
Distributed Simultaneous Task Allocation and
Motion Coordination of Autonomous Vehicles
Using a Parallel Computing Cluster

A.K. Kulatunga, B.T. Skinner, D.K. Liu, and H.T. Nguyen

Mechatronics and Intelligent Systems Group, Faculty of Engineering,
University of Technology, Sydney
{asela.kulatunga, brad.skinner, dkliu,
hung.nguyen}@eng.uts.edu.au

Abstract. Task allocation and motion coordination are the main factors that should be consi-
dered in the coordination of multiple autonomous vehicles in material handling systems.
Presently, these factors are handled in different stages, leading to a reduction in optimality and
efficiency of the overall coordination. However, if these issues are solved simultaneously we
can gain near optimal results. But, the simultaneous approach contains additional algorithmic
complexities which increase computation time in the simulation environment. This work aims
to reduce the computation time by adopting a parallel and distributed computation strategy for
Simultaneous Task Allocation and Motion Coordination (STAMC). In the simulation
experiments, each cluster node executes the motion coordination algorithm for each
autonomous vehicle. This arrangement enables parallel computation of the expensive STAMC
algorithm. Parallel and distributed computation is performed directly within the interpretive
MATLAB environment. Results show the parallel and distributed approach provides sub-linear
speedup compared to a single centralised computing node.

1 Introduction

Task allocation (scheduling) and path planning (routing) are important activities
which aid in the coordination of multiple autonomous vehicles in fully-automated and
semi-automated material handling systems. Furthermore, these two factors are
interrelated. A system which coordinates multiple autonomous vehicles effectively
should address the task allocation and path planning issues. However, most of the
research work focuses on these issues separately, due to the added complexity of
simultaneous computation. For example scheduling and task allocation aspects have
been discussed in [1-4], path planning and routing in [5, 6], deadlock detection and
collision avoidance[7, 8].

However, few efforts combined these factors in their approaches [9-11]. Correa
et.al., [12] have developed a hybrid approach to solve dispatching and conflict free
routing of Automated Guided Vehicles (AGV) in Flexible Manufacturing Systems
(FMS). Assignments and routing is considered simultaneously in their approach.
However, a restriction of this work is the reduction in efficiency as the number of
AGV’s is increased beyond six AGV’s. In addition, the online dispatching method
developed by [13] uses multi-attribute dispatching rules. However, the routing is done

by considering the shortest path only and constant speeds are assumed for the AGVs.
Another approach developed for dispatching and conflict-free routing of AGV’s in
FMS is discussed in [14]. This approach is limited to four, constant velocity AGV’s.
Furthermore, when a path is being utilised by one AGV, all nodes linking that path
are locked and no other AGV can use the path until the assigned AGV has completed
its task.

Typically path planning is followed by deadlock prevention or collision avoidance.
As a consequence, optimal results acquired in the first operation (path planning) will
not be the same after it is changed in order to overcome collision problems.
Therefore, we can not guarantee optimal results for the both factors at the same time.
Conversely, if all the factors affecting the coordination problem are considered
simultaneously, then there will be a possibility of finding optimal or near optimal
solutions, but it would require considerable computation time. In the STAMC
approach [15] we perform path and motion planning at the task allocation stage, using
the Simultaneous Path and Motion Planning algorithm (SiPaMoP) [16]. The SiPaMoP
algorithm is able to search for the most efficient path by considering future deadlocks
and collisions.

The STAMC algorithm is computationally intensive as it solves task allocation,
path planning, deadlock and collision avoidance simultaneously. Currently, the
expensive STAMC algorithm executes on a single serial computing node using
MATLAB, for all autonomous vehicles in the simulation. To reduce the computation
time of the STAMC algorithm, we introduce a distributed and parallel computing
topology using the interpretive MATLAB environment.

The integration of the Message-Passing Interface specification into the existing
MATLAB environment and STAMC algorithm code is made possible with MPITB.
MPITB enables coarse-grain and out-of-loop parallelisation of the expensive
SiPaMoP algorithm on distributed nodes of a Linux computing cluster.

