BrachyShade: Real-time Quality Assurance for High Dose Rate Brachytherapy

by

Roumani Alabd

A dissertation submitted in fulfilment of the requirements for the degree Master of Engineering by Research

School of Electrical and Data Engineering Faculty of Engineering and Information Technology University of Technology Sydney

Certificate of Original Authorship

I, Roumani Alabd, declare that this thesis titled, BrachyShade: Real-time Quality Assurance for High Dose Rate Brachytherapy, and the work presented in it is my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has been previously submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Production Note: Signature removed prior to publication.

May 2018 Roumani Alabd

Acknowledgements

I would first like to thank my thesis advisor Dr Daniel Franklin of the School of Electrical and Data Engineering at University of Technology Sydney. The door to Dr Franklin office was always open whenever I ran into a spot of troubles or had a question about my research or writing. He consistently allowed this paper to be my own work, but steered me in the right direction whenever he thought I needed it. This thesis would not be possible without his consistent and illuminating instructions.

I would also like to acknowledge Dave Hughes of the Climate Change Cluster (C3), Science Faculty at University of Technology Sydney as the second reader of a big portion of this thesis, and I am gratefully indebted to him for his very valuable comments on this work.

Finally, I must express my very profound gratitude to my parents and to my family for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Dedication

To My Father

Abstract

High dose rate (HDR) brachytherapy is a popular form of radiotherapy in which radiation is delivered to the tumour via a small sealed radioactive source, which is moved through a sequence of positions in an array of catheters pre-implanted in the target area. Brachytherapy offers a key advantage over external beam radiotherapy, since the radiation dose is delivered directly to the diseased tissue while minimising the dose applied to healthy tissue in proximity to the target volume.

The accuracy of source placement is critical to the success of HDR brachytherapy. Deviations between the planned source position and the actual position achieved during treatment, due to anatomical changes (e.g. due to swelling or post-imaging tumour growth) or imperfect catheter placement, can harm healthy tissue or underirradiate diseased tissue. Therefore, a reliable, accurate, real-time 3D source tracking system would be extremely valuable for treatment quality assurance and would allow a treatment plan to be modified in real time if positioning errors are detected.

HDR BrachyView is an in-body source tracking system designed to monitor the location of a HDR prostate brachytherapy source developed at the Centre of Medical Radiation Physics at the University of Wollongong, based on a tungsten pinhole camera with a silicon pixellated photon detector. Source position is estimated by back-projecting images of the source projected through the pinholes onto the imaging plane. Although HDR BrachyView has been shown to perform very well, it is challenging to manufacture, and suffers from a small systemic error in position estimation.

BrachyShade proposes to replace the tungsten collimator with a series of small spherical or spheroidal tungsten occluders embedded in a plastic shell, suspended over the same pixellated detector (TimePix) used in the original HDR BrachyView. Instead of tracking bright projections of the source, the shadow of the source will be tracked, and by parametrically fitting an analytic model of the shadow map (where the model parameters are source position and intensity), the source position will be estimated. The proposed design significantly simplifies the manufacturing process, lowering the costs of manufacturing; it will also allow many more photons to arrive at the detector, enabling faster acquisition of a high quality position estimate. The achievable accuracy is comparable to HDR BrachyView, with a wider field of view achievable, depending on the specific configuration of tungsten occluders.

This Thesis presents a set of Monte Carlo simulations of the system, performed in Geant4. A sophisticated analytic model of the shadow map has been derived, and an algorithm developed which estimates the source position by minimising the error between the output of the analytic model and the detected photon map. A post-processing stage eliminates the effects of Compton scatter, which are otherwise mathematically challenging to include in the analytic model. Exhaustive test results proving the accuracy of the algorithm are presented. A second analytic method for estimating source position via a hierarchical pattern-matching strategy is also described, and preliminary results presented.

