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Abstract

Automatically inferring human intention from
walking movements is an important research
concern in robotics and other fields of study.
It is generally derived from temporal motion
of limb position relative to the body. These
changes can also be reflected in the change of
stance and gait. Conventional systems relying
on gait are usually based on tracking the lower
body motion (hip, foot) and are extracted from
monocular camera data. However, such data
can be inaccessible in crowded environments
where occlusions of the lower body are preva-
lent. This paper proposes a novel approach to
utilize upper body 3D-motion and Hierarchical
Hidden Markov Models to estimate human am-
bulatory states, such as quietly standing, start-
ing to walk (gait initiation), walking (gait cy-
cle), or stopping (gait termination). Methods
have been tested on real data acquired through
a motion capture system where foot measure-
ments (heels and toes) were used as ground
truth data for labeling the states to train and
test the models. Current results demonstrate
the feasibility of using such a system to in-
fer lower-body motion states and sub-states
through observations of 3D shoulder motion on-
line. Our results enable applications in situa-
tions where only upper body motion is readily
observable.

1 Introduction

Walking is considered to be one of the most common
and important forms of human movement. Humans are
known to constantly challenge their balance control sys-
tem during daily life activities [Winter, 1995]. From a
standing posture, they can initiate their motion, walk
alternating the foot in contact with the ground, turn
to avoid obstacles or reach specific targets, adapt their

speed, stop their motion, or move backward. The style
of walking of an individual, or gait [Kale et al., 2003;
Lee and Grimson, 2002], can be defined as the over-
all pattern of bipedal locomotion mainly determined by
the person’s body properties and behavioral patterns ac-
quired over time [Subramanian et al., 2015]. It is a very
complex behavior that requires coordination of the cen-
tral nervous system, the muscles and the limbs [Sun,
2015]. The quantitative description of all mechanical as-
pects of ambulation is commonly referred to as gait anal-
ysis [Cappozzo, 1984] and entails measurement, analysis
and assessment of the biomechanical features associated
with the walking task [Best and Begg, 2006].

Gait analysis represents a particular interest to a
diversity of fields such as physical medicine, psycho-
logical, surveillance, activity monitoring, athletic eval-
uation, and behavioral biometrics [Han, 2013; Zeng
and Wang, 2015]. Gaits vary from one person to an-
other in certain details such as their relative timing
and magnitude [Wang et al., 2003], making them a
promising unobtrusive biometric measurable at distance
and not requiring interaction or body-invading equip-
ment [BenAbdelkader et al., 2002; Wang et al., 2004;
Johnson and Bobick, 2001]. However, gait has also been
proved to be similar among human populations because
it is determined by basic patterns of bipedal locomotion.

Current research on human motion tends to extract
gait from lower-body motion, requiring an unobstructed
view of the feet, hip, and legs. Such conditions are al-
most impossible to reproduce in environments where the
human body, especially the legs, can be occluded by ob-
jects or other people in the scene. For example, environ-
ments with furniture obstructing the lower body or dense
crowds in large open spaces such as airports. This paper
proposes a new approach for inferring the gaits, states
(gait initiation, cycles, termination) and sub-states, us-
ing 3D-motion of the shoulder extracted from people
walking along a straight path. We demonstrate the pos-
sibility for such a system to infer the motion sub-states in
both offline and online conditions by using foot measure-



ments as a ground truth for labeling the shoulder data
used for training and testing individual Hidden Markov
Models (HMMs), one per motion state, and the overall
Hierarchical Hidden Markov Models (HHMM) used for
inferring the motion states and sub-states.

We begin with a brief set of definitions of the mo-
tion states and sub-states required to be inferred from
the shoulders in Section 2. Next, we describe the ex-
periments performed to collect data used to validate our
methods in Section 3. In Section 4, we present the meth-
ods and assumptions. Lastly, we evaluate the offline and
online results given by each individual HMM and the
overall HHMM in Section 5, and present conclusions in
Section 6.

2 Background

In this section, we provide definitions of the motion
states and sub-states used for this work. These states
were selected based on the literature review on gaits to
be used as a proof-of-concept. Alternative states may be
substituted to fit a particular application.

2.1 Quiet standing

During quiet standing, the task is to keep the body’s
center of mass (COM) safely within the base of sup-
port [Winter, 1995]. The COM and center of pres-
sure (COP) positions are equal on the transverse plane
when the body is motionless [Elble et al., 1994]. When
the person starts walking, muscular and gravitational
actions are required to create the initial posture dy-
namic condition for moving forward [Mickelborough et
al., 2004; Bruyneel et al., 2010]. Thus, for this work, a
person whose 3D shoulder motion velocities are null will
be considered to be quietly standing.

