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1 introduction

Thermodynamic approach to the modelling of economic systems has been
developed by Samuelson ([1]), Lichnerovich ([2]), Rozonoer ([3]), Martinesh
([4]) end others ([5],[6]). The majority of these works relied on reversible
thermodynamics’ analogy.
New branch of thermodynamics - Finite Time Thermodynamics (FTT) - has
emerged in last decades. It studies limiting possibilities of thermodynamic
systems (heat engines, separation systems etc.) caused by constraints on
processes’ duration and rates ([7]– [8]). Microeconomic analogies of these
problems were studied in ([9]),([10]), ([11])).
Financial systems are similar to microeconomic systems. Their distinguish-
ing characteristic is the use of credit as one of traded assets. In this paper
the approach, developed in ([11]), is applied to financial systems.
Many problems considered in this paper can be solved without using ther-
modynamic approach. But this approach allows us to consider all these
problems within unified conceptual and methodological framework. We ex-
pect that further development of this approach and its application on micro
rather than on macro level will lead to discoveries of many thermodynamic
analogies in financial systems including such as Onsager conditions, self-
organization processes, etc.
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We consider financial systems where financial assets (stocks, bonds, curren-
cies, derivatives, credits, etc.) are traded. Each financial system consists of
subsystems. We shall call them financial agents (FAs). FA estimates how
valuable is the asset for it by constructing this asset’s price estimate P . This
number represents the minimal price at which FA is willing to sell this asset
and the maximal price at which it is willing to buy it. This estimate depends
on FA’s stock of this asset V and its current net capital M . For a credit
this estimate P represents the minimal rate at which the FA is willing to
provide credit loan to somebody and the maximal rate FA is willing borrow.
The will classify all FA as members of one of three classes depending on how
they construct these estimates:
1. FA with infinite internal capacity with respect to all or some of the as-
sets. The estimates for these FAs do not depend on their capital and stock
of assets. These estimates can change under the influence of external factors
but not under the influence of the internal exchange processes.
2. FA with finite internal capacity where the price estimates of assets P and
capital r depend on its capital M and its stock of assets V

P = P (V,M), r = r(V,M). (1)

3. Financial intermediary (bank) that sets up prices for buying and selling
and credit rates for deposits and loans. It does it in order to achieve its
economic objectives.
If there is no exchange of assets/capital between the financial system and
the environment then its is closed. If there is such exchange then it is open.
In this paper we study optimal behaviour of banks. We use methodologies
of FTT and irreversible microeconomics.
In section one we consider systems interaction between a bank and FA in
stationary and non-stationary conditions. In section two we introduce the
notions of profitability of a closed system, of profitability’s dissipation and of
irreversibility of exchange processes in financial systems. In section three we
study limiting possibilities of intermediaries in open financial systems with
and without competition and when assets’ estimates are stochastic variables.
When a contact between two financial agents is established, assets/capital
are exchanged between FAs. Because FAs establish contact voluntarily, they
do that if and only if each participating FA increases it’s wealth function
S(V,M). Exchange kinetics mij is described by the dependence of the flow
of assets between i-th and j-th FAs on the vectors of their price estimates.
If these two vectors are the same then mij = 0. The estimates’ differential
is the ”driving force” of the exchange processes. The existence of the wealth
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function for the scalar case was proven in ([3]) and for the vector case in
([11]). This function is assumed to be continuously differentiable, convex
and increasing on M and on each component of vector V .
The wealth function relates to the price estimates as

P =
∂S

∂Vi
, r =

∂S

∂M
. (2)

From the existence of the wealth function the following equations follow

∂2S

∂Vi∂M
=

∂P 0
b

∂M
=

∂r

∂Vi
=

∂2S

∂M∂Vi
. (3)

That is, the sensitivity of the estimate of i-th type of asset to the
changes of FA’s capital is equal to the sensitivity of the capital
estimate to the changes of stock of this asset. Equations (3) are
economic analogies of Maxwell thermodynamic equations.

2 Optimal bank strategy in a system with one FA

2.1 Buying and selling of assets

Consider a system that includes a finite capacity FA and a bank. We assume
that the bank is required to buy the given amount G of assets in the given
time τ . It minimizes its expenses by controlling the price it offers to FA

V̇ = −m(P 0
b , P ), V (0) = V0, V (τ) = V0 − G,

Ṁ = Pm(P 0
b , P ), M(0) = M0.

(4)

where P (t) is the price paid for the asset and P 0
b is asset’s price setimate by

FA. The optimality criterion here is

I =
∫ τ

0
m(P 0

b , P )Pdt → max
P (t)

(5)

The conditions of optimality of the problem (4),(5), were obtained in ([12])
and have the following form

d

dV
[

∂g
∂P

g2(P 0
b , P )

] =
∂g

∂P 0
b

∂P 0
b

∂M

g2(P 0
b , P )

. (6)
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In the particular case of estimate P 0
b independent on the FA’s M and de-

pendent only on its stock of assets V , the price is such that
∂g
∂P

g2(P 0
b , P )

= const, (7)

despite the changes of P 0
b caused by changes of V .

In even more particular case when the flow is independent on M and linear

on price (
∂g

∂P
= const), then from condition (7) follows that the optimal

price is such that the flow of purchases g is constant and equal to
G

τ
. One

does not need here to know the dependence of p0
b on V to find the optimal

process.
The problem of selling given amount of assets in a given period of time with
maximal profit has the same conditions of optimality.

2.2 Optimal lending and borrowing

Consider the same system where FA with finite capacity is a depositor to
the bank. The bank wants to receive the given net volume of deposits G in
the period of time τ . This deposits are not to be withdrawn until time T ,
τ << T . The dependence of the credit estimate on the time of depositing
here can be neglected

P 0
c = P 0

c (M,T )

and the problem of minimal cost of borrowing (attracting deposits) takes
the following form ∫ τ

0
m(P 0

c , P )dt = G, (8)

Ṁ = −m(P 0
c , P ), M(0) = M0, (9)

I =
∫ τ

0
m(P 0

c , P )Pdt → min
P (t)

. (10)

Here m is the flow of credits that depends on the bank interest rate for
deposits P and FA’s credit estimate P 0

c . In its turn P c
0 depends on the

capital M and term/duration of the deposit. We assume that the function
m is continuously differentiable on all arguments, positive for P > P 0

c and
equal zero for P = P 0

c . We can then rewrite this problem in terms on new
independent variable M . Here

dt = − dM

m(P 0
c , P )

. (11)
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The problem (8)-(10) takes the form

I = −
∫ M0−G

M0

PdM → min
P (M)

(12)

subject to constraints

−
∫ M0−G

M0

dM

m(P 0
c , P )

= τ. (13)

For the non-degenerate solution (λ0 = 1) of the problem (12), (13) the
Lagrange function takes the form

L = P +
λ

m(P 0
c , P )

.