Keywords: Cancer, HDR Brachytherapy, Quality Assurance

Abbreviations

AAPM	American Association of Physicists in Medicine
ABS	American Brachytheapy Society
ACIM	Australian Cancer Incidence and Mortality workbooks
AIHW	Australian Institute of health and Welfare
AJCC	American Joint Committee on Cancer
BSDF	Backscatter dose fraction
BT	Brachytherapy
CCD	Charge-coupled device
CIRS	Computerized Imaging Reference Systems
CMRP	Centre for Medical Radiation Physics
CoG	Geometrical centre
CoMi	Ideal centre of mass
CRT	Conformal radiation therapy
CTV	Clinical Target Volume
DHT	Dihydrotestosterone
DRE	Digital rectal examination
DSP	Direct source projection
DVH	Dose Volume Histogram
D90	The Dose Delivered to at least 90% of The Target Volume
D80	The Dose Delivered to at least 80% of The Target Volume
EBRT	External Beam Radiotherapy
ESP	Extensive source projection

logy
the prescriped
the

Dose

Table of contents

A	bstra	nct		V
A	bbre	viation	s	vii
\mathbf{Li}	st of	figure	S	xii
\mathbf{Li}	st of	tables		xiv
1	Intr	oducti	on	1
	1.1	Prosta	te Brachytherapy and the Need for Real-Time Quality Assurance	2
	1.2	Object	tives and Overview	3
	1.3	Summ	ary of Contributions and Structure of this Thesis $\ldots \ldots \ldots$	4
		1.3.1	Summary of Contributions	4
		1.3.2	Thesis Structure	5
2	Lite	erature	Review	7
	2.1	Brach	ytherapy	8
		2.1.1	High Dose Rate and Low Dose Rate Brachytherapy $\ . \ . \ .$.	9
		2.1.2	Low Dose Rate (LDR) Brachytherapy	10
		2.1.3	High Dose Rate (HDR) Brachytherapy	10
			2.1.3.1 Implantation Techniques $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	11
			2.1.3.2 Isotope Selection $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	12
		2.1.4	The Need for Real-Time QA in Brachytherapy	12