This paper is organised as follows. Section 2 presents the task allocation and
routing problem and simulation environment, section 3 describes the distributed
architecture and software implementation, section 4 provides a description of the
experiments conducted to provide the results of section 5.

2 Problem Formulation

2.1 Simulation Environment

The task allocation environment discussed in this paper is similar to semi-automated
or fully-automated material handling systems, where the number of cargo
transportation vehicles transport cargo from one place to another on guided and pre-
defined paths within the environment. The map of the environment is modelled with
nodes and links. Autonomous vehicles traverse links when moving between nodes.
Each task has its own start and destination node in the environment. A task is defined
as travel from a start node to destination node traversing interconnected links.

The task allocation problem consists of a fixed number of tasks and vehicles at the
start of the simulation. The main objective of the task allocation process is to find the
best task sequence and respective vehicles to complete the task sequence according to

the optimisation criteria. The objective of the task allocation process is to optimise or
minimise the completion time of all the tasks at each rescheduling instance. The
completion time of all tasks is called the makespan. This is achieved by searching the
best task sequence for the available tasks and their respective vehicles, which are
capable to complete them earliest. A mathematical description is further discussed in
section 2.2.

At the start of the simulation nodes are generated randomly and selected vehicles
are parked at randomly selected nodes. Furthermore, the start node for a task may not
be the same as the start node for a vehicle. As a result a vehicle maybe required to
travel from its initial parked node to the tasks start node, as illustrated in Fig. 1. Here
the task start nodes (B, D, G), destination nodes (C, E, H) and initial parked nodes (A,
F) are represented by triangles, stars and circles respectively. Each vehicle explores
for a task to undertake, however selection criteria of our simulation is based on the
incoming time (t AB or t CD) of the vehicles to the tasks start nodes, where incoming
time is a function of a vehicles velocity at each path segment, traffic congestion and
total distance of the selected path. All vehicles simultaneously work on their assign
tasks and once a vehicle completes its assigned task it determines next most suitable
task and moves to the appropriate tasks’ start node. The task allocation process
continues until all tasks are allocated.

Fig. 1. Simulation environment and initial setup of tasks and AGV's

2.2 Mathematical Formulation

An AGV travels from its start location to destination on a guided path consisting of
nodes and links. Each path can be divided into a number of smaller path segments,
called links. To avoid collisions AGVs travel at varying speeds set by SiPaMoP. Two
different maximum speeds are set for empty and loaded AGV’s.

Task completion time consists of two components, namely the travel time from the
current location to the start node of the task called transient time and the travel time
from the tasks start node to the destination node, called task time.

Assuming vehicle Vi is allocated to task Tj and the path segments to reach the task
Tj start node is PRij. Next, the path selected the task start node to destination node is
PPij. Both, PRij and PPij contain kR and kP path segments respectively. Therefore, the
total completion time of the task Tj by vehicle Vi can be calculated using Eq(1). The
start time of the first allocated task is assumed to be the same for all the vehicles.

R P
k k

ijk ijk

L U

1 1E L

PR PP
() t () t

 V V
j

k k

TCT
= =

= + + + (1)

Where, TCTj is task completion time of Tj, VE is maximum empty speed, VL is
maximum loaded speed, tL is loading time, tU is unloading time. Furthermore, the
available task list is given by the vector T = [T1, T2, T3,…,TJ] and available vehicles V
= [V1, V2,V3,...,VR] where J is number of available tasks and R is number of available
vehicles.

Now, if a vehicle Vi, completes Ni number of tasks, total traveling time of the
respective vehicle is given by Eq(2):

R Pk k
ijk ijk

L U
1 1 1E L

PR PP
() t () t

 V V

iN

i
ni k k

TTT
= = =

= + + + (2)

Where, TTTi is total traveling time of vehicle Vi, Ni is the number of tasks allocated to
vehicle Vi.

The makespan of the schedule is given by Eq(3):

[]
R

v=1
Makespan = vTTTMAX (3)

Since one AGV can perform only one task at a time, the start time of task j+1 by Vi
should always be greater than the start time of task j done by the same AGV as given
by Eq(4).