Its optimality condition on P is

∂L

∂P
= 0 → 1 − λ

m2(P 0
c , P )

∂m

∂P
= 0,

which yield (similarly to (7)) the conditions of optimality

m2(P 0
c (M,T ), P ∗(M))

∂m
∂P

= λ = const, ∀M. (14)

where P ∗(M) is the optimal interest rate for deposit.
For the linear dependence of the flow of deposits on the differential between
the offered interest rate and credit estimate

m = α(P − P 0
c )

the condition (14) takes the form

α(P − P 0
c )2 = const.

That is, differential between the rate, offered by the bank and the credit
estimate, which evolves in accordance with equation (9) must be constant.
From equation (8) it follows that

P ∗(M) = P 0
c (M,T ) +

G

ατ
, (15)
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the net capital of FA depends on time as

M(t) = M0 − G
t

τ

and the minimal average credit interest rate is

Imin =
G

τ

∫ M0

M0−G
P ∗(M)dM. (16)

If the bank wants to ”sell” credit volume G in the given period of time τ at
the maximal-possible interest rate then it has to offer the rates that obey
the same conditions of optimality. The only difference is that the second
term in (15) changes sign and the flow m also changes sign.
The term (duration) of the deposit/loan T is an exogenous parameter of this
problem.

2.3 Maximal profit from buying/selling assets when price
estimates change

Consider FA with infinite capacity and price estimate P 0
b that changes de-

terministically or stochastically under the influence of external parameters.
In this situation the bank can generate a profit by buying assets from FA
when their price estimates are low and accumulating some stock in a process
and then by selling this stock when these price estimates are high. Let us
find out the maximal profit and the corresponding optimal strategy here.
Suppose that the estimate P 0

b (t) is known and we seek such P (t) that corre-
sponds to maximal increase of capital in the given period of time (when the
assets are sold the bank’s capital increases, when it is bought it decreases)
The optimality criterion here is

I(τ) = −
∫ τ

0
m(P 0

b (t), P (t))P (t)dt → max
P (t)

. (17)

The change of the bank’s capital is governed by the equation

Ṁ = −M(P 0
b , P )P, M(0) = M0 (18)

and the change of the stock of asset is governed by the equation

V̇ = m(P 0
b , P ), V (0) = V0. (19)
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Assume that the bank does not accumulate assets but only resells them,
V (0) = V (τ) or ∫ τ

0
m(P 0

b , P )dt = 0. (20)

If bank has no capital it does not buy assets and if it does not hold assets
it does not sell them, therefore

g(P 0
b (t), P (t)) ≤ 0, if M = 0, g(P 0

b (T ), P (t)) ≥ 0, if V = 0. (21)

The problem is reduced to maximization of the capital increase subject to
constraints (18)-(21). The price offered by the bank P (t) is the control
variable and the stocks of assets and caital are state variables.
Estimate of the maximal profit.
First, we relax the problems constraints by assuming that the initial stock
M0 and capital V are so large that the conditions (21) always hold. That
is, that the bank has constant access to unlimited source of interest-free
funds. Because the constraints (18), (19) are Lyapunov equations (that is,
their r.h.s. do not depend on M and V ) they always hold if (21) holds. The
maximal capital increase I∗(τ) in this problem gives an upper bound for the
initial problem.
The Lagrange function for the problem (17), (21) takes the form

L(P 0
b , P ) = −g(P 0

b , P )P + λg(P 0
b , P ) = g(P 0

b , P )(λ − P ).

Its stationarity condition on P is

∂g(P 0
b , P )

∂P
(λ − P ) − g(P 0

b , P ) = 0,

that can be rewritten as

g(P 0
b , P )

∂g(P 0
b

,P )

∂P

+ P = λ. (22)

λ from (20) is

λ =
∫ τ
0

∂g
∂P Pdt∫ τ

0
∂g
∂P dt

. (23)

Its substitution into (22) yields the link between the optimal price P ∗(t) and
P 0

b (t)

g(P 0
b , P ∗) =

∂g

∂P

∫ τ
0

∂g
∂P P ∗dt∫ τ

0
∂g
∂pdt − P ∗ . (24)
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Consider linear flow of buying/selling with respect to the price differential

m(P 0
b , P ) = α(P − P 0

b ), (25)

where α is some positive constant. The condition (24) then takes the form

M =
α

τ

∫ τ

0
Pdt − P (t).

We denote the average price over the interval τ as P =
1
τ

∫ τ

0
Pdt. From

(20) follows that P = P
0
b and the optimal flow is

m∗ = α(P (t) − P 0
b (t)) = α(P0 − P (t)),

P ∗(t) =
1
2
(P 0

b + P 0
b (t)) (26)

and the optimal flow of asset is

g∗(P 0
b , P ∗) = α(P ∗(t) − P0(t)) =

α

2
(P 0

b − P0(t)) (27)

Thus, the optimal flow of asset is proportional to the deviation of its price
from the average price over the period τ .
The upper bound on the rate of profit from trading of this asset is

J∗ =
I∗(τ)

τ
=

1
τ

τ∫
0

−m∗(P 0
b (t), P ∗(t))P ∗(t) dt =

=
1
τ

τ∫
0

α

2
(P0 − P 0)

1
2
(P0 + P 0) dt =

α

4τ

τ∫
0

(P 2
0 − P

2
0) dt =

=
α

4τ

τ∫
0

(P0 − P 0)2 dt =
α

4
DP0. (28)

The obtained results also hold if the estimate P 0
b (t) is the stationary random

process with expectation P 0, variance DP 0
b

and density µ(P 0
b ) on the feasible

set D of P 0
b . After replacing time averaging with the set averaging, the

expression for the optimal flow of assets (24) takes the form

m(P 0
b , P ∗) =

(
∂m(P 0

b , P )
∂P

)
p∗



[
∂m

∂P
P

]
[
∂m

∂P

] − P ∗


 . (29)
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The overline here denotes expectation of the corresponding expression on
P 0

b . Thus, [
∂m

∂P
P

]
=
∫
D

µ(P 0
b )

∂m(P 0
b , P )

∂P
P dP 0

b .

We see that (29) is an integral equation that relates P ∗ and P 0
b for each t.

This relationship depends on the distribution of P0. For the linear exchange
kinetics (24) the equation (29) becomes much simpler. Here the optimal
price for buying (selling) of assets depends on P 0 only for any distribution
of P 0

b . From (28) it follows that the maximal rate of profit here is

J∗(τ) =
α

4
Dp0. (30)

Estimate of stock exhaustion
Let us estimate how inaccurate this estimate (28) is. Assume that random
process P 0

b is a gaussian stationary process with the following the following
correlation function

RP 0
b
(τ) = σ2 exp[−α|τ |].

It is easy to show that for the linear dependence (25) the flow of buying for
P = P ∗(P 0

b ) is also Gaussian random process with the correlation function

Rm∗(τ) =
α2

4
RP 0

b
(τ) =

α2σ2

4
exp(−α|τ |).

This correlation function corresponds to the following spectral density

Sm∗(w) =
2αDP 0

b

α2 + w2
=

2α
α2σ2

4
α2 + w2

=
α3σ2

2(α2 + w2)
.