2.2 Gait initiation

Gait initiation is a transient movement between a quasi-
static upright posture and steady-state gait [Lepers and
Breniere, 1995]. It is a complex task requiring a variety
of postural adjustments and shifts resulting in a forward
step [Elble et al., 1994; Assaiante et al., 2000]. It may
be challenging for postural stability as the body must
be accelerated forward from a stationary posture while
simultaneously maintaining equilibrium within a smaller
base of support due to shorter steps [Muir et al., 2014].
Two major parts constitute the gait initiation: (1) the
anticipation phase, from onset to swing-foot toe-off, pre-
ceding and preparing the first step execution partly by
creating an initial forward controlled pendulum fall [As-
saiante et al., 2000], leaning the trunk forward to shift
the COM [Breniere and Do, 1991]; and (2) the execution
phase [Lepers and Breniere, 1995], from swing-foot toe-
off to stance-foot toe-off [Laudani et al., 2006], represent-
ing the first step execution, programmed to adjust the

progression of the COP to the COM velocity [Breniere
and Do, 1991]. In this paper, we selected the antici-
patory phase and the execution phase as gait initiation
sub-states.

2.3 Gait cycle

Gait is a periodic movement with the period within walk-
ing called a gait cycle [Nowlan, 2009] and defined as the
full cycle motion of a same leg: from the heel striking
the ground to the ipsilateral heel striking again [Liu et
al., 2004]. The cycle is composed of two major parts: (1)
the stance phase (initial contact, loading response, mid-
stance, and terminal stance) representing the actions of
the first leg, and (2) the swing phase (pre-swing, initial
swing, mid-swing, and terminal swing) representing the
actions of the following one. We chose to use the sup-
port states as the gait cycle sub-states: the stance single
support (mid-stance + terminal stance), the stance dou-
ble support (pre-stance), the swing single support (mid-
swing + terminal swing), and the swing double support
(pre-swing).

2.4 Gait termination

Gait termination, representing the transition from
steady-state gait to a “quiet” standing position [Jaeger
and Vanitchatchavan, 1992; Novak et al., 2013] and im-
plying returning the COM within the base of support, is
more difficult to achieve than the gait initiation because
of the need of the central neural system to predict the
future position of the COM [Winter, 1995]. Although
individuals can come to a stop at any time [Novak et al.,
2013], studies have reported that the decision to stop has
to be made at specific times during the gait to be able to
terminate or take another step [Jaeger and Vanitchatcha-
van, 1992]: foot placement is the principal component to
cease walking [Hase and Stein, 1998]. Individuals have
to make an extra step when the signal to stop occurs late
within the stance cycle of the trailing stance limb [Bishop
et al., 2004]. In this paper, we selected the gait termi-
nation sub-states from the stance heel-on to the swing
heel-off and from the swing heel-off to the stance heel-on.

3 Experimental data acquisition

This section details the experimental procedure used to
capture and extract data for foot (heels and toes) and
shoulder (positions and orientations) motion from 15
participants via a passive motion capture system.

3.1 Material

The environment used is a 10 m-diameter cylindrical
room equipped with the Optitrack® passive motion cap-
ture system capable of sub-20 um accuracy in optimal

"More information regarding Optitrack available on offi-
cial website: http://optitrack.com.



(a) Markers on the head. (b) Markers on the shoul-

ders.

(c) Markers on the heels.

(d) Markers on the toes.

Figure 1: Infrared reflective markers attached on a vol-
unteer.

conditions. It comes with Motive, which is software used
to create rigid bodies from 3 (minimum amount of mark-
ers required to create a frame) infrared reflective markers
placed on volunteers’ body parts (supposed to be rigid)
to track their 3D positions and rotations over time (at
120 fps), record them, and finally export them into a
spreadsheet.

3.2 Subjects

Fifteen healthy volunteers were randomly selected to
perform the experiment: three females and twelve males
from 21 to 32 years old. Participants were asked to keep
their shoes on and rigid bodies were created through the
software using the markers placed on their head, shoul-
ders, heels, and toes (Figure 1).

3.3 Experimental protocol

Participants were asked to repeat the following exercise
40 times: stand quietly in an initial area, walk straight
to a second area (outside the field of view in order to
collect more gait cycles), re-enter the field of view with
an ongoing motion, walk straight back to the initial area,
stop, wait, and turn.

