] = 1 do P od (8)

where H is the Hadamard operator defined by equation (3) in the 2-
dimensional Hilbert space H2 with {|♡⟩, |♢⟩} as an orthonormal
basis. It is worth noting that the program qflip also spins the dials,
but does it in a quantum way modelled by the Hadamard “coin-
tossing” operator H.

Quantum walks [1] have been successfully applied in a class
of important quantum algorithms, including quantum simulation
[20]. Next, we consider a quantum walk on an n-circle with an
absorbing boundary at position 1. It gives us an interesting example
of quantum program with while-loop.

Example 2.2 (Quantum Walk). Let Hc be the coin space, the 2-
dimensional Hilbert space with orthonormal basis states |L⟩ and
|R⟩, indicating directions Left and Right, respectively. Let Hp be
the n-dimensional Hilbert space with orthonormal basis states

|0⟩, |1⟩, ..., |n − 1⟩, where vector |i⟩ denotes position i for each
0 ≤ i < n. The state space of the walk is H = Hc ⊗ Hp. The
initial state is |L⟩|0⟩. Each step of the walk consists of:

1. Measure the position of the system to see whether it is 1. If
the outcome is “yes”, then the walk terminates, otherwise, it
continues. The measurement is M = {Myes , Mno }, where

∑

In the above definition, q ∈ Var and q ⊆ Var . We write Hq

for the state Hilbert space of quantum variable q; for example, if

Myes = |1⟩⟨1|, Mno = Ip − Myes =

i=1

|i⟩⟨i|

type(q) = Bool (respectively, Int), then Hq is the 2-dimensional
(respectively, infinite-dimensional) Hilbert space with {|0⟩, |1⟩}
(respectively, {|n⟩ : n ∈ Z}) as an orthonormal basis. The program

and Ip is the identity operator in the position space Hp;
2. The Hadamard “coin-tossing” operator H is applied in the

coin (or direction) space Hc;

821

m → m m m m m

density operator MmρM †
m m

P

(⟩|

1

2

2

8
⊗3 1

√
2

]

0

∑∞

1

m

0

1

]

m

3. The shift operator S defined by S|L, i⟩ = |L, i⊖1⟩, S|R, i⟩ =
|R, i ⊕ 1⟩ for i = 0, 1, ..., n − 1 is performed on the space
H. Intuitively, the system walks one step left or right according

alent to a probabilistic transition: ⟨if (Om · M [q] = m →

S) fi, ρ⟩
pm

⟨S , ρ ⟩ with probability p = tr(M ρM †) and
post-measurement state ρm = Mm ρM † /pm. Following [43], we

to the direction state. Here, ⊕ and ⊖ stand for addition and
subtraction modulo n, respectively. The operator S can be
equivalently written as

encode both probability pm and density operator ρm into partial

m = p ρ , then the rule can be present-
ed as a non-probabilistic transition. The same idea applies to the

n−1 n−1 rules (L0) and (L1). Such a non-probabilistic transition significant-

S =
∑

|L⟩⟨L| ⊗ |i ⊖ 1⟩⟨i| +
∑

|R⟩⟨R| ⊗ |i ⊕ 1⟩⟨i|. ly simplifies the presentation of our results.

i=0 i=0 The denotational semantics of quantum programs can be easily
Using the language described in Definition 2.1, this walk can be
written as the quantum program:

defined based on their operational semantics.

Definition 2.3 (Denotational Semantics [49, 50]). For any program
QW ≡ c := |L⟩; p := |0⟩; while M [p] = no do c := H[c]; P , its semantic function is the mapping [] : D(HP) → D(HP)

c, p := S[c, p] od

An essential difference between the quantum walk and a classical
random walk is that the coin (or direction) variable c can be in a

defined by

[P] ρ) =
∑ {

 |ρ
′
: ⟨P, ρ⟩ →

∗
⟨↓, ρ

′ }

(9)

superposition of |L⟩ and |R⟩ like |+⟩ = √ (|L⟩ + |R⟩), and thus
the walker is moving left and right “simultaneously”; for example,

for every ρ ∈ D(HP), where →∗ is the reflexive and transitive
closure of →, and {| · |} denotes a multi-set.

1 1 Remark 2.2. The structural representation of semantic function
√ (|L⟩ + |R⟩)|i⟩ → √

2
(|L⟩|i ⊖ 1⟩ + |R⟩|i ⊕ 1⟩). [P] was given in [49], Proposition 5.1 (see also [50], Propositions

3.3.1 and 3.3.2). Actually, it can be used as a definition of denota-
This means that if the walker is currently at position i, then after
one step she/he will be at both position i ⊖ 1 and i ⊕ 1.

2.2 Semantics

We now define the operational semantics of quantum programs.
For each quantum program P , we write var (P) for the set of

quantum variables occurring in P and HP =
⊗

q∈var (P) Hq for
the state Hilbert space of P , where Hq is the state space of q. A
quantum configuration is a pair ⟨P, ρ⟩, where P is a program or
the termination symbol ↓, and ρ ∈ D(HP) denotes the state of

tional semantics without reference to operational semantics. Then
equation (9) can be recast as a theorem showing that operational
and denotational semantics coincide.

Example 2.3 (Semantics of Three Quantum Dials). Consider the
probabilistic program flip and its quantum variant qflip. A state
of flip is a configuration of the slot machine, i.e. a mapping from
dials to suits. The semantics of flip is a function that maps each
initial state to a uniform distribution of states in which every con-
figurations has probability 1 . The state Hilbert space of qflip is

quantum variables. A transition between configurations ⟨P, ρ⟩ → then H2 . For instance, if we write |+⟩ = √
2
(|♡⟩ + |♢⟩) and

⟨P ′, ρ′⟩ means that after executing quantum program P one step |−⟩ = 1 (|♡⟩ − |♢⟩) for the equal superpositions of |♡⟩ and
in state ρ, the state of quantum variables becomes ρ′, and P ′ is the
remainder of P still to be executed; in particular, if P ′ = ↓, then P |♢⟩, then [1 (|♡, ♡ qflip (|+, −, +⟩) = |♡, ♢, ♡⟩; if we write |W ⟩ = |♡, ♢, ♡⟩ + |♢, ♡, ♡⟩) for the Werner state, a

terminates in state ρ′.
Definition 2.2 (Operational Semantics [49, 50]). The operational

√
3

, ♢⟩ +
typical entangled state of three qubits, then

1 qflip] |W ⟩) = √ (3|♡, ♡, ♡⟩ + |♡, ♡, ♢⟩ + |♡, ♢, ♡⟩ −

semantics of quantum programs is the transition relation → be- [(
2 6

tween configurations defined by the transition rules in Figure 1:

(SK) ⟨skip, ρ⟩ → ⟨↓, ρ⟩

(IN) ⟨q := |0⟩, ρ⟩ → ⟨↓, ρ
q
⟩ where {

|0⟩q ⟨0|ρ|0⟩q ⟨0| + |0⟩q ⟨1|ρ|1⟩q ⟨0| if type(q) = Bool,

n=−∞ |0⟩q ⟨n|ρ|n⟩q ⟨0| if type(q) = Int.

(UT) ⟨q := U [q], ρ⟩ → ⟨↓, UρU
†
⟩

|♡, ♢, ♢⟩ + |♢, ♡, ♡⟩ − |♢, ♡, ♢⟩ − |♢, ♢, ♡⟩ − 3|♢, ♢, ♢⟩).

Here, for simplicity, a pure state |ψ⟩ is identified with the corre-
sponding density operator ρ = |ψ⟩⟨ψ|.

2.3 Partial Correctness and Total Correctness

Recall from [13] that a quantum predicate is an observable, i.e. a
Hermitian operator A with 0 ⊑ A ⊑ I, where 0 and I are the
zero operator and the identity operator, respectively. A quantum
predicate is also called an effect in the quantum foundations and

(SC)
⟨P1, ρ⟩ → ⟨P ′ , ρ′⟩
P1; P2, ρ⟩ → ⟨P ′; P2, ρ′⟩ where ↓; P2 = P2.

quantum logic literature. Then correctness of quantum programs
can be defined in a standard way:

⟨ 1

(IF) ⟨if (Om · M [q] = m → Pm) fi, ρ⟩ → ⟨Pm, MmρM
†

⟩ for
each possible outcome m of measurement M = {Mm}.

(L0) ⟨while M [q] = 1 do P od, ρ⟩ → ⟨↓, M0ρM
†
⟩

(L1) ⟨while M [q] = 1 do P od, ρ⟩ →

⟨P ; while M [q] = 1 do P od, M1ρM
†
⟩

Figure 1. Transition Rules for Quantum Programs

Definition 2.4 (Correctness Formula, Hoare Triple [49, 50]). A
correctness formula (or a Hoare triple) is a statement of the for-
m {A}P {B} where P is a quantum program, and both A, B are
quantum predicates in HP , called the precondition and postcondi-
tion, respectively.

Definition 2.5 (Partial Correctness, Total Correctness [49, 50]). 1.

The correctness formula {A}P {B} is true in the sense of total
correctness, written |=tot {A}P {B}, if for all ρ ∈ D(HP) we
have:

Remark 2.1. Probabilities seems to be ignored in the above
definition, but actually not; for example, the rule (IF) is equiv-

tr(Aρ) ≤ tr(B[P (ρ)). (10)

2. The correctness formula {A}P {B} is true in the sense of
partial correctness, written |=par {P }S{Q}, if for all ρ ∈

ρq = 0

822

→ l

→

2

√
2

→

1

in

→
E

→

→

→

M
→ l

D(HP) we have: of equation (12) is well-defined. For any path π = l1
E1

2
E2

 (ρ))]. (11) n−1 π

P]

According to the interpretation of observables in quantum me-
chanics, tr(Aρ) in equations (10) and (11) can be understood as
the expected truth value that input ρ satisfies precondition A, and

(ρ)) the expected truth value that output [P] ρ) satisfies

...
E
→ ln in the transition graph, we write l1 ⇒ ln and use Eπ to

denote the composition of the super-operators along the path, i.e.