The spectral density of the process V (t), which is governed by equation (21)
has the form

SV (w) =
Ṽ0 − Sm(w)

w2
.

The constant V0 is the expectation of the random process V (t) and is to be
found from the condition of bounded variance. The variance of V (t) is

DA =
∞∫
0

SV (w)dw.
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It is bounded for Ṽ0 =
ασ2

2
, and the corresponding value of DV is

DV =
σ2

4
. (31)

The probability of stocks’ exhaustion is the same as the probability that the
negative deviation of V (t) from V0 is larger than the initial stock of asset

P (V (t) ≤ 0) =
+∞∫

−∞
fV dV =

1√
2π

√
DV

+∞∫
−∞

exp

[
−(V − Ṽ0)2

2DV

]
dV =

=
2√
2πσ

+∞∫
−∞

exp


−

2(V −ασ2

2
)2

σ2


dV.

On of (many possible) near-optimal strategies here is when P (t) is chosen
from the condition (24) for all momets of time when V (t) > 0; and from the
condition m(t) = 0 for all momets of time when V (t) = 0. After taking into
account m(t) = 0, Ṁ = 0, the expression for the average rate of profit takes
the form

J̌(V0) = J̌∗
(
1 − P (V0)

)
.

It gives a lower bound on the rate of bank’s profit. When the initial stock
tends to infinity these two estimates tend to each other.
Similar analysis can be performed for the probability that the second con-
straint (18) holds (capital is exhausted). Unlike V (t), capital M(t) increases
and the probability that M(t) = 0 decreases when time increases.
Obtained estimates show which characteristics of market prices should be
forecasted in order to choose optimal flows and prices for trading. This
approach can be generalized for the multi-asset models where the optimal
selection of assets for buying and selling and their prices are sought.

3 Profitability of financial system and capital dis-

sipation

Consider a closed system that includes n FA including not more than one
agent with infinite capacity (market). Each FA has different price estimate.
In this system bank can profit by buying asset from FA with lower estimate
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and selling it to FAs with higher estimate. We shall call the maximal
profit which can be extracted by a bank subject to process’ con-
straint the system’s profitability.
One of such constraints is the fixed duration of contact with FAs. We shall
denote the profitability of the system with unlimited contact time as E0 and
with fixed contact time as Eτ . It is clear that Eτ ≤ E0. If all FAs in the
system have equal price estimates (the system is uniform), then an interme-
diary (bank) is unable to extract profit E0 = Eτ = 0. The wealth functions
Si, i = 1, . . . , n are convex on stocks of asset, and the price estimate of the
asset/credit are equal to the partial derivatives of wealth function

P 0
bi =

∂Si

∂Vi
, P 0

ci =
∂Si

∂Mi
. (32)

Therefore when contact between FAs is voluntarily established, the asset is
transferred from the contacting FA with a lower to the contacting FA with
the higher estimate in exchange for the capital or other assets. As a result,
the contacting FAs’ wealth functions increase and their estimates of this as-
sets’s price tend to each other. This reduces the profitability of the system,
that is, the potential for an intermediary to extract profit by reselling the
goods. Direct exchange process(barter) is irreversible, because one needs to
buy goods from FA with higher estimate and then to resell it to FA with
the lower one, that is, to spent capital, in order to return the system back
to its initial state. The degree of irreversibility can be estimated as the loss
of potentially extractable capital ∆E (capital dissipation).
If exchange is performed via an intermediary and its duration is not bounded
then this intermediary extracts profit ∆E. It can return the system into its
initial state, by re-investing this profit back into the system (when there is
no constraints on process duration). Therefore, the exchange via intermedi-
ary is reversible.
Let us emphasize the thermodynamic analogy of this reasoning. When a di-
rect contact is established between two bodies with equal temperatures their
combined entropy increases. This process is irreversible because one needs
to spend energy in order to return the system in its initial state. Entropy
production determines energy dissipation here. If two bodies exchange heat
via an ideal heat engine this engine produces enough work to return the
system back in its initial state, that is, the process is reversible.
Therefore, a bank in a financial system plays a role similar to the role of a
heat engine in thermodynamics. It reduces dissipation of capital and makes
exchange processes reversible.
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Let us describe this qualitative reasoning quantitatively. We again denote
the FA’s stock of assets (bonds, stocks, etc) as V and its capital as M . In
([11]) it was proven that the wealth function in this problem exists and has
the following form

S = rM +
∑

i

PiNi. (33)

The estimates r and Pi are constant for infinite capacity FAs (markets).
These estimates can depend on M and V for final-capacity FAs.
Suppose that FA can establish contact with the environment. We denote
environment’s estimates as r and P . If FA is transferred from initial state to
the final state, which is close to the initial one, then the amount of capital
extracted here is

δE0 = −δMΣ = −(δM + δM ) = [
δS

r
+

δM

r
−
∑

i

(PiδVi − P iδV i)]

In a reversible process (δS + δS) = 0, δV i = −δVi so that

δE0 = δS(
1
r
− 1

r
) +

∑
i

δVi(Pi − P i) (34)

The increase of wealth function in the irreversible process will be larger
because the flow of assets is positive and is accompanied by the positive
price differential

δS = −δS + σ, σ > 0.

From (34) follows that that the capital extracted in irreversible process is

dE = dE0 − σ

r
.

Its integration along the system’s trajectory yields the net amount of ex-
tracted capital

E = E0 − ∆S

r
. (35)

This formula links profitability in reversible and irreversible processes with
the increment of the combined wealth function and the price estimate of
capital by the market. The equality (35) is analog of the Sotole formula
in thermodynamics, which relates the reversible and irreversible works with
the environment temperature. It holds for a system with a number of FAs.
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The given definition of profitability depends heavily on the type of con-
straints imposed on the process. Various types of constraints can be im-
posed. For example,
1. The initial as well as final states of all or some FAs can be fixed.
2. The FA’s price estimates {Pi, r} and environment (market) prices esti-
mates can be required to be equal.
3. The duration of the process can be fixed.
These constraints reduce profitability of the system. The given definition of
system’s profitability is applicable if there is no environment with constant
estimates P , r.
Note that profitability in a system with one market for given initial state
and no constraints on process duration is the analog of exergy, which is
widely used in engineering. Consider an economic system that includes k
FAs with stocks of asset Vi (i = 1, . . . , k) and capitals Mi. Their price es-
timates depend on Vi and Mi One of the subsystems can be a market with
fixed estimate.
Assume that the system is closed. When contact is established between i-th
and j-th FAs the flow of assets nij and flow of capital mij occur. The for-
mer is directed from FA with lower price estimate to the one with the lower
estimate and the capital flows in opposite direction.
Consider a system that includes an intermediary (bank). The bank’s ob-
jective is to organize exchange in such a way that it can extracted capital
from the system. We will assume that a direct exchange between FAs is not
possible, bank offers to buy asset from FAs at one price and offers to sell it
to them at the other price. Bank maximize its profit by controlling these
prices. The exchange flows depend on price estimate of asset Pi by the i-th
FA and the price offered by the bank ci as follows

ni = ni(Pi, ci), ni = 0, if Pi = ci, sign(ni) = sign(ci − pi).