3.4 Data correction

Even though the capture system was calibrated prior
to the experiment, a post-calibration correction was re-
quired to correct a subsisting floor orientation error: 3
infrared markers were placed on the ground to extract
the gravity vector of the arena frame to rotate the exper-
imental data. As some markers experienced occlusions,
data with small time gaps in the acquisition were inter-
polated using a shape-preserving piecewise cubic inter-
polation of the points neighboring missing values. When
the gaps were too large, data were discarded.
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Figure 2: Motion states manual labeling using the feet
measurements.

4 Methods

This section describes our framework designed to infer
the motion states and sub-states, online or offline, using
the shoulder 3D-motion measurements and the ground
truth given by the feet combined, with a Hierarchical
Hidden Markov Models (HHMM), a structured multi-
level stochastic model, here represented as a Hierarchi-
cal Dynamic Bayesian Network (H-DBN) [Patel et al.,
2012]. First, we introduce a method to determine the
motion sub-states from individual Hidden Markov Mod-
els (HMM) designed for each motion state. Then, we
give an overview on the design of the HHMM framework
trained with the parameters extracted from the individ-
ual HMMs and evaluated with ground truth data.

4.1 Hidden Markov Models for offline
inference

Any motion state can be represented as an individual
HMM, a probabilistic model in which the states, here the
sub-states of the current motion state, cannot be directly
observed but inferred through measurements known as
observations. It models P(Q,O) for a sequence of ob-
servations, O = {01, 09, ...,0r}, and the corresponding
sequence of hidden states, @ = {q1, ¢, ...,qr}. Each ¢
takes values in a finite set of hidden states {s1, s2, ..., sy }
and each observation oy is from {vy,vs,...,vpr}. The pa-
rameters defining an HMM, A = {A, B,w}, are given
by the state transition probabilities matrix A, where
a;j = P(q = sj|lgi—1 = si), the observations probabili-
ties matrix B, where b;(k) = P(o; = vi|q: = s;), and the
initial state probabilities matrix 7, with m; = P(q1 = s;).
These parameters are found after training the model and
are used to infer the states from a testing sequence.
Following the motion states and sub-states definition
presented in the background section, we used the foot
measurements to split the data (Figure 2) into motion
datasets applied for training and testing: gait initiation
begins when the stance foot heel-off for the first time
and finishes when the stance foot toe-off for the second



time; followed by the gait cycles; and finally, by the gait
termination from the last stance foot heel-off to the last
stance foot heel-on. However, due to the freedom peo-
ple have to start and stop with either foot, we replaced
the concept of stance and swing, that can vary between
trials, by the foot side. Consequently, the gait initiation
and termination can be split into: gait initiation with
right foot (GIR), gait initiation with left foot (GIL), gait
termination with right foot (GTR), and gait termination
with left foot (GTL). Gait cycle (GCY) only requires one
model as a cycle covers both the actions of both sides. It
should be noted that in order to extract a template from
the GCY training data, only the cycles starting with the
same foot should be considered.

In this work, models used for ground truth rely on
the foot measurements: right and left heel height (RH)
(LH), right and left toes height (RT) (LT); and models
used for proof of concept, use the shoulders measure-
ments: heights (SH), Yaw angles (SY), Roll angles (SR),
and transverse positions reoriented to be one-dimension
only (SP). The sinusoidal-like shape of SH while walk-
ing straight (Figure 2) provides sufficient information for
extracting the cycles using the peaks (2 cycles from this
signal is equivalent to 1 gait cycle). Shoulder transverse
position reorientation is made using the angle between
the intended direction vector, computed with the full pe-
riod for GIR, GIL, GTR, and GTL, or the gait cycle for
GCY, and any reference direction vector defined a priori
(here, the world frame x-axis).

Gaits have been proved to be similar among people be-
cause they are determined by basic patterns of bipedal
locomotion. In this work, we designed a method to ex-
tract these basic patterns from every motion state to
train the models. All the training data, coming from
both foot and shoulder measurements, have been aligned
and stretched using the extrema computed from RH,
LH, RT, and LT, depending on the motion state to be
trained. For GIR and GIL, from the beginning to the
stance heel maximum (1-20%) to the stance toe max-
imum (20-40%) to the swing heel maximum (40-60%)
to the swing toe maximum (60-80%) to the end (80-
100%). For GTR and GTL, from the start to the stance
heel maximum (1-25%), to the stance toe maximum (25-
50%), to the swing heel maximum (50-75%), to the end
(75-100%). Finally, GCY was aligned from the beginning
of the cycle to the swing toe maximum (1-20%), to the
stance heel maximum (20-40%), to the stance toe max-
imum (40-60%), to the swing heel maximum (60-80%),
to the end of the cycle (80-100%). Then, both train-
ing and testing data were standardized using a standard
score on the entire period motion state period (except
for GCY where the standardizing is made on each cycle),
to remove any individual unique characteristics. Finally,
sub-states periods were extracted from the feet measure-

ments templates to label the shoulders ones (Figure 3).