		2.1.5	HDR Prostate Brachytherapy	. 13
2.2 Cause		Cause	es of Error in Source Positioning in HDR Prostate Brachytherapy	13
	2.3	The P	Physics of Source Tracking	. 16
		2.3.1	Photoelectric Effect	. 18
		2.3.2	Compton Scattering	. 18
		2.3.3	Attenuation of Radiation	. 21
	2.4	A Sur	vey of Nuclear Medical Imaging Systems	. 22
		2.4.1	Computed Tomography (CT)	. 22
		2.4.2	Ultrasound	. 23
		2.4.3	Dosimeters and Source Tracking Methods in HDR Brachytherapy	
			Treatment	. 24
	2.5	HDR	BrachyView	. 30
		2.5.1	Pixellated Silicon Detector	. 31
		2.5.2	Collimator	. 33
		2.5.3	HDR BrachyView Source Localisation Algorithm	. 34
		2.5.4	Limitations	. 35
	2.6	Concl	usion	. 36
3	Met	thodol	ogv	38
3	Met 3.1	t hodol Probe	ogy 9 Design	38 . 39
3	Met 3.1 3.2	t hodol Probe Source	ogy e Design	38 . 39 . 41
3	Met 3.1 3.2 3.3	t hodol Probe Source Analy	ogy e Design	38 39 41 42
3	Met 3.1 3.2 3.3 3.4	thodol Probe Source Analy Comp	ogy e Design e Position Estimation Algorithm tic Model oton Scatter Correction	38 39 41 42 42
3	Met 3.1 3.2 3.3 3.4 3.5	thodol Probe Source Analy Comp An Al	ogy e Design e Position Estimation Algorithm tic Model oton Scatter Correction lternative Source Localisation Algorithm: Hierarchical Pattern	38 39 41 42 45
3	Met 3.1 3.2 3.3 3.4 3.5	thodol Probe Source Analy Comp An Al Match	ogy e Design e Position Estimation Algorithm tic Model oton Scatter Correction lternative Source Localisation Algorithm: Hierarchical Pattern ning	38 39 41 42 45 45
3	Met 3.1 3.2 3.3 3.4 3.5 3.6	thodol Probe Source Analy Comp An Al Match Monte	ogy a Design be Position Estimation Algorithm attic Model attic Model boton Scatter Correction boton Scatter Correction biternative Source Localisation Algorithm: Hierarchical Pattern attic Carlo simulations	38 39 41 42 45 45 48 50
3	Met 3.1 3.2 3.3 3.4 3.5 3.6	thodol Probe Source Analy Comp An Al Match Monte 3.6.1	ogy e Design e Position Estimation Algorithm tic Model toton Scatter Correction otton Scatter Correction lternative Source Localisation Algorithm: Hierarchical Pattern ning e Carlo simulations Simulation Framework, Models and Parameters	38 39 41 42 45 45 48 50 50
3	Met 3.1 3.2 3.3 3.4 3.5 3.6	thodol Probe Source Analy Comp An Al Match Monte 3.6.1 3.6.2	ogy e Design e Position Estimation Algorithm tic Model tic Model oton Scatter Correction oton Scatter Correction Iternative Source Localisation Algorithm: Hierarchical Pattern ning e Carlo simulations Simulation Framework, Models and Parameters Source Model	38 39 41 42 45 45 48 50 50 50
3	Met 3.1 3.2 3.3 3.4 3.5 3.6	thodol Probe Source Analy Comp An Al Match Monte 3.6.1 3.6.2 3.6.3	ogy e Design a Position Estimation Algorithm tic Model atter Correction atter Correction b Iternative Source Localisation Algorithm: Hierarchical Pattern and a simulations b Carlo simulations b Source Model c Planned Simulations and Analysis	38 39 41 42 45 45 48 50 50 50 50 50
3	Met 3.1 3.2 3.3 3.4 3.5 3.6	thodole Probe Source Analy Comp An Al Match Monte 3.6.1 3.6.2 3.6.3	ogy a Design be Position Estimation Algorithm tic Model tic Model oton Scatter Correction thernative Source Localisation Algorithm: Hierarchical Pattern ning carlo simulations Simulation Framework, Models and Parameters Source Model Planned Simulations and Analysis 3.6.3.1	38 39 41 42 45 45 48 50 50 50 50 50 51 52
3	Met 3.1 3.2 3.3 3.4 3.5 3.6	thodole Probe Source Analy Comp An Al Match Monte 3.6.1 3.6.2 3.6.3	ogya Designb Designc Position Estimation Algorithmtic Modelc Modelc Modelc Carlo Scatter Correctionc Carlo simulationsc Carlo simulationsc Source Modelc Modelc Source Modelc Source Modelc Source Position Estimation Results Prior to Compton	38 39 41 42 45 48 50 50 50 51 52
3	Met 3.1 3.2 3.3 3.4 3.5 3.6	thodol Probe Source Analy Comp An Al Match Monte 3.6.1 3.6.2 3.6.3	ogy a Design be Position Estimation Algorithm tic Model to Scatter Correction oton Scatter Correction Iternative Source Localisation Algorithm: Hierarchical Pattern ning e Carlo simulations Simulation Framework, Models and Parameters Source Model Planned Simulations and Analysis 3.6.3.1 Compton Scatter Evaluation 3.6.3.2 Source Position Estimation Results Prior to Compton	38 39 41 42 45 48 50 50 50 51 52 52
3	Met 3.1 3.2 3.3 3.4 3.5 3.6	thodol Probe Source Analy Comp An Al Match Monte 3.6.1 3.6.2 3.6.3	ogy e Design e Position Estimation Algorithm tic Model ton Scatter Correction otton Scatter Correction atternative Source Localisation Algorithm: Hierarchical Pattern ning carlo simulations Simulation Framework, Models and Parameters Source Model Planned Simulations and Analysis 3.6.3.1 Compton Scatter Evaluation 3.6.3.2 Source Position Estimation Results Prior to Compton Scatter Correction 3.6.3.3 Results After Compton Scatter Correction	38 39 41 42 45 48 50 50 50 50 51 52 52 52 52
3	Met 3.1 3.2 3.3 3.4 3.5 3.6	thodole Probe Source Analy Comp An Al Match Monte 3.6.1 3.6.2 3.6.3	ogy e Design te Position Estimation Algorithm tic Model oton Scatter Correction atternative Source Localisation Algorithm: Hierarchical Pattern ning carlo simulations Simulation Framework, Models and Parameters Source Model Planned Simulations and Analysis 3.6.3.1 Compton Scatter Evaluation 3.6.3.2 Source Position Estimation Results Prior to Compton Scatter Correction 3.6.3.3 Results After Compton Scatter Correction Fast Hierarchical Pattern Matching Scatter Correction	38 39 41 42 45 48 50 50 50 50 50 51 52 52 52 52 52 52