We assume that the flow of assets is positive if it is directed to the bank. It
is clear that

mi(Pi, ci) = −cini(Pi, ci).

The stocks of assets and capital of the i-th FA changes in accordanve with
the equations

V̇i = −ni(pi, ci), Vi(0) = Vi0,

Ṁi = cini(pi, ci), Mi(0) = Mi0.

We assume that the estimates Pi(Vi,Mi) are monotonically decreasing func-
tions of Vi for given Mi. As a rule, these functions are also increasing on Mi
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for fixed Vi. It is also possible that the price estimate does not on the FA
capital. Let us find out what amount of capital can be extracted by a bank
from the system.
Unlimited duration of the process
System with the market. We denote the market price of the asset P 0

b−. If
t → ∞ the estimates of asset price for all FA tend to P 0

b−. From the condition
of equilibrium for t → ∞ we get

P 0
bi(Vi,Mi) = P 0

b−, i = 1, . . . , k. (36)

Vi, Mi denote equilibrium stocks of asset and capital.
If the duration of the process is not limited then the intermediary buys asset
at the price that is infinitely close to the P 0

bi, thus

dMi

dVi
= −P 0

bi(Vi,Mi), Mi(Vi0) = Mi0. (37)

Profitability of economic system (limiting amount of extracted capital) here
is

E∞ =
k∑

i=1

(Mi0 − Mi) =
k∑

i=1

Vi∫
Vi0

P 0
bi(Vi,Mi(Vi))dVi. (38)

Conditions (35), (37) determine 2k unknowns Vi Mi, therefore E∞ is also
determined.
Example. Consider a system that includes two FAs and a market. The
initial stocks of asset and capital for EA are Vi0, Mi0, i = 1, 2, and the
market price of asset is P 0

b−.
Assume that FAs’ estimates have the form

P 0
bi = αi

Mi

Vi
, i = 1, 2.

The system (37) can be rewritten as

dMi

dVi
= −αi

Mi

Vi
, Mi(Vi0) = Mi0;

which yields Mi(Vi)

Mi =
Mi0 · V αi

i0

V αi
i

, i = 1, 2.
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Let us find the equilibrium stocks of asset V1 and V2 from the condition of
equilibrium

αi
Mi0 · V αi

i0

Vi
αi+1 = P 0

b−, i = 1, 2.

We get

Vi =

(
αi

P 0
b−

Mi0 · V αi
i0

)1/(αi+1)

, i = 1, 2,

and the corresponding equilibrium capitals are

Mi =
P 0

b−
αi

Vi, i = 1, 2. (39)

This expression yields (38) for system’s profitability.
System does not include market. If t → ∞ here then the asset price estimates
are the same and equal to some P

0
b for all FA. Instead of condition that the

market prices were equal to estimates, we have

P 0
bi(Vi,Mi) = P

0
b , i = 1, . . . , k. (40)

P
0
b is to be found from the condition that the rate of change of bank’s stock

was equal zero (the bank resells everything it buys)

k∑
i=1

(Vi − Vi0) = 0. (41)

Equalities (40), (41) jointly with (37) determine V , M and P
0
b . They

determine E∞ here.
Example. Consider the system from the previous example. The initial stocks
of assets and capitals are V10, V20, M10, M20. The dependencies of the price
estimates on Mi and Vi (i = 1, 2) have the form

P 0
b1 = α

M1

V1
, P 0

b2 = β
M2

V2
.

After taking them into account the equations (37) take the form

dM1

dV1
= −α

M1

V1
, M1(V10) = M10,

dM2

dV2
= −β

M2

V2
, M2(V20) = M20.
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The solutions of these equations M1(V1) and M2(V2) are:

M1 =
M10 · V α

10

V α
1

, M2 =
M20 · V β

20

V β
2

.

Conditions (40) and (41), yield the stock of asset V i for each FA after
exchange. They can be rewritten as

V10 + V20 = V 1 + V 2,

α
M10V

α
10

V
α+1
1

= β
M20V

β
20

V
β+1
2

.

For the particular case α = β = γ, we get

V 1 =
(V20 + V10) · (M10V

γ
10)

1/(1+γ)

(M10V
γ
10)

1/(1+γ) + (M20V
γ
20)

1/(1+γ)
,

V 2 =
(V20 + V10) · (M20V

γ
20)

1/(1+γ)

(M10V
γ
10)

1/(1+γ) + (M20V
γ
20)

1/(1+γ)
.

V 1 and V 2 determine equilibrium stocks of capital

M1 = (M10 · V γ
10)

1/(1+γ) · W,

M2 = (M20 · V γ
20)

1/(1+γ) · W,

where

W =

(
(M10V

γ
10)

1/(1+γ) + (M20V
γ
20)

1/(1+γ)

V20 + V10

)γ

.

Substitution of these expressions into (38) yields profitability of the system.
During a direct (without intermediary) exchange of asset the combined stock
of asset does not change. The combined stock of capital does not change
also. The unique single estimate of asset price P 0

b is then established in the
system. Equations (37) take the form

dMi

dVi
= −P 0

b , i = 1, ..., k,

Thus
Mi = Mi0 − P 0

b (V − Vi0), i = 1, . . . , k.
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Substitution of these expressions into (40), (41) determines Vi and P 0
b .

Limited duration of asset exchange. Assume that the duration of ex-
change τ is given. The intermediary here has to increase the prices it offers
to buyers and decrease its prices for sellers from the equilibrium estimate
P 0

bi. This leads to irreversible losses and reduces the amount of capital ex-
tracted from the system. The maximal possible value Eτ will then be lower
than E∞. The difference

∆S = (E∞ − Eτ ) > 0

describes irreversibility of asset exchange.

4 Minimal capital dissipation processes

We have obtained the conditions of optimal choice of prices for buying (sell-
ing) the given amount of asset ∆V from FA in a given period of time τ .
It minimizes (maximizes) the amount of capital to be extracted from the
system in a process. The wealth function increment for the FA is minimal
here. Therefore it corresponds to minimization of capital dissipation. These
processes are similar to minimal dissipation processes in thermodynamics
([13]).
The optimal selling price of the asset for selling to FA with estimate p0

b(V )
is

c∗τ (V, V ) = P 0
b (V ) − V − V0

ατ
, (42)

and capital obtained from this sale is

Eτ (V ) = E∞(V ) − (V − V0)2

ατ
, (43)

where E∞ is the capital that can be obtained by the bank for τ → ∞, by sell-
ing at equilibrium prices c(V ) = P 0

b (V ). The function E(τ) is shown on Fig-

ure 1.
Fig. 1. The dependence of profitability on

duration of exchange
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Here V0 and V are stocks of asset in the beginning and at the end of the
process, the flow of assets depends on price differential as

m(P, c) = α(P − c)

and α is constant coefficient. If τ < τ0 =
∆V 2

αE∞
then the bank is forced

pay extra premium to the buyer. If τ∗ = 2τ0 then the average rate of profit

e(τ) =
E(τ)

τ
is maximal and equal to

e∗ =
α

4

[
E∞(V − V0)

V − V0

]2

.