For each motion states sub-state, we fit a mixture of
M Gaussians using K-means to estimate the initial pa-
rameters (u and o). Then, we improve these parameter
estimates using Baum Welch’s Expectation Maximiza-
tion (EM) for the full motion state. The outputs of this
operation are the HMM parameters: a transition ma-
trix, a mixture distribution, means vector, and covari-
ance matrices. For each testing sample, the probability
density function of a conditional mixture of Gaussians
is evaluated at each time ¢ where the maximum proba-
bility provides the most likely sub-state and is added to
a sequence vector. This sequence of sub-states is finally
input to a Viterbi algorithm with the model parameters
to find the most-probable path through the HMM.

4.2 Hidden Markov Models for online
inference

In contrast to the offline detection, online inference poses
some challenges and requires initial assumptions. First,
we hypothesize that the orientation of the person is ex-
tractable from the quiet standing state. This informa-
tion is necessary, yet no method was found for extract-
ing the direction of travel from the ongoing motion of
the shoulders in the transverse plane. In this work, we
limit the inference solely to straight walking to utilise
the intended direction of travel computed at the end of
the previous cycle. The second assumption hypothesizes
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(b) Shoulders measurements after alignment and standard-
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Figure 3: GCY offline training measurements (from 1
person) aligned using the feet: background colors repre-
senting the sub-states periods.
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Figure 4: Time series of the motions states (level 1) and
sub-states (level 2).

that at least one cycle was observed in order to extract
the parameters (means and standard deviation) for all
the measurements (feet and shoulders). When used of-
fline, these parameters can be directly computed on the
overall motion state. However, we hypothesize that no
explicit knowledge of the current motion state is avail-
able. Thus, we only store the parameters coming from
the previous cycle as this information is easily extracted
using the SH local maxima, also used to reset SY, SR,
and SP measurements values to 0.

4.3 Overall Hierarchical Hidden Markov
Model

An HHMM can use autonomous probabilistic models
to represent its hidden states. They have a tree struc-
ture where each level represents a hierarchy. The states
not emitting any observable symbol are called “internal
states” and vertical transitions represent the activation
of a sub-state by an internal state. A state at the hi-
erarchy d (1[root],2, ..., D) and time ¢, is noted Q¢. In
this work, we use a 2-level hierarchy to differentiate the
motion states (d = 1) from the sub-states (d = 2). An
observations node, Ot, provides the information to the
system. And the termination state, F{, specifies the
completion of a sub-HMM by returning 1 after Q¢ has
transited to its final state, 0 otherwise, to return the
control back to the higher level. The HHMM parame-
ters are given in the form of: a prior distribution and a
transitions probability model defined at each levels, and
an observation probability distribution model.

For the first level, the probability to start at any par-
ticular motion state j is equal: someone could enter the
field of view with an ongoing motion. The transition ma-
trix A! is expressed by the time series shown in Figure 4.
Then, given 7' and A!, the probabilities at the highest
level can be defined as follow:

6(i,4)
Al(i, j)

if F2, =0
if F2, =1

1)
Where 6(i, j) represents a probability threshold. In nor-
mal cases, 6(i,j) is equal to 1 if ¢ = j, and 0 other-
wise. No F'! is required at the highest level because the
motion state inference never actually stops. The second

PQ} = jIQL, =i, F2, = f) = {

level probability of being in a particular sub-state j while
being in state k is given by:

P(Q} =jlQ7y =i, F = f,Qi =k) =

Ai(i,g) fF2,=0 @)
2 if F2, =1
with A? and w7 respectively representing the tran-
sition distributions and prior probabilities of the sub-
states (level 2) when the motion state, Q}, is k. Finally,
the observation model signifies the probability of seeing
a specific observation conditioned on a discrete hidden
state. We use both Gaussian and discrete observations:

P(O4Q} = i) = N(u, %) (3)
P(04|Q} = i) = C(i) (4)

The means and covariances matrices are given by the
mixture of Gaussians trained for every individual HMM
with online training data. C(i) is the probability to see
the observation O; when in a particular sub-state 7. Full
sequences are used to train the full model. Expectation-
Maximization with 10 iterations is used for extracting
the final engine used for the global inference. For any
testing sequence, the most probable explanation of the
evidence is computed and compared with the data fully
labeled.