Eπ = En−1 ◦ ... ◦ E2 ◦ E1.

If for every transition l
E

l′ in S, super-operator E is simply
defined by an operator E, i.e. E(ρ) = EρE† for all density

P] (postcondition B. Moreover, tr(ρ) − tr(P] ρ)) is the probability operators ρ, then S is called an operator-valued transition system. (
that program P diverges from input ρ.

[
 We will write l

E E

→ l′ for l → l′ when E = E ◦ E†. In particular,
I I

Example 2.4 (Correctness of Three Quantum Dials). We write

|GHZ ⟩ = 1 (|♡, ♡, ♡⟩ + |♢, ♢, ♢⟩) for the GHZ (Greenberger-

Horne-Zeilinger) state, another typical entangled state of three
qubits, |Φ⟩ = 1 (|♡, ♡, ♡⟩ + |♡, ♢, ♢⟩ + |♢, ♡, ♢⟩ + |♢, ♢, ♡⟩),
and |Ψ⟩ = |♡, ♡, ♡⟩. Let A = |Φ⟩⟨Φ|, B = |Ψ⟩⟨Ψ|, and

C = |GHZ ⟩⟨GHZ |. Obviously, A, B and C are all quantum
predicates. It is easy to check that

1

|=tot {A}qflip{C}, |=tot {
4

B}qflip{C}.

This means that if the input is state |Φ⟩, then program qflip will
certainly output the GHZ state; and if the input is state |Ψ⟩, it will
output a state |Γ⟩ that is similar to the GHZ state in the sense:

we write l → l′ instead of l → l′, where I and I are the identity
operator and identity super-operator, respectively, in H.

Remark 3.2. An SVTS is essentially a quantum Markov chain
defined in [15, 25] together with an initial quantum predicate Θ.
Each SVTS S can be seen as a transition graph with locations as
its vertices and transitions as its edges. An operator-valued graph
is called a quiver in representation theory [12].

3.2 Control Flow Graphs of Quantum Programs

Now the control flow graph of a quantum program can be repre-
sented by an SVTS. For every quantum program P , we define an

SVTS SP in the state Hilbert space HP of P by induction on the
length of P . This transition system has two designated locations 1 P , lP , with the former being the initial location and the latter the

Pr(|Γ⟩ and the GHZ state cannot be discriminated) ≥
4

. lin out

Note that partial and total correctness are the same for qflip
because it does not contain any loop. The quantum predicates
A, B, C are very simple and defined by a particular input/output

exit location.

P P

• P ≡ skip. Then SP has only two locations lin , lout and a

single transition lP I lP

in out ;
state. Of course, Definition 2.5 can be used for any quantum predi-
cates, but here we are not going to present more general examples

• P ≡ q := |0⟩. Let {|n⟩} be an orthonormal basis of Hq . Then

SP has locations lP P

in , lout together with ln for each basis state
due to the limited space.

3. Super-Operator-Valued Transition Systems

In this section, we introduce the notion of super-operator-valued
transition system, which can be seen as a quantum extension of an

P En I P
|n⟩. The transitions are lin → ln and ln → lout for every basis
state |n⟩, where En = |0⟩⟨n|.

• P ≡ P1; P2. Suppose that SP1 , SP2 are the control flow graphs
of subprograms P1, P2, respectively. Then SP is constructed as follows: we identify lP1 P2

ordinary transition system. It provides us with a convenient way for further set lP out = lin and concatenate P1 and P2. We
P in = lP1 and lout = lP2 ;

modelling the control flow of quantum programs.

3.1 Basic Definitions

in out

• P ≡ if (Om M [q] = m → Pm) fi. Suppose that SPm is the
control flow graph of subprogram Pm for every m. Then SP
is constructed as follows: we put all SPm ’s together, and add

Definition 3.1 (Super-operator-Valued Transition Systems). A
super-operator-valued transition system (SVTS for short) is a 5-

a new location lP P Mm Pm

in and a transition lin → lin for every m.
P Pm

tuple S = ⟨H, L, l0, T , Θ⟩, where:

1. H is a Hilbert space, called the state space;
2. L is a finite set of locations;

Furthermore, we identify lout = lout for all m;

• P ≡ while M [q] = 1 do Q od. We construct SP from the
control flow graph SQ of subprogram Q as follows: we add

P P P M0 P

3. l0 ∈ L is the initial location; two new locations lin , lout and two transitions lin → lout ,

4. T is a set of transitions. Each transition τ ∈ T is a triple
P Q
in in . We identify l Q

out = lP .

τ = ⟨l, l′, E⟩, often written as τ = l
E

 l′ where l, l′ ∈ L Note that SP is an operator-valued transition system, i.e. every
are the pre- and post-locations of τ , respectively, and E is a
super-operator in H. It is required that

∑

transition in SP is of the form l → l′ with E being an operator in
HP . This is possible because we choose to depict each initialisation
statement q := |0⟩ in P by a family of transitions with operators

{|E : l
E

 l
′
∈ T |} ∼= I (12) En = |0⟩⟨n| for basis states |n⟩. On the other hand, we can also use

for each l ∈ L, where I is the identity super-operator in H, i.e.

I(ρ) = ρ for all ρ ∈ D(H);

5. Θ is a quantum predicate in H denoting the initial condition.

Remark 3.1. To avoid the technical problem that an SVTS may
contain some terminal location l which does not satisfy equation

(12), we can simply add a circle l
I

l.

The symbol {| · |} in equation (12) stands for a multi-set. We al-

ways assume that the transition relation → is countably branching;

l

823

→

a single transition with super-operator E0(ρ) =
∑

n |0⟩⟨n|ρ|n⟩⟨0|
to model the initialisation. Then SP becomes an SVTS, but the
number of locations is significantly reduced.

Example 3.1 (Control Flow Graph of Quantum Walk). The
control flow graph of the quantum walk QW defined in

Example 2.2 is given as an SVTS SQW = (H, L, l0, T , Θ),
where:

• H = Hc ⊗ Hp;

• L = {l0 = lin , l1, l2, lout };

Myes Mno H S I

that is, for every l ∈ L, the set {|E : l
E

 l′ for some l′|} is finite or • T = {l0 → lout , l0 → l1, l1 → l2, l2 → l0, lout → lout };

countably infinite. Therefore, the summation in the left-hand side

• Θ = |L⟩⟨L| ⊗ |0⟩⟨0|.

824

p

out P par

out

out

1 → → n

Ei(ρ) = MiρM †

Figure 2. The SVTS of quantum walks on a cycle. Locations with
dark dot are chosen as the cut-points later in Example 7.1.

The SVTS SQW is visualised in Figure 2.

4. Additive Invariants and Additively Inductive

Assertion Maps

The notions of invariant and inductive assertion map have played

is a quantum predicate O in state Hilbert space H satisfying the
condition:

• A-Invariance: for any density operator ρ, and for any prime set
Π of paths from l0 to l, we have:

tr(Θρ) ≤ 1 − tr (EΠ(ρ)) + tr (OEΠ(ρ)) (13)

where EΠ =
∑

{|Eπ : π ∈ Π|} .

The above definition deserves some explanations.

1. Note that if Π1 ⊆ Π2 and inequality (13) is true for Π2 then it
is also true for Π1 (see equation (18) below for a more general
argument). Thus, we do not need to check inequality (13) for
all prime sets of paths from l0 to l but only the maximal ones.

2. For each path π ∈ Π, Eπ (ρ) is a partial density operator, but

it can be normalised to a density operator ρπ =
Eπ (ρ)

, where
π

pπ = tr(Eπ (ρ)) can be understood as the probability that path
π reaches state ρπ . Furthermore, we have:

a crucial role in program analysis and verification since introduced
in the seminal paper [17]. Recall that for a classical program, an
invariant at a location l in its control flow graph is an assertion O

tr(OEΠ(ρ)) =
∑

π∈Π

tr(OEπ (ρ)) =
∑

π∈Π

pπ · tr(Oρπ).

fulfilling the following condition:
• C-Invariance: if an input at the initial location l0 satisfies the

initial condition Θ, then for all paths π, provided π is from l0

to l, O is always true whenever l is reached through π.

Let S be a classical transition system. A cut-set of S is a subset
C ⊆ L of locations such that every cyclic path in S passes through
some location in C. Every location l ∈ C is called a cut-point. A
basic path π between two cut-points l and l′ is a path that does not

Since tr(Oρπ) is the (probabilistic) truth value that state ρπ

satisfies quantum predicate O, tr(OEΠ(ρ)) is the expected (or
average) truth value that for all paths π ∈ Π, O is satisfied
when π reaches location l. Therefore, here, quantifier “for all”
is interpreted as “the expected value according to probability

(sub-)distribution {pπ }π∈Π”. This understanding can be seen
as a special case of Keisler’s integral quantifier in probability
logic [33].