The difference between capital loss in this exchange and the capital loss in
equilibrium process measures the loss of profitability (capital dissipation)

σ = n(P 0
b , c)(P 0

b − c). (44)

The amount of dissipative losses is defined as (r = 1)

∆S(τ) =
τ∫

0

σ(t) dt =
τ∫

0

n(P 0
b , c)(P 0

b − c) dt. (45)

For the last example these losses are

∆S(τ, V ) =
τ∫

0

α(P 0
b (V ) − c(V ))2 dt =

(V − V0)2

ατ
,

therefore (compare with equality (34) for P
0
k = 1)

E(τ) = E∞(V ) − ∆S(τ, V ) = E∞(V ) −
τ∫

0

n(P 0
b , c)(P 0

b − c) dt. (46)

The expression (46) is valid for any dependence n(P 0
b , c). Indeed, after

substitution of dt with dV the integral in (45) can be rewritten as

∆S(V ) = S(V ) − S(V0) =
V∫

V0

(P 0
b (V ) − cτ (V, V )) dV.
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In its turn the extracted capital is

E(τ, V ) =
V∫

V0

cτ (V, V ) dV, E∞(V ) =
V∫

V0

P 0
b (V ) dV. (47)

From the comparison of these equations (46) follows. Thus, the optimal
buying (selling) processes are the minimal dissipation processes. These pro-
cesses are singled out by the conditions (24).
Maximal profit in a system of FAs. This problem is reduced to selling
(buying) asset from each of FAs. Because the trading must be executed op-
timally from the viewpoint of capital extraction the price c and asset price
estimate P 0

b must obey the conditions (24) at each moment of time. The
volumes of sales/purchases ∆Vi for each of m FAs must be chosen optimally
and obey the condition

m∑
i=1

Vi =
m∑

i=1

Vi0. (48)

We consider market as one of FAs with asset price estimate P 0
b− that is

independent of stock of asset and capital. Thus for any dependence n(c, P 0
b−)

the optimal price of buying and selling on such market c must not depend
on time.
The problem of maximization of extracted capital in a limited time in a
closed financial system is reduced to solution of m problems (17)–(20) of
optimal selling/buying for each of FAs with given initial and final stocks of
asset (Vi0 and Vi). The optimal Vi are then found from the condition

m∑
i=1

Ei(τ, Vi) → max
Vi

(49)

subject to constraint (48). The conditions of optimality of the problem (48),
(49) have the following form

∂Ei(τ, Vi)
∂Vi

= Λ, i = 1, . . . ,m.

Λ is to be found from (48).
After taking into account (47) we get

∂Ei(τ, Vi)
∂Vi

= ciτ (Vi, Vi) +
Vi∫

Vi0

∂ciτ (Vi, Vi)
∂Vi

dVi = ciτ (Vi). (50)
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The first term in the r.h.s. is the prediction of optimal price at t = τ and
the second term correctes is. This correction is determined by the averaged
sensitivity of the optimal price with respect to the stock of sold assets. We
shall call the expression (50) the corrected price. The condition of optimal
choice of volumes of sold (bought) assets is reduced to the cndition that for
all FAs the optimal prices are the same

ciτ (Vi) = Λ, i = 1, ...,m. (51)

Example. Consider the system where for each FA

P 0
bi =

hi

Vi
, i = 1, . . . ,m, (52)

ni(c, p0
b ) = αi(ci − P 0

bi), i = 1, . . . ,m. (53)

Let us find out what amount of capital can be extracted from i-th FA in ar-
bitrary long time. After taking into account (52) we get from the expression
(47)

Ei∞(Vi) = hi

Vi∫
Vi0

dVi

Vi
= hi ln

Vi

Vi0
, i = 1, ...,m.

According to (47)

Ei(τ, Vi) = hi ln
Vi

Vi0
− (Vi − Vi0)2

αiτ
. (54)

The optimal choice of Vi (51) is reduced to solution of equation

ciτ (Vi) =

[
P 0

bi(Vi) − Vi − Vi0

ατ

]
− Vi − Vi0

ατ
= Λ. (55)

The problem becomes much simpler if all FAs have constant estimates P 0
b =

const. The condition of optimality (55) then leads to the equations

P 0
bi −

2
αiτ

(Vi − Vi0) = Λ → ∆Vi =
αiτ

2
(P 0

bi − Λ). (56)

20



From (48) it follows that constant Λ is equal to the averaged estimate of
asset price

Λ =

m∑
i=1

αiP
0
bi

m∑
i=1

αi

,

V ∗
i =

ταi

2


P 0

bi −

m∑
ν=1

ανP
0
bν

m∑
ν=1

αν


+ Vi0. (57)

Substitution of V ∗
i into (56) yields maximal possible capital Ei(τ, V ∗

i ) ex-
tractable from each FA during the period τ

E∗
τ =

m∑
i=1

[
P 0

bi(V ∗
i − Vi0) − (Vi

∗ − Vi0)2

αiτ

]
.

For the estimates that are independent on asset’s stock the profitability
(after taking into account (57)) is

E∗
τ =

τ

4
((P 0

bi)
2 − Λ2).

In most cases these estimates pi decrease when stock of asset increase and
the profitability is monotonic convex function of τ .
Reselling of assets.
Consider a system where assets are simultaneously sold and bought at differ-
ent prices. We denote as P̂ and P̌ the limiting maximal and minimal prices
of the customers correspondingly, P+(t) is the buying price and P−(t) is the
selling price. Because intermediary cannot sell asset at a higher price than
the maximal price of the customers and because it also cannot buy asset at
lower price than the minimal price of customers the following inequalities
must hold

P−(t) ≤ P̂0, P+(t) ≤ P̌0.

Then the problem of maximal rate of profit can be written as

J =
1
τ

τ∫
0

[
m−(P̂0, P−)P− − m+(P̌0, P+)P+

]
dt → max

P+,P−
. (58)
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Here m−(P̂0, P−) and m+(P̌0, P+) are the flows of buying and selling of as-
set.
We again assume that intermediary does not accumulate asset. The condi-
tion of non-accumulation can be written as

∆V =
τ∫

0

[
m+(P̌0, P+) − m−(P̂0, P−)

]
dt = 0. (59)

If capital is exhausted then the flows or buying and selling are linked

m+(P̌0, P+)P+ ≤ m−(P̂0, P−)P−, M = 0,
m+(P̌0, P+) ≥ m−(P̂0, P−), V = 0.

(60)

The evolution of stocks of assets and capital are governed by the differential
equations

V̇ (t) = m+(P̌0, P+) − m−(P̂0, P−), V (0) = V0,

Ṁ(t) = m−(P̂0, P−)P− − m+(P̌0, P+)P+, M(0) = M0.
(61)

If V0 and M0 are large then the probability of capital exhaustion can be
neglected and the equations (60) can be deleted from the problem. The
r.h.s. of equations (61) do not depend on V and M , and can also be deleted
from the problem of choosing the optimal prices P ∗

+ and P ∗
− are chosen.