5 Evaluation

In this section, we evaluate our methods on the data ob-
tained from 15 people during the experiment. We start
by providing a proof of concept regarding the inference
of the motion sub-states through the shoulder measure-
ments when the motion state is known and trained using
an HMM. Then, we show that the inference can be per-
formed online. Finally, we provide results regarding the
motion states inference using an HHMM.

5.1 Step 1: Offline evaluation of individual
HMDMs

The main objective was to evaluate feasibility of infer-
ring the motions states and sub-states. Table 1 shows
the results of the offline inference of motion sub-states
returned by the individual HMMs. We first trained and
tested the individual models solely with foot measure-
ments and a Gaussian mixture of 1 or 6 Gaussians to
verify the extractability of the sub-states using the feet
as this would constitute the ground truth. After data ex-
traction (as presented in methods section) standardiza-
tion was performed offline. Thereafter 80% of the data
was used for training and 20% for the evaluation of the
individual model. Results where computed in 3 different
ways: individually (I), where only data extracted from



Table 1: Accuracy for the offline sub-states inference.

GIR GIL GCY GTR GTL
Feature | G | T 1 2 1 2 3 4 1 2 1 2
Feet 11O 9390 | 89.40 | 93.40 | 84.80 | 85.80 | 93.80 | 75.40 | 85.70 | 94.70 | 93.60 | 98.10 | 93.90
Feet 1| I |97.20 | 90.00 | 98.40 | 90.30 | 89.10 | 95.90 | 78.70 | 89.20 | 92.00 | 93.10 | 96.10 | 93.60
Feet 1 | E | 94.50 | 89.20 | 90.10 | 87.50 | 82.80 | 93.70 | 75.30 | 86.90 | 89.00 | 92.80 | 89.60 | 94.30
Feet 6 | O] 99.80 | 97.20 | 99.40 | 98.30 | 92.40 | 99.50 | 88.70 | 98.20 | 96.50 | 97.30 | 98.10 | 97.60
Feet 6 | T |99.30 | 98.80 | 99.20 | 98.80 | 93.00 | 99.90 | 92.00 | 99.30 | 95.90 | 98.10 | 97.20 | 98.40
Feet 6 | E | 98.20 | 97.40 | 96.60 | 98.60 | 89.20 | 99.40 | 88.60 | 98.10 | 90.10 | 97.30 | 91.00 | 97.80
Shoulders | 1 | O | 99.10 | 87.30 | 98.00 | 88.40 | 83.80 | 98.00 | 84.40 | 92.00 | 75.90 | 98.40 | 76.10 | 97.10
Shoulders | 1 | T | 98.90 | 92.30 | 97.70 | 91.90 | 88.50 | 99.10 | 86.60 | 93.70 | 80.60 | 98.40 | 81.50 | 98.30
Shoulders | 1 | E | 96.10 | 89.70 | 95.30 | 87.80 | 81.90 | 97.80 | 85.00 | 90.70 | 71.90 | 98.10 | 73.40 | 98.40
Shoulders | 6 | O | 98.60 | 96.00 | 97.70 | 96.00 | 84.50 | 99.40 | 82.00 | 94.90 | 86.50 | 97.30 | 89.50 | 97.40
Shoulders | 6 | I | 98.30 | 97.50 | 97.60 | 96.00 | 87.80 | 99.70 | 85.30 | 97.80 | 90.70 | 95.30 | 91.40 | 95.20
Shoulders | 6 | E | 96.70 | 95.70 | 95.30 | 94.50 | 81.50 | 99.10 | 81.10 | 94.20 | 82.50 | 96.00 | 84.80 | 95.90
Table 2: Accuracy for the online sub-states inference.
GIR GIL GCY GTR GTL
Feature | G | T 1 2 1 2 3 4 1 2 1 2
Shoulders | 1 | O | 67.10 | 55.80 | 73.50 | 61.00 | 77.30 | 65.90 | 74.70 | 56.40 | 48.50 | 96.50 | 40.60 | 97.00
Shoulders | 1 | T | 80.80 | 71.70 | 79.00 | 68.90 | 74.80 | 58.10 | 70.10 | 64.00 | 74.40 | 96.50 | 63.50 | 99.20
Shoulders | 1 | E | 67.20 | 50.00 | 71.00 | 59.90 | 76.30 | 58.90 | 76.00 | 60.00 | 48.20 | 96.70 | 43.20 | 94.00
Shoulders | 6 | O | 84.40 | 71.70 | 83.10 | 78.50 | 71.50 | 85.80 | 62.80 | 76.70 | 84.80 | 97.60 | 82.30 | 99.30
Shoulders | 6 | T | 91.20 | 82.50 | 89.60 | 81.30 | 68.70 | 86.10 | 62.10 | 82.70 | 87.90 | 97.00 | 84.10 | 97.60
Shoulders | 6 | E | 80.80 | 68.90 | 80.20 | 74.20 | 69.50 | 83.40 | 62.90 | 76.70 | 84.90 | 97.10 | 83.60 | 99.00