∑
pass through any cut-point other than the endpoints. An assertion 3. The quantity tr(EΠ(ρ)) = π∈Π pπ is the total probability

map for a classical program assigns an assertion η(l) to each cut-
point l ∈ C in its control flow graph. It is said to be inductive if it
fulfils the following two conditions:

• C-Initiation: if an input satisfies the initial condition Θ, then
for all basic paths π, provided π is from the initial location l0 to some cut-point l, η(l) is true when π reaches l;

• C-Consecution: if η(l) is satisfied, then for all basic paths π,

provided π is from l to another cut-point l′, η(l′) is satisfied
too, when π reaches l′.

In this and next sections, we will generalise the notions of in-
variant and inductive assertion map into the quantum case. To do
this, of course we will deal with an SVTS rather than a classical
transition system. This SVTS models the semantics of a quantum
program, which is determined by the principles of quantum me-
chanics. However, there is another key issue to be addressed: in
the quantum realm, how to (re-)interpret the implication as well as
the quantifier “for all” appearing in the conditions C-Invariance,
C-Initiation and C-Consection? As already mentioned in the in-
troduction, it turns out that we can use both the Łukasiewicz system
and Gödel system of continuous valued logic for this purpose. This
section focuses on quantum invariants and inductive assertion maps
defined in Łukasiewicz logic, and those based on Gödel logic will

that location l is reached through paths in Π. Here, we see that
the condition that Π is prime is necessary; otherwise, a certain
probability is calculated repeatedly.

4. Using the Łukasiewicz implication →L defined in equation (1),
inequality (13) can be rewritten as:

tr(Θρ) ≤ tr(EΠ(ρ)) →L tr(OEΠ(ρ))

because 0 ⊑ Θ ⊑ I and thus tr(Θρ) ≤ 1. Combined
with items 2 and 3, it shows that inequality (13) is indeed the
reinterpretation of C-Invariance in the Łukasiewicz system of
continuous valued logic.

Of course, as in classical programming, the purpose of intro-
ducing invariants for quantum programs is to help us in their ver-
ification and analysis. The following theorem shows that additive
invariants can actually be used to prove partial correctness of quan-
tum programs.

Theorem 4.1 (Partial Correctness). Let P be a quantum program
and SP the SVTS defined by P with initial condition Θ. If O is an
additive invariant at lP in S , then |= {Θ}P {O}.

Proof. We write

paths π : l
P π

 and π visits l
only once

}
. be discussed in the next section.

Π =
{

in ⇒ l
P

P
out

4.1 Additive Invariants It is easy to see that set Π is prime because any path only visits lP

We first define quantum invariants based on Łukasiewicz logic. To once. On the other hand, for any density operator ρ, we claim:

this end, let us introduce an auxiliary notion. A set Π of paths is P (ρ) =
∑ {

 P π P
}

said to be prime if for each π = l
E1

...
En−1

l ∈ Π, its proper
[] |Eπ (ρ) : lin ⇒ lout | = EΠ(ρ) (14)

initial segments l1
E1

...
E

 k−1 lk ∈/ Π for all k < n. We prove equation (14) by induction on the structure of P . We
→ →

only consider the case of P ≡ while M [q] = 1 do Q od as

Definition 4.1 (Additive Invariants). Let S = ⟨H, L, l0, T , Θ⟩ an example, and other cases are easier (and thus omitted here). Let

be an SVTS and l ∈ L. An additive invariant at location l ∈ L i for all ρ ∈ D(HP) (i = 0, 1). Then it follows

825

Q
0 1

π

out

−

P

(

l0

0

that

[
∞

(ρ) =
∑

[E0 ◦ ([

] ◦ E1

)
n
] (ρ)

Examples 2.2 and 3.1 is an example. The proof rule for loop (8) in
the quantum Floyd-Hoare logic [49] is given as follows:

n=0
{B}P {M †AM0 + M †BM1} M π n M0 P {M † 0 + M †BM1}while M [q] = 1 do P od{A}

=
∑ {

| [E0 ◦ (Eπ ◦ E1)
n
] (ρ) :

(
l
P

 1 lQ
1

l
Q

)
→ l |

}
 0 AM 1

1

=
∑ {

|Eπ (ρ) : l
P

⇒ l
P

}

in → in ⇒ out out

Here, we show how this rule can be derived from an additively

in out |

Here, the first equality comes from Proposition 5.1(6) in [49], the
second equation from the induction hypothesis on Q as well as

inductive assertion map. The control flow graph of loop (8) is
given as SVTS S = (H, L, l0, T , Θ) where H is the state Hilbert

M

space of the loop, L = {l0 = lin , l1, lout }, T = {l0 →
M1 [P] P is the denotational semantics of P ,

linearity of E0, E1 and Eπ , and the last from the construction of SP for the quantum while-loop P .
lout , l0 → l1, l1

and Θ = M †

→ l0}, []
†

Now we are ready to prove the conclusion |=par {Θ}P {O}.
0 AM0 + M1 BM1. We choose cut-set C = {lout , l1},

and assertion map η is defined by η(lout) = A and η(l1) = B. It
Since O is an additive invariant at lP , it follows from equation is routine to prove that η is additively inductive whenever
(14) that for any density operator ρ, =par B}P {M

†
AM0 + M

†
BM1}.

tr(Θρ) ≤ 1 − tr (EΠ(ρ)) + tr (OEΠ(ρ))
| { 0 1

= tr (OEΠ(ρ)) + (tr(ρ) − tr (EΠ(ρ)))
(ρ)) + (tr(ρ) tr(P (ρ))) .

]

(15) The next theorem shows that the notion of additively induc-
tive assertion can be used to establish additive invariants of quan-
tum programs. Combined with Theorem 4.1, it provides us with a

We further notice that equation (11) holds for any partial density method for verification of quantum programs.

operator ρ because O, Θ, [] and tr(·) are all linear. Theorem 4.2 (Additive Invariance). Let S be an SVTS with cut-

4.2 Additively Inductive Assertion Maps set C. If η is an additively inductive assertion map, then for every

It is not easy to show by its definition that an assertion O is
an invariant at a location l for a classical program because we
need to check condition C-Invariant for every path π from the
initial location l0 to l. It is even harder to do the same for a
quantum program directly using Definition 4.1 since we have to

cut-point l ∈ C, η(l) is an additive invariant at l.

Proof. First of all, we observe that if Π1 ⊆ Π2, then

1 − tr (EΠ2 (ρ)) +
∑

tr (η(lπ)Eπ (ρ))

π∈Π2

verify inequality (13) for every set of paths (rather than a single
path) from l0 to l. In classical programming, inductive assertions
give us an effective way for finding and proving program invariants.

=
[
1 − tr (EΠ1 (ρ)) − tr

EΠ2 \Π1 (ρ)

)]

In this subsection, we define a corresponding notion for quantum +
∑

tr (η(lπ)Eπ (ρ)) +
∑

 tr (η(lπ)Eπ (ρ))
programs as a tool for establishing additive invariants.

Definition 4.2 (Assertion Maps). Given an SVTS S = ⟨H, L, l0, T ,
π∈Π1 [

∑
π∈Π2 \Π1

]

Θ⟩ with a cut-set C (that is, every cyclic path in S passes through
some location in C). An assertion map is a mapping η from each

= 1 − tr (EΠ1 (ρ)) +
π∈Π1

tr (η(lπ)Eπ (ρ))

cut-point l ∈ C to a quantum predicate η(l) in H.

For each cut-point l ∈ C, we write Ωl for the set of all basic
paths from l to some cut-point. Moreover, the last location in a

+
∑

π∈Π2 \Π1

∑

tr ((η(lπ) − I) Eπ (ρ))

path π is denoted by lπ .

Definition 4.3 (Additively Inductive Assertion Maps). Let η be an
assertion map from SVTS S = ⟨H, L, l0, T , Θ⟩ with a cut-set C.

≤ 1 − tr (EΠ1 (ρ)) +

π∈Π1

tr (η(lπ)Eπ (ρ))

(18)

Then η is said to be inductive if it satisfies the following conditions:

• A-Initiation: for any density operator ρ, we have:

because η(lπ) is a quantum predicate and thus η(lπ) ⊑ I.
Now we are going to prove the following claim, which is

stronger than equation (13): for any prime set Π of paths from

tr(Θρ) ≤ 1 − tr
(
EΩ

(ρ)
)

+
∑

π∈Ωl0

tr (η(lπ)Eπ (ρ)) ; (16) l0 to some cut-points (not necessarily a single cut-point),

tr(Θρ) ≤ 1 − tr (EΠ(ρ)) +
∑

tr (η(lπ)Eπ (ρ)) (19)

• A-Consecution: for any density operator ρ, and for each cut-
point l ∈ C, we have:

∑
π∈Π

where ρ is an arbitrary density operator. Let us consider the follow-
ing two cases:

tr(η(l)ρ) ≤ 1 − tr (EΩl (ρ)) +
π∈Ωl

tr (η(lπ)Eπ (ρ)) . (17)

Case 1: Π is finite. For any path π, its height h(π) is defined

With an argument similar to that after Definition 4.1, we can
see that conditions (A-Initiation) and (A-Consecution) are essen-
tially the reinterpretations of (C-Initiation) and (C-Consecution),
respectively, in the quantum setting using Łukasiewicz logic.

As its first application, let us see an interesting connection

to be the number of times that π passes through a cut-point. We
further define the height of Π as h(Π) = maxπ∈Π h(π). Then
we can prove equation (19) by induction on h(Π). For the case
of h(Π) = 1, we have Π ⊆ Ωl0 , it follows immediately from
equations (16) and (18) that

between the notion of additively inductive assertion map and the
proof rule for quantum loop in the quantum Floyd-Hoare logic
presented in [49].

tr(Θρ) ≤ 1 − tr
()

EΩl0
(ρ) +

∑

π∈Ωl0

tr (η(lπ)Eπ (ρ))

Example 4.1 (Proof Rule for Quantum Loops). Consider the gen-
eral quantum loop (8), of which the quantum walk considered in

≤ 1 − tr (EΠ(ρ)) +
∑

tr (η(lπ)Eπ (ρ)) .