Consider the problem (58), (59). Its Lagrange function is

L = m−(P̂0, P−)(P− − λ) − m+(P̌0, P+)(P+ − λ).

Its conditions of stationarity on P+ and P− yield

∂m+

(
P̌0(t), P+(t)

)
∂P+

[P+(t) − λ] + m+

(
P̌0(t), P+(t)

)
= 0,

∂m−
(
P̂0(t), P−(t)

)
∂P−

[P−(t) − λ] + m−
(
P̂0(t), P−(t)

)
= 0.

(62)

If these two equations have unique solution and corresponds to maximum
of L, then we get from (62)

m+(P̌0(t), P+(t)) = −∂m+(P̌0(t), P+(t))
∂P+

(P+(t) − λ),

m−(P̂0(t), P−(t)) = −∂m−(P̂0(t), P−(t))
∂P−

(P−(t) − λ).
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Their substitution into (59) gives:

∆V =
τ∫

0

[
m+(P̌0, P+) − m−(P̂0, P−)

]
dt =

=
τ∫

0

[
∂m−(P̂0(t), P−(t))

∂P−
P−(t) − ∂m+(P̌0(t), P+(t))

∂P+
P+(t)

]
dt +

+ λ

τ∫
0

[
∂m−(P̂0(t), P−(t))

∂P−
− ∂m+(P̌0(t), P+(t))

∂P+

]
dt = 0,

λ can be expressed as

λ =

τ∫
0

[
∂m−(P̂0(t), P−(t))

∂P−
P−(t) − ∂m+(P̌0(t), P+(t))

∂P+
P+(t)

]
dt

τ∫
0

[
∂m−(P̂0(t), P−(t)

∂P−
− ∂m+(P̌0(t), P+(t))

∂P+

]
dt

. (63)

Elimination of λ from equations (62) and (63), yields the set of equations
for optimal P ∗

+(t) and P ∗
−(t).

Consider linear dependence of flow of sold/bought assets on the price differ-
ential

m+(P̌0(t), P+(t)) = α+(P+(t) − P̌0(t)),

m−(P̂0(t), P−(t)) = α−(P−(t) − P̂0(t)),
(64)

where α+, α− are constants.
Equations (62) take the form

α+(P+ − λ) + α+(P+ − P̌0) = 0,

α−(P− − λ) + α−(P− − P̂0) = 0.

Substitution of λ into these equations yields the optimal solution

P ∗
+(t) =

1
2
(λ + P̌0) =

1
2

[
α+P+ + α−P−

α+ + α−
+ P̌0(t)

]
,

P ∗
−(t) =

1
2
(λ + P̂0) =

1
2

[
α+P+ + α−P−

α+ + α−
+ P̂0(t)

]
.
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The expressions for P ∗
+ and P ∗

− contain their average values P+ and P−
over the interval [0, τ ]. We can eliminate P+ and P−, by averaging left and
right hand sides of these equations. We get the set of equations with two
unknowns P+ and P−

P+ =
α+P+ + α−P−

2(α+ + α−)
+

P̌ 0

2
, P− =

α+P+ + α−P−
(α+ + 2α−)

+
P̂ 0

2
,

and

P+ =
(2α+ + α−)P̌ 0 + α−P̂ 0

2(α+ + α−)
, P− =

α+P̌ 0 + (α+ + 2α−)P̂ 0

2(α+ + α−)
.

Therefore if P+ and P− are known, then we can express the optimal P ∗
+

and P ∗
− in terms of P̌0(t) and P̂0(t) and their averaged values only

P ∗
+(t) =

1
2

p̌0(t) +
α+P̌ 0 + α−P̂ 0

2(α+ + α−)
, P ∗

−(t) =
1
2

p̂0(t) +
α+P̌ 0 + α−P̂ 0

2(α+ + α−)
. (65)

The upper bound on the profit rate is

J =
1
τ

τ∫
0

[
m−(P̂0, P−)P− − m+(P̌0, P+)P+

]
dt =

=
1
τ

τ∫
0

[
− α−

(
P ∗
−(t) − P̂0(t)

)
P ∗
−(t) − α+

(
P ∗

+(t) − P̌0(t)
)
P ∗

+(t)
]

dt. (66)

If prices P̂0 and P̌0 are stationary stochastic processes then the expressions
obtained hold. They can be generalized for exchange with one market as it
was done in Section 2. For exchange kinetic (64) the expressions (65) hold if
P̂0 and P̌0 are understood as expectations of these processes. The maximal
rate of profit (66) then can be rewritten as

J∗ =
1
4
(α+DP̌0

+ α−DP̂0
) +

α+α−
4(α+ + α−)

(P̌ 0 − P̂ 0)2,

where
DP̌0

= P̌ 2
0 − (P̌

2

0), DP̂0
= P̂ 2

0 − (P̂
2

0)

are the variances of the stochastic variables P̌0 and P̂0.
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5 Optimization of interest rates for loans and de-
posits by a commercial bank

Bank is an intermediary that operates between two markets, the market of
depositors and the market of borrowers, which are unable to establish direct
contact. The borrowers are willing to obtain credit at a higher rate than the
bank pays to its depositors. Bank’s profit is produced by exploiting this dif-
ferential. Bank maximizes its profit by controlling the rates for deposits and
loans. These rates can also depend on the duration and volume of credit. If
the latter case the bank should collect information about the dependences
on the parameters, which describe how interested market participants are
in credits, on the durations and volumes of loans and change its strategy in
accordance with these data.
We denote as γ(τ) the interest rate on the loan taken out for τ . It is equal to
the fraction of capital that is payed to the bank together with the principle.
As a rule γ, is non-negative non-decreasing function of τ . The situation
when the depositor uses bank a safe storage for its capital or where bank
gives a loan for charitable purposes are the exceptions.
The choice of rates γ1(τ1) and γ2(τ2) for deposits and loans effects the vol-
umes of deposited and borrowed funds. These rates should be chosen by the
bank from the conditions of maximal average profit. If the bank controls
only the yearly rates γ0

1 = γ1(1) and γ0
2 = γ2(1), then the rates for the term

of loan are calculated according to some rule. In particular, for continuous
compounding this rule is

γi(τi) = (1 + γ0
i )τi − 1, (67)

γi(τi) = γ0
i τi, i = 1, 2. (68)

We describe how interested bank’s depositors and borrowers are in bank’s
credit by the minimal rate r1, at which the depositors are willing to deposit
their funds into bank and by the maximal rate r2 at which the borrowers
are willing to borrow from the bank. We shall call r1 and r2 > r1 the credit
estimates for depositors and borrower’s correspondingly. They can depend
on the volume and length of borrowing.
We first assume that the parameters which describe how interested the de-
positors and borrowers are in credit are known. Let us find out the optimal
rates of credit and corresponding maximal profit Π∗(τ1, τ2) as the function
of τ1 and τ2 here. If bank can control the length of loan then it choses τ1
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and τ2 from the conditions of maximal Π∗.
We then consider the problem with random lengths of loans and deposits
where the rates are to be chosen from the condition of maximal average
profit.
Choosing rates after taking into account the dependence of esti-
mates on the length of loan
Assume that the terms for the deposits τ1 and for loans τ2 and the corre-
sponding credit estimates r1 and r2 are known and such rates for deposits γ1

and credits γ2 are sought that the bank’s profit is maximal. We need to know
the dependence of the estimates ri, the bank-set interest rates γi(i = 1, 2)
and the specific volumes of deposits and loans per unit of time. The flows
m1(γ1, r1) and m2(r2, γ2) for bank-monopolist are the functions of demand
and supply

m1(γ1, r1) =

{
0 if γ1 ≤ r1,
> 0 if γ1 > r1,

m2(γ2, r2) =

{
0 if γ2 ≥ r2,
> 0 if γ2 < r2.