(1)ij i jts ts +< (4)

Where, ts is start time of task T, tshj is the start time of task Th of jth vehicle.

2.3 Simultaneous Task Allocation and Motion Coordination Algorithm

Task allocation is performed using a single round auctioning process and motion
coordination is done based on SiPaMoP approach [16]. Initially, the task sequence is
generated randomly by the task generator. The first task is broadcast to all
autonomous vehicles allowing them to place a future bid for the task. After each
vehicle has returned their bid, a winner is determined and is allocated the first task.
The second task is then broadcast, followed by bids from each vehicle and a winner
selected. This auction process of broadcast task, followed by bidding and the selection
of a winner continues until all tasks have been allocated. For each vehicle the
calculation of bids is based on the travelling time to complete the current broadcast
task and any previously allocated (as the winner) tasks.

Once the travel time has been calculated it is used to post bids (B1,j to Bi,j). The
travelling time of collision free paths is calculated using the SiPaMoP algorithm. A
winner is then determined, based on the lowest travel time to finish the respective task
(completion time). When the completion time is calculated for each autonomous
vehicle, its previous task commitments are also considered, which helps reduce the
trapping of tasks to one vehicle. For example, if a previous task is allocated to a
particular vehicle, then there will be less tendency for the same vehicle to win the
next task. In addition, load balancing of the vehicles can be achieved partially. After

all tasks of the current task sequence is allocated, total completion time (makespan) is
calculated. This process continues for a fixed number of cycles with a different task
sequence generated randomly in each cycle. Eventually the best task sequence is
selected, which provides the minimum makespan. The flow diagram of the
simultaneous task allocation and motion coordination algorithm is illustrated in Fig.2.
Here, the parallel computation of the SiPaMoP algorithm is shown occurring towards
the middle of the process. It is during this stage that the motion and path is calculated
for each vehicle independently using different computing nodes.

Start

Generate Task
Sequence

Broadcast available
tasks to vehicles

Calculate
Travel Path
(SiPaMoP)

Vehicle Bids for task

If all bids
received

Select best vehicle
for task

If all tasks
allocated

Stopping
Criteria Met

End

Display ResultsY

N

Y

N

N

Y

Parallel
Computation

Fig. 2. Flow chart of STAMC algorithm

The travel path and resulting travel time to complete the path is calculated using
the SiPaMoP algorithm. This portion of the STAMC algorithm is distributed and
computed in parallel for each autonomous vehicle. If there exists, n autonomous
vehicles requiring computation of a travel path, which takes tpath time to compute, the
serial STAMC algorithm requires ntpath time to compute all paths for all vehicles.
Whereas, the parallel STAMC algorithm requires only tpath time to compute the travel
path for all autonomous vehicles.

A Master-Worker topology is used to distribute the STAMC algorithm. The Master
node takes on the role of Auctioneer, by issuing tasks, receiving bids for tasks and
determining the winning bid from each worker node. Worker nodes perform parallel
computation of the path and motion planning using the SiPaMoP algorithm. The
distributed computing environment and master-worker topology introduce a necessary
communication time (tcomm), but tcomm << tpath.

Partitioning of the STAMC algorithm onto a parallel computing architecture is
illustrated in Fig. 4 and the serial architecture is illustrated in Fig. 3.

Fig. 3. The data path of serial computation for the task allocation and path planning algorithm
for autonomous vehicles

Fig. 4. The data path of parallel computation for the task allocation and path planning algorithm
for autonomous vehicles

Here, the STAMC algorithm is implemented on a compute cluster, which is
discussed further in section 4.2. The combined arrangement of hardware and software
of the compute cluster provides a platform for coarse-grained parallelisation of the
complete SiPaMoP algorithm, as illustrated in Fig. 4.