π∈Π

826

→ l

Eπj

Eπj

Eπj

EΓj

S

In general, assume that h(Π) = n ≥ 2. We can partition: Here, the second inequality follows from equation (21). Thus, we

such that

Π = ∆ ∪

()

∪
Γj

j

complete the proof for finite Π.

Case 2: Π is infinite. It is clear that Π is countably infinite. So,
there exists an infinite sequence Π1 ⊆ ... ⊆ Πm ⊆ Πm+1 ⊆ ...
such that Πm is finite for all m, and Π =

∪
m Πm. Thus, with the

conclusion for Case 1, we have:
1. h(∆) ≤ n − 1;
2. for each j, there exists a path πj such that h(πj) = n − 1

→ l ...
Ek

tr(Θρ) ≤ xm =
△

1 — tr (EΠm

(ρ)) +
∑

π∈Πm

tr (η(l π)Eπ (ρ)) .

and every path π in Γj can be written as π = πj
E1

1 →
k+1

On the other hand, it follows from equation (18) that {xm} is a

lk
E k+1 with l1, ..., lk ∈/ C and l k+1 ∈ C. We write decreasing sequence. Therefore, E1 Ek Ek+1

tail (π) = lπj → l1... → lk → lk+1. tr(Θρ) ≤ lim xm = 1 − tr (EΠ (ρ)) +
∑

tr (η(lπ)Eπ (ρ)) .

We notice that by linearity, equation (17) can be slightly gener-
alised as follows: for any partial density operator ρ,

∑

m→∞
π∈Π

tr(η(l)ρ) ≤ tr(ρ) − tr (EΩl (ρ)) +
π∈Ωl

tr (η(lπ)Eπ (ρ)) . (20)
5. Multiplicative Invariants and Multiplicatively

Thus, using equation (20) for l = lπj and ρ = Eπj (ρ) yields:

tr
(
EΓj (ρ)

)
−

∑
tr (η(lπ)Eπ (ρ))

π∈Γj

Inductive Assertion Maps

In the last section, we saw that partial correctness of quantum pro-
grams can be proved using additive invariants and additively in-
ductive assertions. In this section, we show that there is another

π∈Γj ∑

E (ρ)
))

−
∑

tr
(
η(lπ)Etail (π)

(

π∈Γj ∑

(ρ)
))

 kind of invariants and inductive assertions that can be used for the
same purpose; namely multiplicative invariant and multiplicative-
ly inductive assertion. Additive invariants and additively inductive

≤

π′ ∈Ωlπj

((
Eπ′ Eπj

(ρ)
))

−

π∈Ωlπj

tr
(
η(lπ′)Eπ′

(
 (ρ)

))
 assertions are the quantum extensions of the corresponding no-

tions for classical programs with the implication interpreted in the
Łukasiewicz system of continuous valued logic, whereas as we will

(
Eπj

(ρ)
)

− tr
(
η(lπj)Eπj (ρ)

)
.

(21)
see, multiplicative invariants and multiplicatively inductive asser-
tions are defined with the Gödel implication in continuous valued

Here, the first inequality comes from equation (18). Note that each logic. The discussions of this section is largely in parallel with the

πj ∈/ ∆ because Π is prime. Furthermore, we see that Π′ = last section.
∆ ∪ {all πj } is prime, and h(Π′) = n − 1. Then applying the
induction hypothesis to Π′, we obtain:
tr(Θρ) ≤ 1 − tr (EΠ′ (ρ)) +

∑
tr (η(lπ)Eπ (ρ))

π∈Π′

5.1 Multiplicative Invariants

Definition 5.1 (Multiplicative Invariants). Let S = ⟨H, L, l0, T , Θ⟩
be a SVTS and l ∈ L. A multiplicative invariant at location l ∈ L
is a quantum predicate O in state Hilbert space H satisfying the

= 1 −

[

tr (E∆(ρ)) +
∑

tr
(

j

[

]

(ρ)
)

condition:

• M-Invariance: for any density operator ρ, and for any path π
from l0 to l, we have:

] tr (OE (ρ))

+
∑

tr (η(lπ)Eπ (ρ)) +
∑

tr
(
η(lπj)Eπj (ρ)

)
 tr(Θρ) ≤

π

tr (Eπ (ρ)) . (22)

π∈∆ j [] Using the Gödel implication →G defined in equation (2), we
= 1 − tr (E∆(ρ)) +

∑
tr (η(lπ)Eπ (ρ))

π∈∆

can rewrite inequality (22) as follows:

tr(Θρ) ≤ tr (Eπ (ρ)) →G tr (OEπ (ρ)) .

—
∑ [

tr
j

[

(
Eπj (ρ)

)
 — tr

]

(
η(lπj)Eπj (ρ)

)]
 Consequently, condition (M-Invariance) is a quantum extension

of (C-Invariance) with the implication interpreted in the Gödel
system of continuous valued logic. Except the different interpre-

≤ 1 − tr (E∆(ρ)) +
∑

tr (η(lπ)Eπ (ρ))

π∈∆

tations of implication, there is another interesting distinction be-
tween Definitions 4.1 and 5.1: in equation (13), the paths from l0

to l were dealt with collectively as a set Π, whereas in equation

−
∑

tr
(
EΓj (ρ)

)
−

j

[]

∑

π∈Γj

tr (η(lπ)Eπ (ρ)) (22) they were considered individually. This distinction essentially
comes from two different interpretations of the universal quantifier
“for all”: in (22) it was interpreted in a standard way, but in (13), as
explained in the paragraph after Definition 4.1, it was interpreted as

= 1 − tr (E∆(ρ)) +
∑

tr
(

j

(ρ)
)

 the expectation with respected to a certain probability distribution.
The following theorem shows that multiplicative invariants can

also be used to establish partial correctness of quantum programs.

+
∑

tr (η(lπ)Eπ (ρ)) +
∑ ∑

tr (η(lπ)Eπ (ρ)) Theorem 5.1 (Partial Correctness). Let P be a quantum program

π∈∆ j π∈Γj and P the SVTS defined by P with initial condition Θ. If O is a P
≤ 1 − tr (EΠ(ρ)) +

∑
tr (η(lπ)Eπ (ρ)) .

π∈Π

multiplicative invariant at lout in SP , then |=par {Θ}P {O}.

Proof. Similar to the proof of Theorem 4.1.

tr

≤ tr

827

∗

0j j

∗

π

i ,

i i

i

l (ρ)) +

π π

π π

ij

∗ ∗

5.2 Multiplicatively Inductive Assertion Maps

Definition 5.2 (Multiplicatively Inductive Assertion Maps). Let η
be an assertion map for SVTS S = ⟨H, L, l0, T , Θ⟩ with a cut-set
C. Then η is said to be multiplicatively inductive if it satisfies the
following conditions:

• M-Initiation: for any density operator ρ, for each cut-point

for i, j = 0, 1, ..., m; in particular, if there is no basic path from li

to lj , then Eij is the zero super-operator. Then we have:

Theorem 6.1. Problem 6.1 is equivalent to find complex matrices
O0, O1, ..., Om satisfying the following constraints:

0 ⊑
∑

E
∗

(O) − Θ, (23)

l ∈ C, and for any basic path from l0 to l, we have:
tr (η(l)Eπ (ρ))

j

0 ⊑
∑

E
∗

j ii i

tr(Θρ) ≤

tr (Eπ

;
(ρ)) j̸=i

ij (O) + (E
∗

− I)(O) (i = 0, 1, ..., m), (24)

• M-Consection: for any density operator ρ, for each cut-points

l, l′ ∈ C, and for any basic path π from l to l′, we have:

tr (η(l′)Eπ (ρ))

0 ⊑ Oi ⊑ I (i = 0, 1, ..., m), (25)

tr(η(l)ρ) ≤
tr (Eπ

.
(ρ))

Proof. We prove this theorem by three steps of reduction.
Step 1: We first notice that an assertion map η for an SVTS with

The conditions (M-Initiation) and (M-Consecution) can be
understood as the quantum extensions of (C-Initiation) and (C-

Consecution), respectively, with the Gödel implication.

cut-set C is additively inductive if and only if it is a solution to the
following system of constraints:

We can show that multiplicatively inductive assertions are mul-
tiplicative invariants, and thus with Theorem 5.1 they can be used
to prove partial correctness of quantum programs.

0 ⊑ I +
∑

π∈Ωl0

Eπ (η (lπ) − I) − Θ, (26)

0 ⊑ I +
∑

E
∗

(η (lπ) − I) − η(l) for every l ∈ C, (27)
Theorem 5.2 (Multiplicative Invariance). Let S be an SVTS with
cut-set C. If η is a multiplicatively inductive assertion map, then
for every cut-point l ∈ C, η(l) is a multiplicative invariant at l.

Proof. Similar to the proof of Theorem 4.2.