(69)

The profit from the loan m2 given for time τ2 is

Π2 = m2

(
r2(τ2), γ2(τ2)

)
γ2(τ2),

and the average yearly rate of this profit is

Π2 = m2(r2(τ2), γ2(τ2))
γ2(τ2)

τ2
. (70)

Depositors also receive payments for their deposits that bank hold over the
period τ1

Π1 = m1(γ1(τ1), r1(τ1))
γ1(τ1)

τ1
. (71)

The average profit of the bank is

Π(τ1, τ2) = Π2(τ2) − Π1(τ1) =

=
γ2(τ2)

τ2
m2(r2(τ2), γ2(τ2)) − γ1(τ1)

τ1
m1(γ1(τ1), r1(τ1)).

(72)

Assume that the dependence of estimates on terms of deposits/ loans r1(τ1)
and r2(τ2) are known and the rates γ1(τ1) and γ2(τ2) that maximize the
average profit subject to condition that all deposits are re-loaned are to be
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found. The lengths of deposits/credits assumed to be random values with
distributions P1(τ1) and P2(τ2) correspondingly.
The average yearly profit is

Π =
1
τ2

m2(r2(τ2), γ2(τ2))γ2(τ2) − 1
τ1

m1(γ1(τ1), r1(τ1))γ1(τ1) (73)

is maximazed subject to

m1(γ1(τ1), r1(τ1)) − m2(r2(τ2), γ2(τ2)) = 0. (74)

The averaging in the first term in (73) and in the second in (74) is understood
over τ2, and in other terms over τ1. For example,

m1 =
∞∫
0

m1(γ1(τ1), r1(τ1))P1(τ1)dτ1,

(
m2γ2

τ2

)
=

∞∫
0

1
τ2

m2(r2(τ2), γ2(τ2))γ2(τ2)P2(τ2)dτ2.

The Lagrange function of the problem (73), (74) has the form

L =

((
m2γ2

τ2

)
− λm2

)
−
((

m1γ1

τ1

)
− λm1

)
.

averaging in the first term assumed to be done on τ2, and in the second on
τ1.
The conditions of optimality of the problem (73), (74) on γ1(τ1) and γ2(τ2)
give

miγiγi(τi) + mi(γi(τi), ri(τi))
miγi

= λτi, i = 1, 2, (75)

which determine optimal dependencies γ1(τ1, λ) and γ2(τ2, λ). Their substi-
tution into (74) allow us to find λ, and the optimal solution. miγi denotes
partial derivative of the corresponding functions.
Consider the case when

m1 = α1(γ1(τ1) − r1(τ1)),
m2 = α2(r2(τ2) − γ2(τ2)).

(76)

here
m1γ1 = α1, m2γ2 = −α2.
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and the equations (75) for the flow of capital are

2γ1(τ1) − r1(τ1) = λτ1,
2γ2(τ2) − r2(τ2) = λτ2.

(77)

Their substitution into (74)yields

α1

(
λτ1 + r1

2
− r1

)
= α2

(
r2 − λτ2 + r2

2

)
.

here τ1 and τ2 are expectations for τ1 and τ2.
Last equation determines λ

λ =
α1r1 + α2r2

α1τ1 + α2τ2
, (78)

and the optimal rates here are

γ1(τ1) =
1
2

(
r1(τ1) +

α1r1 + α2r2

α1τ1 + α2τ2
τ1

)
,

γ2(τ2) =
1
2

(
r2(τ2) − α1r1 + α2r2

α1τ1 + α2τ2
τ2

)
.

(79)

The maximal average bank profit for these rates is

Πmax =
1
4

[
α1

(
r2
1(τ1)
τ1

)
+ α2

(
r2
2(τ2)
τ2

)
− λ2(α1τ1 + α2τ2)

]
, (80)

where λ is expressed in terms of averaged estimates ri and αi in accordance
with (78).
Optimal on average yearly rates.
Consider the situation where the bank controls only the yearly rates γ0

1 and
γ0

2 , and the functions γi(τi, γ
0
i ) depend only on these rates and on the way

the compound interest is calculated (see (67), (68)). The optimum in the
problem (73), (74) is sought with respect to γ0

1 and γ0
2 .

We denote
∂γi(τi, γ

0
i )

∂γ0
i

= γ′
i(τi, γ

0
i ), i = 1, 2,

after elimination of λ we obtain

γ′
1

τ1

(
m1 + γ1

∂m1

∂γ1

)
γ′

2

τ2

∂m2

∂γ2
=

γ′
2

τ2

(
m2 + γ2

∂m2

∂γ2

)
γ′

1

τ1

∂m1

∂γ1
. (81)
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This equation jointly with equation (74) determines optimal parameters
γ0

1 , γ0
2 .

For the flows (76) we get

∂m1

∂γ1
= α1,

∂m2

∂γ2
= −α2,

if γi(τ, γ0
i ) have the form (68) then

γ′
i

τi
= γ0

i ,

and the system (81), (74) can be easily solved.
Conditions (81) take the form

τ1 + (γ0
1τ1 − r1) = τ2 − (r2 − γ0

2τ2), (82)

equation (74) here can be written as

α1(γ0
1τ1 − r1) = α2(r2 − γ0

2τ2),

and the equation (82) takes the form

τ1 +
α2

α1
(r2 − γ0

2τ2) = τ2 − (r2 − γ0
2τ2),

τ1 + (γ0
1τ1 − r1) = τ2 − α1

α2
(γ0

1τ1 − r1).

Thus the optimal on average yearly rates are

γ0
2 =

α1(τ1 − τ2)
(α1 + α2)τ2

+
r2

τ2
,

γ0
1 =

α2(τ2 − τ1)
(α1 + α2)τ1

+
r1

τ1
.