The cluster computing architecture and master-slave topology mutually provide for
two possible mappings between the number of computing nodes and number of
vehicles requiring motion and path planning. The first mapping is 1:1 and is used
exclusively in this paper. Here, a single node computes the motion and path for a
single vehicle. The second mapping, 1:n allows a single node to compute the motion
and path for multiple vehicles. For example, if there exists, three computing nodes
and nine vehicles, only three vehicles can be computed in parallel at one instance. As
a result, three groups would be computed sequentially. In this case a single node
would perform the motion and path computation for three vehicles, a 1:3 mapping. A
third mapping of n:1, allows the motion and path computation to be further distributed
across spare nodes. For example, if there exists, nine computing nodes and three
vehicles it would be ideal to further distribute the path and motion computation for

each vehicle across the spare six nodes, thus allocating all computational resources of
the compute cluster to the calculations. However, the STAMC algorithm encapsulates
the complete SiPaMoP algorithm into a coarse-grained implementation, preventing
any further decomposition into finer-grained portions for execution on separate
processors.

The main objective for the simultaneous task allocation and collsion free path
planning process is to minimse the makespan of the available tasks with the available
autonomous vehicles. In order to satisfy the objective of task allocation, we must
know the travel times of each tasks for respectable task-vehicle combination in
advance and select the best task-vehicle combination. The SiPaMoP method is used to
determine the travel time for each task and eventually we can find the best vehicle for
the respective task. Since path planning and traveling times are determined by
SiPaMoP method, paths are guaranteed to be collision free.

3 Integration of MPITB in the MATLAB Environment

The STAMC algorithm is implemented in the interpretive MATLAB environment,
which has no native support for distributed computing. In order to arrange the
STAMC algorithm into a Master-Worker topology on a distributed computing
architecture a Message-Passing Interface (MPI) was required.

The integration of the MPI [17] and the interpretive MATLAB environment allows
researchers to achieve coarse-grained and out-of-loop parallelisation of scientific and
engineering applications developed in MATLAB. Developed at the University of
Granada in Spain, MPITB for MATLAB allows researchers to include MPI function
calls in a MATLAB application, in a way similar to the bindings offered for C, C++
and Fortran. Decomposition and coding of a serial problem into a parallel problem is
still the responsibility of the researcher, as there is no automatic parallelisation
method in MPITB. This method of explicit parallelisation coupled with user
knowledge of the application provides a good chance for sub-linear or linear
computational speedup. Furthermore, the onus is placed upon the researcher to
develop safe distributed code free of livelocks and deadlocks which occur due to the
loss of message synchronisation between distributed computing nodes.

Baldomero[18] provides a summary of several other parallel libraries that achieve
coarse-grain parallelisation for MATLAB applications. The toolboxes differ in the
number of commands implemented from the MPI specification and the level of
integration with existing MATLAB data types.

The level of computational performance provided to a parallel MATLAB application
is dependant upon the underlying communication method implemented in the toolbox.
Toolboxes using the file system to exchange messages between computers tend to be
slow due to the explicit read/write latency of rotating hard disks. Conversely,
toolboxes using a message passing daemon to provide communication between
computers provide much better performance due to the small latencies and large
bandwidth capabilities of local area networks (LANs). In the later case, messages
(data) are transferred between the primary memory of parallel computers, without
buffering them using the file system prior to transmission over the LAN.

The MPI functions are written in C code and dynamically compiled into MATLAB
MEX-files. The MEX-files encapsulate the functionality of the MPI routines,
allowing them to be directly called within the MATLAB environment, thus making the
parallelisation of the application possible. With both MATLAB and a message-passing
library installed, such as LAM-MPI, the precompiled MEX-files can perform both
MATLAB API calls and message-passing calls from within the MATLAB environment.
The MPITB makes MPI calls to the LAM-MPI daemon and MATLAB API. This
method enables message-passing between MATLAB processes executing in distributed
computing nodes[18].

Transmission of data between the master-worker MATLAB processes and execution
of the TAPP algorithm can occur after booting and initialisation of the LAM-MPI
library from the master process using, LAM_Init(nworkers,rpi,hosts). Where
nworkers is the number of cluster nodes designated as worker nodes, rpi is the LAM
MPI SSI setting which is set to either tcp or lamd in our experiments, hosts is the list
of host names on the Linux cluster. Once the underlying MPI library has been
initialised, MATLAB instances must be spawned on worker nodes. This is achieved
using the MPI_Comm_spawn(…) command on the master process. Finally, establishing
an MPI communication domain, called a communicator, defines a set of processes
that can be contacted. This is done using the MPI_Comm_remote_size(processrank),
MPI_Intercomm_merge(processrank,0) and global NEWORLD commands on the
master process. Here, processrank is an integer greater than zero assigned to each
worker node in the MPI communicator; the master node (processrank=0). The global
variable NEWORLD is the name of the MPI communicator.