π∈Ωl

0 ⊑ η(l) ⊑ I for every l ∈ C. (28)
To show this, we observe that tr(BE(ρ)) = tr(E∗(B)ρ) for all B
and ρ. Indeed, if E has Kraus representation E(ρ) =

∑
i EiρE†

Conceptually, it is interesting to observe that the fundamental
notion of invariant for classical programs can split into two dif-
ferent forms for quantum programs due to the different underlying
logics. But it seems that multiplicative invariants are not as useful

then we have:
(

tr(BE(ρ)) = tr B

())

∑
EiρE

†

i

=
∑

tr
(
BEiρE

†
)

i

as additive invariants. On the other hand, whenever a multiplica-
tive invariant is strong enough to establish partial correctness of a

(())
=

∑
tr

(
E

†
) ∑

quantum program, then we prefer to use it rather than an additive
invariant because checking whether a quantum predicate is a mul-

i BEiρ
i

= tr E
†
BEi ρ

i
= tr(E

∗
(B)ρ).

tiplicative invariant is easier since we only need to consider every
single path, but in order to show an additive invariance, we have to
deal with every prime set of paths.

Therefore, it holds that

1 − tr (EΩ

∑

π∈Ωl

tr (η(lπ)Eπ (ρ)) − tr(η(l)ρ)

6. Generation of Additively Inductive Invariants = tr(ρ) −
∑

tr (Eπ (ρ)) +
∑

tr (η(lπ)Eπ (ρ)) − tr(η(l)ρ)

Two kinds of invariants and inductive assertions for quantum pro- π∈Ωl π∈Ωl

grams were introduced in the previous two sections, and it was
shown that partial correctness of quantum programs can be proved
by finding appropriate invariants. In this section, we further consid-
er how to (automatically) generate additively inductive assertions,
which are then additive invariants, according to Theorem 4.2. The
generation problem of multiplicative invariants is left for future s-
tudies.

The problem of generating additively inductive assertions can
be precisely stated as the following:

Problem 6.1 (Generation of Additively Inductive Invariants). Giv-
en an SVTS S = ⟨H, L, l0, T , Θ⟩ and a cut-set C ⊆ L. For
each cut-point l ∈ C, find a quantum predicate η(l) such that
η : l 1→ η(l) is an additively inductive map.

In order to solve the above problem, we are going to generalise
the constraint-based technique in [8, 41] to the quantum case. The
basic idea is to reduce the above invariant generation problem into
an SDP (Semi-Definite Programming) problem by encoding the

= tr(ρ) +
∑

tr [(η(lπ) − I) Eπ (ρ)] − tr(η(l)ρ)

π∈Ωl

= tr(ρ) +
∑

tr [E
∗

((η(l) − I)) ρ] − tr(η(l)ρ)

π∈Ωl

= tr I +
∑

E
∗

(η(l) − I) − η(l) ρ .

π∈Ωl

Consequently, inequality (17) is true for all density operators ρ
if and only if (27) is valid. Similarly, we can prove that (26) is
equivalent to that inequality (16) is true for all ρ. Finally, we notice
that constraint (28) comes from the fact that η(l) is a quantum
predicate.

Step 2: Obviously, inequality (25) is equivalent to (28). If l = li,

then by the definitions of Oj and E∗ , we obtain:
∑

∗ ∗

initiation and consecution conditions in Definition 4.3 for all cut-
points l ∈ C as constraints. Assume that C = {l0, l1, ..., lm}. We
write Oi = η(li) for i = 0, 1, ..., m. Moreover, we write

π∈Ωl

Eπ (η(lπ)) =
∑

Eij (Oj),
j

∗ ∗ basic path π

∑
Eπ (I)) =

∑
Eij (I).

Eij =
∑

{|Eπ : li ⇒ lj |}.

π∈Ωl j

828

0j

ij

0 0

∗ ∗

Thus, we have

0 ⊑
∑

E
∗

(O) + A, (29)
0j j

j

classical algorithms which verify the partial correctness of a quan-
tum program by quantum invariants without outputting any explicit
quantum invariant. We find exploring these possibilities an interest-
ing open question, and leave it for further research. Moreover, this

0 ⊑
∑

E
∗

(O) + (E
∗

− I)(O) + A (i = 0, 1, ..., m), (30) SDP problem is well-structured such that it not only admits general ij j ii i i

j̸=i

0 ⊑ Oi ⊑ I (i = 0, 1, ..., m), (31)

where:

solutions of polynomial-time in d, but also admits efficient parallel
algorithms [28]. It is worthwhile mentioning that one cannot hope
to have efficient parallel algorithms for general instances of SDP
problems, which contains linear programs as special cases, unless

{
A = I −

∑
 E∗ (I) − Θ,

(32)

NC = P [34, 44]. The fact that invariants of quantum programs can
be generated efficiently in parallel is a promising feature, which

Ai = I −
∑

j E
∗ (I) (i = 0, 1, ..., m).

Step 3: Now it suffices to show that A = −Θ and Ai = 0
for all i. Let Ωi be the set of all basic paths starting from li. Since
there is no basic path which is a prefix of another basic path, every
basic path can only occur at most once in computing tr(EΩi (ρ)).

Thus, we have tr(EΩi (ρ)) ≤ 1 for all ρ. Actually, we assert that
tr(EΩi (ρ)) = 1 for all density operators ρ. Otherwise, there exist a
density operator σ and a (finite) path π starting form li such that

1. π is not a prefix of any basic path in Ωi;
2. any basic path in Ωi is not a prefix of π; and

3. tr(Eπ (ρ)) > 0.

By fact 2, we see that there is no cut-point in π except the initial
location. Suppose π̄ is an infinite path with π as a prefix. By the
definition of cut-set, π̄ must pass cut-points infinitely many times;
otherwise there must be a loop in π̄ which does not pass any cut-
point. This implies that π is a prefix of some basic path in Ωi, a
contradiction.

Furthermore, for all density operator ρ, it follows from tr(EΩi (ρ)) =
1 that

makes it amenable to leverage distributed or parallel machines for
large-scale quantum programs. In summary, we have:

Corollary 6.1. The constraint problem for generating invariants
of quantum programs in Theorem 6.1 can be solved in polynomial
time in the size of Hilbert space and the number of cut-points.
Moreover, it also admits an efficient parallel algorithm.

7. Applications

In this section, we present several applications of our results ob-
tained in the previous sections.

7.1 Two Technical Lemmas

First, we need to tailor the general results presented in the previous
sections in order to suit the problems in our applications.

The quantum variables in many quantum algorithms are ini-
tialised in a special pure state |ψ⟩; that is, ρ0 = |ψ⟩⟨ψ|. In this
case, the initial condition can be chosen as Θ = |ψ⟩⟨ψ| (the pro-
jection onto the one-dimensional subspace spanned by |ψ⟩), and the
following lemma is very useful in helping us to understand physical
meaning of the generated invariants. ∑

tr(Eij (ρ)) = tr(EΩi (ρ)) = 1.
j Lemma 7.1. Assume that the initial state ρ0 is a pure state, i.e.

tr(ρ2) = 1, and the initial condition Θ = ρ . If the program

i =

Therefore, Ei =
∑

j Eij is trace-preserving. This implies that E∗

reaches cut-point l and the current state is ρ, then tr(O ρ) =
∑

j Eij is unital, i.e.
∑

j Eij (I) = I for every i. Consequently, we i i

tr(ρ) = 1.
have A = −Θ and Ai = 0 for every i.

It is interesting to compare the constraint problem for generat-
ing invariants of quantum programs with that for classical program-

Proof. For the initial density operator ρ0, any density operator ρ

and i ∈ {1, ..., m}, from inequalities (16) and (17) we obtain:

s. The constraint problems for generating linear and non-linear in-
variants of classical programs were derived and solved in [8, 41]
using different techniques – Farkas’s Lemma and Gröbner bases,

(

tr (Θρ0) ≤ 1 − tr
∑

j

)

E0j (ρ0)

(

+ tr
∑

j

)

Oj E0j (ρ0) ,

respectively. However, stipulated by the basic postulates of quan-
tum mechanics, all operations as well as observables involved in a
quantum program must be a linear operator. The solutions to the
constraint problem for classical programs are coefficients in a tem-

tr (Oiρ) ≤ 1 − tr

()

Eij (ρ)

j

+ tr

()
∑

Oj Eij (ρ) .

j

plate of invariants, which are real numbers. But invariant generation As shown in the proof of Theorem 6.1, tr
(∑

 j Eij (ρ)
)

 = 1 for

of quantum programs is reduced to a constraint problem over linear
operators in a Hilbert space, which are complex matrices when the

any density operator ρ. Moreover, since tr (ρ0) = tr(ρ) = 1 and
0 ⊑ Oi ⊑ I, we can derive:

state Hilbert space is finite-dimensional.
To conclude this section, let us briefly discuss the computational

complexity of the constraint problem in Theorem 6.1. Because the

1 ≤ tr

()
∑

Oj E0j (ρ0)
j

≤ tr

()

E0j (ρ0)
j

= 1,

problem is naturally an instance of SDP problem, it admits poly-
nomial time algorithms in the size of Hilbert space d = dim H
and the number of cut-points to solve (note that d is exponential
to the number of quantum variables; for example if the programs

tr(Oiρ) ≤ tr

(
∑

Oj Eij

j

)

(ρ) .

contain n qubits, then d = 2n). On the other hand, if a classical al-
gorithm for generating quantum invariants solely employs density
operators as input/output, we claim there is a lower bound polyno-

mial in d, since it costs Ω(d2) to input/output a density operator.
It is, however, not necessarily a lower bound for the most gener-
al approach for generating quantum invariants. For example, it is
possible that (1) there exist some succinct representations of quan-

tum invariants which are of size O(poly(log d)), or (2) there exist

∑

∑

j

829

Then, by induction, it is easy to prove that, at any time, if

the system is at cut point li, then the current quantum state ρ

satisfies tr (Oiρ) = tr(ρ) = 1.