(83)

They depend only on the estimates of borrowing rate averaged over the term
of the loan ri(τi) and τi.
Rates optimization by controlling volume of deposits and loans
Assume that the credit estimates ri depend not only on the terms of the loans
but also on the volumes of deposit/loans Vi. Assume that these dependencies
are known. Assume that τi and Vi are random variables distributed with the
density Pi(τi, Vi) (i = 1, 2). The subscript i = 1 again denotes depositors and
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i = 2 denotes borrowers. We denote as mi[ri(τi, Vi), γi(τi, Vi)] the number
of depositors/ borrowers that contact bank per unit of time. The problem
of maximal average profit then takes the form

Π =
2∑

i=1

Vi

τi
mi[ri(τi, Vi), γi(τi, Vi)] → max

γi
(84)

subject to
2∑

i=1

Vimi[ri(τi, Vi), γi(τi, Vi)] = 0. (85)

Here
Sign(mi) = Sign(ri − γi), i = 1, 2;

and the averaging in the i-th term is done on τi, Vi.
The conditions of optimality of the problem (84), (85) turn out to be iden-
tical with the optimality conditions (75), if mi are replaced with miVi.
If the flows of depositors/borrowers is proportional to the differential be-
tween the bank rate and its customer’s estimates

mi = αi(ri − γi), (86)

then
mi =

αi

Vi
(ri − γi), i = 1, 2.

After elimination of λ we obtain the conditions of optimality

2
[
γ2(τ2, V2)V2

τ2
− γ1(τ1, V1)V1

τ1

]
=

r2(τ2)V2

τ2
− r1(τ1)V1

τ1
. (87)

Derivations, similar to the derivations used to obtain (79), yield

γi(τi, Vi) =
1
2
ri(τi, Vi) + λτi, i = 1, 2, (88)

λ =
α1r1v + α2r2v

α1τ1v + α2τ2v
.

Here

riv =
(

ri(τi, Vi)
Vi

)
, τiv =

(
τi

Vi

)
, i = 1, 2.

The averaging is assumed on Vi, τi and is carried out using their densities.

Effects of taxation and inflation on optimal bank behaviour
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The considered simplest model of bank operations does not take into account
a number of factors, including risk of default by a bank as well as by a
borrower, the market risk from commercial operations bank undertakes using
depositor’s funds, and finally the effect of inflation and taxes. One can
assume that depositors account for bank’s reliability by varying depositor’s
estimates r1(τ1) among different banks and the banks similarly discriminates
between borrowers with different risk prfiles. That is, the riskier are the
operations, funded by the borrower using bank loans, the higher is the rate
it agrees to accept.
Consider predicted inflation with rate µ. It results in losses for market
participants that obtain income with time lag, that is, to a borrower and a
depositor. If the rate of inflation is known then the depositor increases its
estimate

r1i(τ1) = r1(τ1) exp(µτ1);

The borrower also has to repay a smaller principle so he will correct its
estimate

r2i(τ2) = r2(τ2) exp(−µτ2)

The substitution of these estimates in the above derived expressions allows
us to find optimal rates that take into account inflation.
Consider now the effect of taxation. We denote the fraction of bank’s de-
posits taken as a tax on the depositor as δ1, and the fraction of the difference
between the deposit and the amount paid by the bank to the depositor, that
is taken as a tax on a bank as δ. After accounting for inflation and tax the
depositor’s income is

d1 = m1(γ1(τ1), r1i(τ1))(1 − δ1)
γ1(τ1)

τ1
,

and the banks income is

Πn = Π(γ1, γ2, r1i, r2i) − δm2(y, r2i)(y − 1),

where Π has the form (9).
Minimization of this expression yields optimality conditions for deposit/loan
interest rates.
The dependencies obtained in this section allows us to optimise the credit
rates and to estimate the maximal profit of a commercial bank for given
demand functions for depositors and borrowers that determine the rates at
which they contact bank. One also needs to know customer’s distribution
on volumes’ of credit and terms’ of loans.
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6 Competition and optimal bank rates

Consider a situation where n banks compete with each other. Each bank
controls its flows of buying/selling mj, j = 1, . . . , n to maximizes its profit.
The demand functions Pi(m,P−) and supply functions Pi(m,P+) relate the

buying P1 and selling P2 prices to the combined flow m =
n∑

j=1

mj and to the

market estimates P− and P+. We denote internal bank’s expenses (salaries,
lease of premises, service of networks etc.) as z0

j (mj). Each bank solves its
extremal problem

Ij = mj [P2(m,P+) − P1(m,P−)] − z0
j (mj) → max

mj≥0
, m =

n∑
j=1

mj (89)

We assume that the functions P1, P2 and z0
j are continous and continuously

differentiable on all its variables; P2 is monotonically decreasing function of
m and increasing on P+; P1 increases on P− and m and z0

j is convex and
has discontinuity of the first kind at mj = 0. Under these assumptions the
profit Ij is a convex function on mj and the conditions of profit’s maximum
yield the system of n equations

∂Ij

∂mj
= 0 ⇒ (P2(m,P+)−P1(m,P−))+(

∂P2

∂m
−∂P1

∂m
)mj =

dz0
j

dmj
, j = 1, . . . , n.

(90)
Example. (Duopoly).
Assume n = 2,

P1(m,P−) = P− + α1m,

P2(m,P+) = P+ − α2m,

zj(mj) = zj0 + βjmj.

The equations (90) take the form

P+ − P− − (α1 + α2)m − mj(α1 + α2) = βj , j = 1, 2.

We get

m∗
1 =

2(0.5(P+ − P−) − β1 + 0.5β2)
3(α1 + α2)

(91)

m2∗ =
2(0.5(P+ − P−) − β2 + 0.5β1)

3(α1 + α2)
(92)
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and the maximal profits are

I∗1 = m∗
1(

P+ − P−
3

+ 0.5(β2 − β1)) − z10, (93)

I∗2 = m∗
2(

P+ − P−
3

+ 0.5(β1 − β2)) − z20, (94)

The optimal norm of profit ηj and the optimal average rate of credit µ obey
the inequality

ηj =
I∗j

m∗
jP1((m∗

1 + m∗
2), P−)

> µ. (95)

This inequality is the necessary condition for a bank to be able to compete
on the market.
If market estimates P+ and P− change randomly then the equations (90)
determine optimal flows of buying/selling for each moment of time. The
expected profit is to be found by averaging P ∗

1 and I∗2 over all feasible esti-
mates that takes into account joint density f(P+, P−).
The considered model corresponds to Curno competition, when each bank
maximizes its profit and the other banks do the same. If there is a collu-
sion between banks then they maximize their combine profit which is then
redistributed according to some rules. The problem here is maximize the
combined profit

I = m[P2(m,P+) − P1(m,P−)] − z∗(m) → max
m

, (96)

function z∗(m) here is

z∗(m) = min
m1,m2

∑
j

z0
j (mj),

∑
j

mj = m, mj ≥ 0. (97)

Comparison of the problems (89) and (96) solutions allows one to perform
a test of whether or not the banks collude with each other.

7 Conclusion

All models considered in this paper assume that the estimate of prices by
FAs for traded assets (stocks, bonds, credit, derivatives, etc.) are known. It
is also assumed that the demand/supply functions that relate the flows of
assets with bank prices are known.
In practice the demand function can only be identified from the market data.
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If the system is non-stationary then this identification should be done in
real time or some prediction/correction algorithm should be used to adapts
demand function model to variation of the process. This is especially im-
portant for derivative trading where demand function is constructed as a
result of prediction by FA.
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