Transmission of messages between MATLAB processes can now be accomplished,
permitting the arrangement of cluster nodes into any useful topology. The master-
worker topology used in the experiments, employs the fundamental point-to-point
communication mechanism between master and worker nodes, with one side
performing a blocking send, MPI_Send(buf,processrank,TAG,NEWORLD) and the
other a blocking receive, MPI_Recv(buf,processrank,TAG,NEWORLD).When mess-
ages are sent processrank is the MPI rank value of the receiving process and when
messages are received processrank is the value of the sending process. The parameter
buf represents the MATLAB data to be sent or received, TAG is an integer associated
with the message providing selectivity at the receiving node, and NEWORLD is the
MPITB communicator. Any valid MATLAB data type can be transmitted directly
without being prepacked into a temporary buffer, unless the message contains
different data types. If the data to be sent is larger than a single variable, such as a
matrix, then its size must be determined and sent prior to sending the matrix. The
approach taken in this paper, is to calculate the size of the matrix in the sender using
the MATLAB size() command, then send the size value to the receiver prior to sending
the actual matrix. The distribution and parallel computation of the STAMC algorithm
requires the transmission of a data between master and worker nodes. The size of the
PATH_REGISTER matrix is dynamic between each task allocation cycle of the
TAPP algorithm.

4 Experiment Description

The experiments involve execution of the STAMC algorithm on a single computing
node and in parallel on the distributed computing cluster. The serial computation uses
a single node of the Linux cluster, whereas the parallel computation uses multiple
cluster nodes.

In this study, the performance is measured by recording the wall-clock time, so all
components of the execution time, including communications, are included. The wall-
clock time is a fair measure of performance that is frequently used.

4.1 Simulation Parameters

The set of algorithm and simulation parameters remained constant to encourage a
meaningful comparison between the parallel/distributed approach and the
serial/centralised method: NumMaster=1, NumVehicles={4,6,8}, NumTasks={24,48,
72,96,120,144,168,192,216,240}, MapNodes={192,216,240}, WeightUpdate=Dynamic,
VehicleSpeed=100 cm/sec, SchedulingTime=1 batch, TurnSpeed=1 m/s, SafetyTime=0
sec, TurningRate=1.0. The STAMC algorithm is executed for 25 cycles with the
average computation time taken as the as final result.

4.2 Cluster Computing Environment

All experiments were performed on a Linux computing cluster with specifications
provided in Table 1. The serial and parallel versions of the task allocation and path
planning algorithm were coded in MATLAB. Communications between cluster nodes
employed MPI 2.0 implemented using the MPITB.

Table 1. Cluster Computing Environment

Computing Environment Component Description
Number of Nodes Utilised 1,4,8
Processor Type and core Speed Pentium 4 @ 3.0Ghz (Prescott)
Front-side Bus Bandwidth 800MHz
DRAM capacity and bandwidth 2GB DDR @ 400MHz
Network Type and Bandwidth 1000Mbps Ethernet
Network Switching Type Gigabit Switching Fabric
Network Protocol TCP/IP V4
OS Kernel Type and Version Linux (2.4.21-20.EL)
MPI Type and Version LAM 7.1.1 / MPI 2
MATLAB 7.0.4.352 (R14) SP 2
MPITB mpitb-FC3-R14SP1-LAM711.tgz

5 Results and Discussion

The average computation times for the parallel/distributed STAMC algorithm and the
serial/centralised STAMC algorithm are illustrated in the Fig. 5 and Fig. 6.