We will employ MATLAB and the CVX package [22] to
solve certain SDP problems so that we can find some useful
invariants of quantum programs and thus verify correctness of
these program-
s. To this end, we use a single matrix O = diag{O0, O1, · · · , Om}

830

i

33

to represent the observables (Hermitian operators) O0, O1, · · · , Om

at the cut-points. Obviously, O is an N × N matrix with N =
m × dim H. Note that each Oi can be rewritten in terms of O; for

instance, O0 can be written as zOz† where z = [I, 0, 0, · · ·] is a
dim H × N matrix. Then inequalities (23) to (25) can be accord-
ingly transferred to inequalities about O.

To solve our problems using the SDP solver, we have to set a

optimisation target. Let O′ = diag{O′ , O′ , · · · , O′ }. We write

Table 1. Running time for generating invariants of quantum ran-
0 1 m

O ⊑ O′ if Oi ⊑ O′ for every i = 0, 1, ..., m. Note that Oi ⊑ O′
 dom walks. Here, n is the number of nodes on the cycle, i.e.

i i

means that Oi is a quantum predicate stronger than O′. So, what dim Hp = n (and thus dim H = 2n).

we like to do is to find the smallest Oi (i = 0, 1, ...m) with respect

to the Löwner order ⊑ that satisfying (23) to (25). The following
lemma shows that it only requires us to choose minimising tr(O)
as our optimisation target.

Lemma 7.2. Suppose that Omin = diag{Omin,0, Omin,1, · · · ,
Omin,m} is the solution of constraints (23) to (25) with [min tr(O)]
as the objective function. Then Omin ⊑ O for any solution O =
diag{O0, O1, · · · , Om} of constraints (23) to (25).

Proof. For each i, we write Hi for the subspace spanned by all
possible states ρ at cut-point li. Moreover, let PHi be the projec-
tion onto Hi. We first prove that Omin,i = PHi . By Lemma 7.1, we
see that whenever the current location is cut-point li and the current

state is ρ, then tr (ρOmin,i) = tr(ρ). This means that supp(ρ) ⊆
supp (Omin,i) . Therefore, we have Hi ⊆ supp (Omin,i) , or e-
quivalently

PHi ⊑ Omin,i. (33)

On the other hand, let OP = diag{PH1 , · · · , PHl }. Then by the
definition of PHi , we have tr (ρPHi) = tr (ρOmin,i) for any
possible state ρ at cut point li. Therefore, OP is also a solution of
constraints (23) to (25). Obviously, tr (OP) ≤ tr (Omin), and thus
Omin = OP . In a way similar to the proof of equation (33), we can
show that PHi ⊑ Oi. Then we complete the proof by combining it
with Omin,i = PHi .

7.2 Quantum Walks on a Cycle

Now we are ready to generate the invariants of quantum walk on a
circle and to prove its partial correctness.

Example 7.1 (Generating Additive Invariants for Quantum Walk).
Consider the quantum walk in Examples 2.2 and 3.1. We choose
cut-set C = {l0, l3} with l3 = lout . Then the problem is to find
operators O0 and O3 satisfying the following constraints:

0 ⊑ E
∗

(O) + E
∗

(O) − Θ, (34)

With Lemma 7.1, we see that the final state ρout satisfy tr(O3ρout) =
1. This means that if the quantum walk always terminates, the fi-
nal position is |1⟩. Thus, we proved the partial correctness of this
program.

The computer platform that we used to generate invariants O0

and O3 is a desktop computer with Intel(R) Core(TM) i5-4570
CPU @ 3.20GHz and 8 GB RAM. The total CPU time and the
number of iteration of the CVX program for this example is given
in Table 1.

7.3 Quantum Metropolis Sampling

To further show its power, in this subsection, we use our method for
generating additive invariants to verify correctness of an important
quantum algorithm – quantum Metropolis sampling.

The Metropolis sampling method is a cornerstone of statisti-
cal modelling and computation in physics and chemistry. It was
successfully extended in [47] for simulation of quantum systems.
Quantum Metropolis sampling solves one of the key problems in
quantum physics: find a ground state or thermal state for a given
quantum system. Roughly speaking, at each round, the algorith-
m first generates some new state. If the energy of this new state
is low, then an update is accepted with probability 1; otherwise it
is accepted with a small probability exponential to the difference
of energies between the old and new states. To complete this task,
quantum Metropolis sampling requires three ancilla quantum sys-
tems. According to the description in [47], the size of these ancilla
quantum systems depends on the original system. More precise-
ly, the total number of qubits required in this algorithm is at least
3n + 1, where n is the number of qubits in the original system.
Thus, the dimensions of state Hilbert space is at least 23n+1. Here,
we only consider two simple cases of quantum Metropolis sam-
pling algorithm. The purpose of these cases is to find a ground state

00 0 03 3 in a one-qubit quantum system. By the previous discussion, there 0 ⊑ (E
∗

 − I)(O) + E
∗

(O), (35) are only 4 qubits involved in these cases.
00 0 03 3

0 ⊑ (E
∗

 − I)(O3), (36) Let us first consider a very simple case where a random choice
0 ⊑ O0, O3 ⊑ I (37)

where E00 = E00 ◦ E† , E03 = E03 ◦ E† , E33 = I, E00 =

is removed from the original quantum Metropolis sampling.

Example 7.2 (Quantum Metropolis sampling without random
00 03

S(H ⊗ Ip)(Ic ⊗ Mno), E03 = Ic ⊗ Myes , and Ic, Ip are the

identity operators in the coin space Hc and position space Hp,
respectively.

The solution of the SDP problem with constraints (34) to (37)
is as follows:

O0 =|R⟩⟨R| ⊗ |0⟩⟨0| + |R⟩⟨R| ⊗ |1⟩⟨1| + |ϕ⟩⟨ϕ|

choice). The structure of a quantum Metropolis sampling algo-
rithm for a one-qubit target system is given in Figure 3, where:

1. ρ0 = |0000⟩⟨0000|. Here, the first qubit is the target qubit, and

the other three qubits are the ancilla qubits.

2. c0, c1, c2, c3 are the cut-points with c1 = lout .

3. E0 represents 8 sub-routes, which initialise the three ancilla
n−1 n−1 qubits, i.e.

+
∑

|L⟩⟨L| ⊗ |i⟩⟨i| +
∑

|R⟩⟨R| ⊗ |i⟩⟨i|, (∑
α

 |abcd⟩⟨abcd|
)
 =

∑
α

|a000⟩⟨a000|.

i=2 i=4 E0 abcd abcd

where:

O3 =Ic ⊗ |1⟩⟨1|,

1

|ϕ⟩ = √
2

(|L⟩⟨L| ⊗ |1⟩⟨1| + |R⟩⟨R| ⊗ |3⟩⟨3|).

4. UE,1 represents the phase estimation on the first ancilla qubit to
estimate the energy of original system before updating. In [47],
the algorithm is developed for a general quantum system, and
thus it is necessary to specify the ground and excited states and

n Number of iterations Total CPU time (sec)
4 18 0.47
5 19 0.67

10 13 0.98
15 14 5.23
20 17 21.03

831

1

|ψ0⟩

|+⟩
|−⟩

|ϕ3⟩
|ϕ4⟩
|ϕ5⟩
|0⟩

|1⟩

W2

T (sec)

2.10
3.81
2.12
2.07
2.82
1.20
1.22

Table 2. Running time for generating invariants of Example 7.2.
Here, Ni is the number of iterations, T is the total CPU time
(sec), and |ϕ3⟩ = 0.8|0⟩ + 0.6|1⟩, |ϕ4⟩ = 0.6|0⟩ − 0.8|1⟩,
|ϕ5⟩ = 0.28|0⟩ + 0.96|1⟩.

11. U1 = WUE,2UR,1. If the updating is rejected, U † will undo

Figure 3. Quantum Metropolis sampling algorithm for a single-
qubit target system without random choice of unitary operators.

their corresponding energies. Here, for simplicity we assume

12.

unitary operators W, UE,2, UR,1.

P1 = |ψ0⟩⟨ψ0| ⊗|0⟩⟨0| ⊗ I2 ⊗ I2 +|ψ1⟩⟨ψ1| ⊗|1⟩⟨1| ⊗ I2 ⊗ I2

and P0 = I − P1.

that the ground state is |ψ0⟩ with energy label 0, and the excited 13. Q1,0 = U † †

state is |ψ1⟩ with energy label 1. Then UE,1 can be written as

UE,1 = |ψ0⟩⟨ψ0| ⊗ I2 ⊗ I2 ⊗ I2 + |ψ1⟩⟨ψ1| ⊗ X ⊗ I2 ⊗ I2,

where X = |0⟩⟨1| + |1⟩⟨0| is the NOT gate, I2 = |0⟩⟨0| +

|1⟩⟨1| is the identity operator for a single-qubit system. We will
examine different |ψ0⟩ to verify the algorithm.

5. {M1,0, M1,1} represents a projective measurement on the first
ancilla qubit to measure the energy of the current system, where

M1,0 = I2 ⊗ |0⟩⟨0| ⊗ I2 ⊗ I2,

M1,1 = I2 ⊗ |1⟩⟨1| ⊗ I2 ⊗ I2.

6. UR,1 = H ⊗ I2 ⊗ I2 ⊗ I2 updates the target state. In [47], UR,1

is chosen from a set of unitary operators at random. Here, this
randomisation is removed. But in Example 7.3 we will consider
a random choice from UR,2 and UR,3 at this step.