Table 3: Accuracy for the online states inference using the HHMM.

Feature | G | T | GIR | GIL | GCY | GTR | GTL
Shoulders | 1 | O | 57.3 | 16.2 | 75.7 | 39.8 | 38.6
Shoulders | 1 | I | 65.5 | 64.2 | 77.6 | 29.5 | 30.9
Shoulders | 6 | O | 63.6 | 36.0 | 76.9 | 27.6 | 60.3
Shoulders | 6 | I | 69.2 | 65.1 | 829 | 11.6 | 328




a single person were used for training and testing, over-
all (O), where all people were used to train and test a
single HMM, and Exception (E), where the models were
trained using everyone except the single person used for
testing. This detection has been made through 10 it-
erations using the data extracted from the trials of the
15 people presented in the experimental protocol. Re-
sults presented show a better accuracy in inferring the
motion sub-states using 6 Gaussians in individual mode
(slightly better than global). Using the same labels as
the feet, we also extract the accuracy of the individual
models using the shoulders. Results prove the possibil-
ity of inferring the sub-states with the shoulders when
the measurements are processed offline with the most
adapted standardization.

5.2 Step 2: Online evaluation of the
individual HMMs

The possibility of inferring the sub-states using online
measurements was evaluated. It is more challenging than
offline inference due to limitation of using a generic stan-
dardization and lack of information on intended direction
of travel. However, using the presented methods, online
inference is still possible. Table 2 presents results of
online detection accuracy when foot measurements are
trained and tested offline with a Gaussian mixture of 6
Gaussians for each person to label the ground truth com-
pared to the inference made with the models trained and
tested online. The results highlight a better accuracy
when using 6 Gaussians and training/testing the models
for each person individually.

5.3 Step 3: Online evaluation of the
HHMM

We used the previously trained online HMM parameters
to train the HHMM. Because the HHMM is required
to infer the motion states as well as the sub-states, it
is trained and tested using the initial data, before be-
ing split, preprocessed as if they are coming from online
shoulders measurements. Ground truth labels are given
using the foot measurements extracted from step 2. 80%
of the sequences are used for training the HHMM, and
20% for testing it. Results (Table 3) show a better ac-
curacy using the training individually for each person.
Whereas the accuracy seems to be correct regarding the
detection of the gait initiation and cycles, it drops for
the gait termination. These results could be explained
by a lack of data used to train the models for each in-
dividual; accuracy when using the overall data is better
than when the model is trained individually.

6 Conclusions and future work

This paper proposes a new approach for inferring motion
states, such as gait initiation, cycles, and termination,

and sub-states using Hierarchical Hidden Markov Mod-
els and provides a proof-of-concept by comparing the
outputs from HMMs and HHMMs when foot measure-
ments are used to train a model used as ground truth.
Our work, which relies on upper body observations, is
important because it enables applications of human mo-
tion state inference to new scenarios which were previ-
ously not possible because lower body observations could
not be obtained.

At present the online estimation leverages data from
all previous persons observed. In fact, people walk with
similar, not exact gait patterns. In future work we aim
identify this subset of characteristics tied to groups of
people and establishing online normalization of data.
Another limitation of this preliminary framework is that
we have defined only an initial common set of states and
sub-states. In future work, we will focus on adapting
the states and sub-states in order to evaluate the possi-
bility of using such a framework for anticipating turns.
Also, because of the bipedal patterns extracted from the
shoulders, we are going to investigate the feasibility of
creating a motion model to be integrated in tracking,
while still based on shoulder motion.
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