0

200

400

600

800

1000

1200

24 48 72 96 120 144 168 192 216 240

Number of tasks (4 vehicles)

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

)

Centralised

Distributed

 (a) (b)

Fig. 5. (a) Computation time for parallel/distributed and serial /centralised STAMC with 4
AGVS; (b) Computation time for parallel/distributed and serial /centralised STAMC algorithm
with 6 AGVS

From the three simulations using 4, 6, and 8 vehicles, there is a clear performance
increase (less computation time) with the parallel/distributed STAMC algorithm
compared to the serial/centralised STAMC algorithm. As the numbers of tasks are
increased from 24 to 240, the difference in performance becomes even more
significant between the two versions of the STAMC algorithm. In general, when
number of tasks of the simulation study increases, the computation time increases
exponentially. But the rate of change of the gradient in serial/centralised algorithm is
much larger than the rate of change of the gradient in the parallel/distributed
algorithm, because the STAMC algorithm is evenly distributed among cluster
processors (1:1 mapping) and computed in parallel in the later case.

0

500

1000

1500

2000

2500

24 48 72 96 120 144 168 192 216 240

Number of tasks (8 ve hicles)

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

)

Centralised

Distributed

 (a) (b)

Fig. 6. (a) Computation time for the parallel/distributed and serial/centralised STAMC
algorithm using 8 AGV's; (b) Computation time for the parallel/distributed STAMC algorithm
using 4/6/8 AGV's

Fig. 6(b) illustrates the results of the parallel and distributed STAMC algorithm
using 4, 6 and 8 vehicles. Results for the single vehicle are also given to provide a
baseline for comparison against the multi-vehicle simulations. For the multi-vehicle
simulations, the computation time is similar from 24 to 240 tasks, with a maximum
variation of approximately 14.3% between 8 and 4 vehicles at 216 tasks. This
suggests a useful scalability property of the parallel STAMC algorithm arranged in a
Master-Worker topology for an increasing number of vehicles.

0

50

100

150

200

250

300

350

400

450

500

24 48 72 96 120 144 168 192 216 240

Number of tasks

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

)

1 vehicle

4 vehicles

6 vehicles

8 vehicles

0

200

400

600

800

1000

1200

1400

1600

1800

24 48 72 96 120 144 168 192 216 240
Number of tasks (6 vehicles)

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
ec

)

Centralised

Distributed

The STAMC algorithm attempts to find an optimal (minimum) schedule for the
allocation of all tasks to available vehicles, whilst guaranteeing collision free paths.
This is a typical NP-hard ("Non-deterministic Polynomial time") problem, requiring
time which is exponential in log n, the number of tasks to be scheduled. As a
consequence the results are exponential in the number of tasks to be scheduled and
not the number of vehicles. Because of the coarse-grained parallelisation of the
SiPaMoP algorithm, variations between 4, 6, and 8 vehicles is small, even with 240
tasks as illustrated in Fig. 6(b).

6 Conclusion

The use of MPITB for MATLAB provided effective integration and encapsulation of
MPI into the interpretive environment of MATLAB. This enabled existing MATLAB
code to be distributed and computed in parallel using clustered computing power.
Scientific and engineering applications continue to maintain the interactive,
debugging and graphics capabilities offered by the MATLAB environment, and can
now reduce the computation time by taking advantage of clustered computing.

Due to the high granularity of the STAMC algorithm, the distributed and parallel
version achieved near-linear computational speedup over the serial STAMC
algorithm. This result was achieved using 4, 6 and 8 cluster nodes for a number of
tasks ranging from 24 to 240. The experimental results also suggest good scalability
of the parallel STAMC algorithm, which becomes more important as the number of
vehicles and number of tasks increases.

With the aim of increasing overall system reliability our future research work
involves retirement of the master node to remove the single point of failure from the
system. Coupled with a fully-connected topology, redundancy is increased by
allowing any cluster computing node to adopt the master role of task allocation.

Acknowledgement

We wish to thank Dr Matthew Gaston for establishing, maintaining and supporting
the UTS Engineering Linux Computing Cluster Environment.

References

[1] E. K. Bish , F. Y. Chen , Y. T. Leong, B. L. Nelson, J. W. C. Ng, and D. Simchi-Levi,
"Dispatching vehicles in a mega container terminal OR Spectrum, vol. 27, Number 4 pp.
491 - 506 2005.