7. UE,2 represents the phase estimation on the second ancilla
qubit to estimate the energy of original system after updating,
i.e.

UE,2 = |ψ0⟩⟨ψ0| ⊗ I2 ⊗ I2 ⊗ I2 + |ψ1⟩⟨ψ1| ⊗ I2 ⊗ X ⊗ I2.

8. W decides whether the energy of the new state is low. Original-
ly in [47], W depends on the absolute temperature of the orig-
inal system. For simplicity, we will only examine the following
two choices of W in our experiment:

W1 = I2 ⊗ |0⟩⟨0| ⊗ |0⟩⟨0| ⊗ I2 + I2 ⊗ |1⟩⟨1| ⊗ |1⟩⟨1| ⊗ I2

+ I2 ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ X + I2 ⊗ |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ X,

W2 = I2 ⊗ |0⟩⟨0| ⊗ |0⟩⟨0| ⊗ I2 + I2 ⊗ |1⟩⟨1| ⊗ |1⟩⟨1| ⊗ I2

+ I2 ⊗ |0⟩⟨0| ⊗ |1⟩⟨1| ⊗ H + I2 ⊗ |1⟩⟨1| ⊗ |0⟩⟨0| ⊗ X.

9. {M2,0, M2,1} represents a projective measurement on the sec-
ond ancilla qubit to measure the energy of the current system,
where

M2,0 = I2 ⊗ I2 ⊗ |0⟩⟨0| ⊗ I2,

M2,1 = I2 ⊗ I2 ⊗ |1⟩⟨1| ⊗ I2.

1 (I2 ⊗ I2 ⊗ I2 ⊗ |0⟩⟨0|)U1 and Q1,1 = U1 (I2 ⊗

I2 ⊗ I2 ⊗ |1⟩⟨1|)U1.

The invariants O0, O1, O2, O3 generated using our method are
as follows:

• For |ψ0⟩ ̸= |0⟩ in Table 2, we have:
O0 = |ψ1⟩⟨ψ1| ⊗ |100⟩⟨100| + |ψ0⟩⟨ψ0| ⊗ |101⟩⟨101|,

O2 = |ψ0⟩⟨ψ0| ⊗ |000⟩⟨000| + |ψ1⟩⟨ψ1| ⊗ |100⟩⟨100|,

O3 = |0100⟩⟨0100| + |1100⟩⟨1100|,
Oout = O1 = |ψ0⟩⟨ψ0| ⊗ |000⟩⟨000|.

• For |ψ0⟩ = |0⟩, we have: O0 = 0, O2 = |0000⟩⟨0000|,
O3 = 0, and Oout = O1 = |0000⟩⟨0000|.

It is interesting to note that these invariants are independent of the
choice of W . With Lemma 7.1, we see from Oout that the sampling

algorithm can find the ground state |ψ0⟩ with ancilla qubits |000⟩.
Since no matter how we set the target system through UE,1 and

UE,2, the output Oout is always the ground state |ψ0⟩, we have
verified the partial correctness of the algorithm. The running time
of the CVX program for generating these invariants is shown in
Table 2.

We now consider an extension of the quantum Metropolis sam-
pling algorithm for a single-qubit target system in Example 7.2. At
this time, a random choice between UR,2 and UR,3 is allowed.

Example 7.3 (Quantum Metropolis sampling with a random
choice). The structure of quantum Metropolis sampling algorithm
for a single-qubit target system with a random choice is given in
Figure 4, where:

• ρ0, E0, UE,1, {M1,0, M1,1}, {M2,0, M2,1}, {M3,0, M3,1},

UE,2, W , and {P0, P1} are the same as in Example 7.2.

• c0, c1, c2, c3 and c4 are the cut-points. Note that here we have

one more cut-point c4 than in Example 7.2.

• 1
(
1 −1

)

, U
 1

(
1 1

)

=

10. {M3,0, M3,1} represents a projective measurement on the sec-

ond ancilla qubit to find whether the updating is accepted,

UR,2 = √
2 1 1 R,3

√
2 −1 1

.

where The factor 1 occurring before UR,2 or UR,3 in Figure 4 indi-

W1

Ni T (sec)

Ni

12 1.95 12
12 1.89 12
12 1.87 12
12 1.87 12
17 2.53 17
12 1.22 12
12 1.18 12

832

M3,0 = I2 ⊗ I2 ⊗ I2 ⊗ |0⟩⟨0|, cates that 2 y are chosen with equal probability 1 .

M3,1 = I2 ⊗ I2 ⊗ I2 ⊗ |1⟩⟨1|.

the 2

• U2 = WUE,2UR,2, and U3 = WUE,2UR,3.

833

Figure 4. Quantum Metropolis sampling algorithm for a one-qubit
target system with random choice of unitary operators.

Metropolis algorithm. Such an optimisation has not been noticed
in the previous literature [47] yet.

Firstly, in Example 7.2, we obtained O0 = O3 = 0 for |ψ0⟩ =

|0⟩. Then by Lemma 7.1, we see that the states at cut-points c0 and
c3 always vanish (that is, the partial density operators become 0),
except the initial state. This means that once the program leaves
location c0, it will never go to either c0 or c3; in other words, the

only effective route is c0 → c2 → c3, and the other parts of the

program is redundant for the case of |ψ0⟩ = |0⟩. This information
is useful in compilation of the program.

Secondly, the operator W given in [47] is quite complicated
and dependent on the current absolute temperature. In the above
examples, we showed that W can be replaced by one of the two
much simpler operators W1 and W2 that can achieve the same
computational result. This indicates that our techniques can be
used to find operators to simplify the original ones in a quantum
program.

8. Conclusion

We introduced the notions of invariant and inductive assertion for
quantum programs in two different ways: additive and multiplica-
tive. It was proved that both additive and multiplicative invariants
can be used to verify partial correctness of quantum programs. We
also showed that additive (resp. multiplicative) invariants can be
derived from additively (resp. multiplicatively) inductive assertion-
s. Furthermore, it was demonstrated that the defining conditions for
additively inductive assertions can be transformed into certain con-

|ψ0⟩

|+⟩
|−⟩

|ϕ3⟩
|ϕ4⟩
|ϕ5⟩
|0⟩

|1⟩

W2

T (sec)

11.18
11.17
4.35
4.38
4.09
2.57
2.39

straints of an SDP (Semidefinite Programming) problem. There-
fore, additive invariants can be generated by using the SDP solvers.

For the further studies, an interesting problem is generation of
multiplicative invariants of quantum programs, which was not ad-
dressed in Section 6. A problem closely related to invariant genera-
tion is synthesis of ranking functions [9], which has been deeply s-
tudied for probabilistic programs in the last few years using (super-
)martingales (see e.g. [6, 7, 16]). The corresponding problem for
quantum programs is also important, but cannot be solved by s-
traightforwardly extending the approach in [6, 7, 16] because the

Table 3. Running time for generating invariants of Example 7.3.
Here, Ni is the number of iterations, T is the total CPU time
(sec), and |ϕ3⟩ = 0.8|0⟩ + 0.6|1⟩, |ϕ4⟩ = 0.6|0⟩ − 0.8|1⟩,
|ϕ5⟩ = 0.28|0⟩ + 0.96|1⟩.

• Qi,0 = U †(I2 ⊗ I2 ⊗ I2 ⊗ |0⟩⟨0|)Ui and Qi,1 = U †(I2 ⊗ I2 ⊗

necessary mathematical tool, namely a theory of quantum (super-
)martingales is still to be developed. In this paper, we only consider
quantum programs written in a quantum extension of the while-
language. So, another interesting problem is to define invariants for
recursive quantum programs and to extend the approach present-
ed in [26] for inter-procedural analysis and verification of quantum
programs.

i

I2 ⊗ |1⟩⟨1|)Ui.
i

References
The invariants O0, O1, O2, O3, O4 can be generated using our

method. The result is as follows: O0, O1, O2, O3 are the same as
in Example 7.2 and O4 = O3. Based on these invariants, one
can easily show that as stated in [47], random choice between
unitary operators UR,i is irrelevant to correctness of the sampling
algorithm. The running time of the CVX program for generating
invariants of the algorithm in Example 7.3 is given in Table 3.

In [47], the authors claimed that the detailed form of random u-
nitary operators UR,i is not important, provided that the probability

of choosing U is equal to the probability of choosing U †. Actually,
this statement is automatically verified by our method of invariant
generation. It suffices to note that for i = 0, 1, 2, 3, Oi in Example
7.2 is the same as in Example 7.3, although these two examples
employ different random unitary operators.

Discussion. In Examples 7.2 and 7.3, we have verified correct-
ness of the quantum Metropolis algorithm through automatically
generating invariants O0, O1, ..., O4. Here, we further show how
these generated invariants can help us to optimise the quantum

[1] D. Aharonov, A. Ambainis, J. Kempe and U. Vazirani, Quantum walks
on graphs, In: Proc. of the 33rd ACM Symposium on Theory of Com-
puting (STOC), 2001, pp. 50-59.

[2] A. J. Abhari, A. Faruque, M. Dousti, L. Svec, O. Catu, A. Chakra-
bati, C.-F. Chiang, S. Vanderwilt, J. Black, F. Chong, M. Martonosi,
M. Suchara, K. Brown, M. Pedram and T. Brun, Scaffold: Quantum
Programming Language, Technical Report TR-934-12, Dept. of Com-
puter Science, Princeton University, 2012.