4	Res	sults and Discussion	54
	4.1	Compton Scatter Evaluation and Analytic Model Validation	54
	4.2	Uncorrected Position Estimation Results	58
	4.3	Compton Scatter Correction	58
		4.3.1 Results from probe design with 3 occluders; Restricted FoV \ldots	58
		4.3.2 3 Occluder Probe with Extended FoV	65
		4.3.3 7 Occluder Probe with Extended FoV	67
		4.3.4 Resource requirements and computational complexity	68
	4.4	Fast Hierarchical Pattern Matching	69
		4.4.1 Error evaluation at selected points	69
		4.4.2 Resource requirements and computational complexity	70
	4.5	Conclusions	70
5	Cor	nclusions and Future Work	72
	5.1	Conclusion	72
	5.2	Future Work	74
В	iblio	graphy	75

List of figures

2.1	Causes of catheter position shift relative to the prostate $[33]$	15
2.2	Photons interacting with the human body experiencing three possible	
	modes of interaction $[38]$	17
2.3	Photoelectric absorption. The diagram shows a 100-keV photon under-	
	going photoelectric absorption during interaction with an iodine atom	
	[39]	19
2.4	Multiple interactions of a photon passing through matter. Energy	
	is transferred to electrons in a sequence of photon-energy reducing	
	interactions [12]. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	20
2.5	Linear Attenuation Coefficient $[38]$	20
2.6	Mass attenuation coefficient $[38]$	22
2.7	Schematic diagram showing the HDR BrachyView probe relative to	
	prostate phantom $[27]$	31
2.8	The Timepix ASIC chip. The sensor chip is bump-bonded to the readout	
	chip. Wire bonds are visible $[75]$	32
2.9	Multi-pinhole collimator hole spacing $[26]$	34
3.1	The BrachyShade probe with 3 occluders.	39
3.2	The BrachyShade probe with 7 occluders.	40
3.3	The simulated $^{192}\mathrm{Ir}$ HDR brachy therapy source. The core consists of	
	pure iridium with a uniform distribution of 192 Ir, surrounded by a steel	
	shell [82, 83]	50

4.1	Sensitivity as a function of depth for Monte Carlo simulations with and	
	without the presence of a scattering medium, and for the analytic model,	
	showing the most four significant source energies	56
4.2	Example of raw output from Geant4 simulations $(37 \times 10^9 \text{ primary par-}$	
	ticles, real 192 Ir source model centred at (18.5, 20, 60) mm), with the	
	results of the fitting process. Without Compton scatter correction, the	
	fitting algorithm estimates the location as being $(22.0, 21.9, 70.8)$ mm.	57
4.3	Comparison of simulation output and analytic model for source located	
	at $(2.5, 5, 20)$ mm.	59
4.4	Uncorrected error vector field for 3-occluder system as a function of	
	estimated source position	60
4.5	Compton-scatter error correction vector field for 3-occluder system,	
	shown as a function of estimated source position. The field is a $3D$	
	second-order polynomial fitted to the raw error vector field	61
4.6	Residual error after correction added to original position estimate	62
4.7	Error as a function of distance from $(0, 0, 0)$, before and after applying	
	the Compton scatter correction field.	63
4.8	Error vector field for 3 occluders as a function of estimated source	
	position; fitted second-order polynomial model of the error vector field;	
	residual error after correction added to original position estimate for the	
	whole FOV.	66
4.9	Error vector field for 7 occluders as a function of estimated source	
	position; fitted second-order polynomial model of the error vector field;	
	residual error after correction added to original position estimate	67

List of tables

3.1	¹⁹² Ir gamma spectrum [82] \ldots \ldots \ldots \ldots \ldots \ldots	51
4.1	Residual error prior to Compton scatter correction	64
4.2	Residual error after Compton scatter correction; with an accurate	
	model of an HDR brachytherapy source, the residual error is less than	
	$1.2941~\mathrm{mm}$ for all evaluated source positions and less than $0.4141~\mathrm{mm}$	
	in 75% of positions. This represents a reduction in the error by a factor	
	of 2.4-5.2.	64
4.3	Residual error statistics after Compton scatter correction, 3-occluder	
	probe, with all points used to fit the correction coefficients	66
4.4	Residual error statistics after Compton scatter correction, 7-occluder	
	probe, with all points used to fit the correction coefficients	68
4.5	Residual error statistics after Compton scatter correction with fast	
	hierarchical pattern-matching algorithm; probe is the 3-occluder variant,	
	with all points used to fit the correction coefficients	70