[2] J. Bose, T. Reiners, D. Steenken, S. Voß, and "Vehicle dispatching at seaport container
terminals using evolutionary algorithms," In: Sprague R H (ed) Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, DTM-IT, pp 1-10. IEEE,
Piscataway, 2000.

[3] M. Grunow , H. Günther, and M. Lehmann, "Dispatching multi-load AGVs in highly
automated seaport container terminals, OR Spectrum, vol. 26, Number 2, 211-235 2004.

[4] J. K. Lim, K. H. Kim, K. Yoshimoto, J. H. Lee, and "A dispatching method for automated
guided vehicles by using a bidding concept," OR Spectrum, vol. 25, 25-44, 2003.

[5] K. H. Kim and K. Y. Kim, "Routing straddle carriers for the loading operation of
containers using a beam search algorithm, Computers & Industrial Engineering, vol. 36,
Issue 1, pp. 109-136, 1999.

[6] P. H. Koo, W. S. Lee, and D. W. Jang, "Fleet sizing and vehicle routing for container
transportation in a static environment, OR Spectrum, vol. 26, Number 2, 193 - 209 2004.

[7] R. L. Moorthy and W. Hock-Guan, "Deadlock prediction and avoidance in an AGV
system," Master of science, Sri Ramakrishna Engineering College, National University of
Singapore, 2000.

[8] F. Xu, H. V. Brussel, M. Nuttin, and R. Moreas, "Concepts for dynamic obstacle
avoidance and their extended application in underground navigation, Robotics and
Autonomous Systems, vol. 42, Issue 1, pp. 1-15, 2002.

[9] A. I. Corréa, A. Langevin, and L.-M. Rousseau, "Scheduling and routing of automated
guided vehicles: A hybrid approach, Computers & Operations Research, 2005.

[10] R. Eisenberg, R. Stahlbock, S. Voß, and D. Steenken, "Sequencing and scheduling of
movements in an automated container yard using double rail-mounted gantry cranes,
Working paper, University of Hamburg, 2003.

[11] A. Wallace and "Application of AI to AGV control - agent control of AGVs,"
International Journal of Production Research, vol. 39(4), pp. 709-726, 2001.

[12] A. I. Correa, A. Langevin, and L. M. Rousseau, "Scheduling and routing of automated
guided vehicles: A hybrid approach, Computers & Operations Research, vol. to be
published, 2005.

[13] T. Le-Anh and M. B. M. De Koster, "On-line dispatching rules for vehicle-based internal
transport systems, International Journal of Production Research, vol. 43, Number 8 /
April 15, 2005 pp. 1711 - 1728 2005.

[14] G. Desaulniers, A. Langevin, D. Riopel, and B. Villeneuve, "Dispatching and Conflict-
Free Routing of Automated Guided Vehicles: An Exact Approach, International Journal
of Flexible Manufacturing Systems vol. 15, Number 4, pp. 309 - 331, 2003.

[15] A. K. Kulatunga, D. K. Liu, G. Dissanayake, and S. B. Siyambalapitiya, "Ant Colony
Optimization based Simultaneous Task Allocation and Path Planning of Autonomous
Vehicles, IEEE International conference on Cybanatics and Information Systems 2006,
Bangkok Thailand, pp. 823-828, 2006.

[16] D. K. Liu, X. Wu, A. K. Kulatunga, and G. Dissanayake, "Motion Coordination of
Multiple Autonomous Vehicles in Dynamic and Strictly Constrained Environments,
Proceeding of the IEEE International conference on Cybernetics and Information
Systems (CIS), 7-9 June, 2006, Bangkok Thailand, pp204-209.

[17] MPI.Forum, "MPI-2: Extensions to the Message-Passing Interface," in Message Passing
Interface Specification, vol. 2005, November 15, 2003 ed: NSF and DARPA, 2005, pp.
MPI-2 Specification Document.

[18] J. F. Baldomero, "Message Passing under MATLAB," presented at Advanced Simulation
Technologies Conference, Seattle Washington, 2001.