[3] A. Baltag and S. Smets, LQP: The dynamic logic of quantum infor-
mation, Mathematical Structures in Computer Science, 16(2006)491-
525.

[4] O. Brunet and P. Jorrand, Dynamic quantum logic for quantum pro-
grams, International Journal of Quantum Information, 2(2004)45-54.

[5] R. Chadha, P. Mateus and A. Sernadas, Reasoning about imperative
quantum programs, Electronic Notes in Theoretical Computer Sci-
ence, 158(2006)19-39.

[6] A. Chakarov and S. Sankaranarayanan, Probabilistic program analy-
sis with martingales, In: Proc. of the 25th International Conference

W1

Ni T (sec)

Ni

13 10.87 13
13 10.87 13
13 3.84 13
13 3.93 13
12 3.67 12
14 2.56 14
12 2.31 12

834

Computer Aided Verification (CAV), 2013, Springer LNCS 8044, pp.

511-526.

[7] K. Chatterjee, H. F. Fu, P. Novotný and R. Hasheminezhad, Algorith-
mic analysis of qualitative and quantitative termination problems for
affine probabilistic programs, In: Proceedings of the 43rd ACM Sym-
posium on Principles of Programming Languages (POPL), 2016, pp.
327-342

[8] M. A. Colón, S. Sankaranarayanan and H. B. Sipma, Linear invariant
generation using non-linear constraint solving, In: Proc. of the 15th In-
ternational Conference on Computer Aided Verification (CAV), 2003,
Springer LNCS, pp. 420-433.

[9] M. Colón and H. Sipma, Synthesis of linear ranking functions, In:
Proc. of the 7th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 2001, Springer
LNCS 2031, pp. 67-81.

[10] P. Cousot and R. Cousot, Abstract interpretation: a unified lattice mod-
el for static analysis of programs by construction or approximation of
fixpoints, In: Proceedings of the 4th ACM Symposium on Principles of
Programming Languages (POPL), 1977, pp. 238-252.

[11] P. Cousot and N. Halbwachs, Automatic discovery of linear restraints
among variables of a program, In: Proceedings of the 5th ACM Sym-
posium on Principles of Programming Languages (POPL), 1978, pp.
84-96.

[12] H. Derksen and J. Weyman, Quiver representations, Notices of the
American Mathematical Society, 52(2005)200-206.

[13] E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Mathematical Structures in Computer Science, 16(2006)429-451.

[14] Y. Feng, R. Y. Duan, Z. F. Ji and M. S. Ying, Proof rules for the

correctness of quantum programs, Theoretical Computer Science,
386(2007)151-166.

[15] Y. Feng, N. K. Yu and M. S. Ying, Model checking quantum Markov
chains, Journal of Computer and System Sciences, 79(2013)1181-
1198.

[16] L. M. F. Fioriti and H. Hermanns, Probabilistic termination: Sound-
ness, completeness, and compositionality, In: Proceedings of the 42nd
ACM Symposium on Principles of Programming Languages (POPL),
2015, pp. 489-501.

[17] R. W. Floyd, Assigning meanings to programs, In: Proceedings of the
Symposium on Mathematical Aspects of Computer Science, 1967, 19-
33.

[18] S. Gay, Quantum programming languages: survey and bibliography,
Mathematical Structures in Computer Science, 16(2006)581-600.

[19] S. Gay, R. Nagarajan, and N. Panaikolaou. QMC: A model checker

for quantum systems, In: Proceedings of the 20th International Con-
ference on Computer Aided Verification (CAV), 2008, Springer LNCS
5123, pp. 543-547.

[20] I.?M. Georgescu, S. Ashhab and F. Nori, Quantum simulation, Re-
views of Modern Physics, 86(2014)153-185.

[21] S. M. German and B. Wegbreit, A synthesiser of inductive assertions,
IEEE Transactions on Software Engineering, 1(1975)68-75.

[22] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex
programming, version 2.0 beta. http://cvxr.com/cvx, September 2013.

[23] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger and B. Valiron,

Quipper: A scalable quantum programming language, Proceedings of
the 34th ACM Conference on Programming Language Design and
Implementation (PLDI), 2013, pp. 333-342.

[24] F. Gretz, J. -P. Katoen and A. McIver, Prinsys - On a quest for prob-
abilistic loop invariants, in: Proc. 10th International Conference on
Quantitative Evaluation of Systems (QEST), 2013, Springer LNCS
8054, pp.193-208.

[25] S. Gudder, Quantum Markov chains, Journal of Mathematical Physic-
s, 49(2008) art. no. 072105.

[26] S. Gulwani, S. Srivastava and R. Venkatesan, Program analysis as con-
straint solving, In: Proceedings of 29th ACM Conference on Program-
ming Language Design and Implementation (PLDI), 2008, pp. 281-
292.

[27] A. Gupta and A. Rybalchenko, InvGen: an efficient invariant gener-

ator, Proceedings of the 21st International Conference on Computer
Aided Verification (CAV), 2009, pp. 634-640.

[28] G. Gutoski and X. Wu, Parallel approximation of min-max problems
with applications to classical and quantum zero-sum games, Compu-
tational Complexity, 22(2013) 385-428.

[29] I. Hasuo and N. Hoshino, Semantics of higher-order quantum compu-
tation via Geometry of Interaction, In: Proceedings of the 26th IEEE
Symposium on Logic in Computer Science (LICS), 2011, 237-246.

[30] Y. Kakutani, A logic for formal verification of quantum programs,
in: Proceedings of the 13th Asian Computing Science Conference
(ASIAN), 2009, Springer LNCS 5913, pp. 79-93.

[31] J. -P. Katoen, A. McIver, L. Meinicke and C. C. Morgan, Linear-
invariant generation for probabilistic programs - Automated support
for proof-based methods, in: Proc. 17th International Symposium on
Static Analysis (SAS), 2010, Springer LNCS 6337, pp. 390-406.

[32] S. Katz and Z. Manna, Logical analysis of programs, Communications
of the ACM, 19(1976)188-206.

[33] H. J. Keisler, Probability quantifiers, In: J. Barwise and S. Feferman
(eds.), Model Theoretic Logics, Springer, 1985, pp. 509-556.

[34] N. Megiddo, A note on approximate linear programming, Information
Processing Letters, 42(1992) 42-53.

[35] A. McIver and C. C. Morgan, Abstraction, Refinement and Proof of
Probabilistic Systems, Springer, Heidelberg, 2004.

[36] Y. J. Li, T. Liu, S. L. Wang, N. J. Zhan and M. S. Ying,
A theorem prover for quantum Hoare logic and its applications,
http://arxiv.org/pdf/1601.03835.pdf

[37] B. Ö mer, Structured Quantum Programming, Ph.D thesis, Technical
University of Vienna, 2003.

[38] M. Pagani, P. Selinger and B. Valiron, Applying quantitative semantics
to higher-order quantum computing, In: Proceedings of 41st ACM
Symposium on Principles of Programming Languages (POPL), 2014,
pp. 647-658.

[39] N. Rescher, Many-Valued Logic, McGraw-Hill, 1969.

[40] J. W. Sanders and P. Zuliani, Quantum programming, In: Proceed-
ings of 5th International Conference on Mathematics of Program Con-
struction (MPC), 2000, Springer LNCS 1837, Springer pp. 88-99.

[41] S. Sankaranarayanan, H. B. Sipma and Z. Manna, Non-linear loop
invariant generation using Gröbner bases, in: Proceedings of the 31st
ACM Symposium on Principles of Programming Languages (POPL),
2004, pp. 318-329.

[42] P. Selinger, A brief survey of quantum programming languages, In:
Proc. of 7th International Symposium on Functional and Logic Pro-
gramming, 2004, Springer LNCS 2998, pp. 1-6.

[43] P. Selinger, Towards a quantum programming language, Mathematical
Structures in Computer Science 14, (2004) 527-586.

[44] M. J. Serna, Approximating linear programming is log-space complete
for P, Information Processing Letters, 37(1991) 233-236.

[45] Stanford Invariant Generator, http://theory.stanford.edu/ sriram-
s/Software/sting.html.

[46] S. Staton, Algebraic effects, linearity, and quantum programming lan-
guages, In: Proceedings of 42nd ACM Symposium on Principles of
Programming Languages (POPL), 2015, pp. 395-406.

[47] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, and F. Ver-
straete. Quantum Metropolis sampling. Nature, 471(2011) 87-90.

[48] D. Wecker and K. M. Svore, LIQUi|⟩: A software design ar-
chitecture and domain-specific language for quantum computing,
http://research.microsoft.com/pubs/209634/1402.4467.pdf.

[49] M. S. Ying, Floyd-hoare logic for quantum programs, ACM Transac-
tions on Programming Languages and Systems, 33(2011) art no. 19,
pp. 1-49.

[50] M. S. Ying, Foundations of Quantum Programming, Morgan-
Kaufmann, 2016.

[51] M. S. Ying and Y. Feng, Quantum loop programs, Acta Informatica,
47(2010)221-250.

http://cvxr.com/cvx
http://arxiv.org/pdf/1601.03835.pdf
http://theory.stanford.edu/
http://research.microsoft.com/pubs/209634/1402.4467.pdf

835

[52] M. S. Ying, Y. J. Li, N. K. Yu and Y. Feng, Model-checking linear-time

properties of quantum systems, ACM Transactions on Computational
Logic, 15(2014) art. no. 22.

[53] M. S. Ying, N. K. Yu, Y. Feng and R. Y. Duan, Verification of quantum

programs, Science of Computer Programming, 78(2013)1679-1700.

