
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.” 

 



A New Robust Beamforming Algorithm: Embedding 
Array's Active Pattern in Diagonal Loading Method 

Yuyue Luo #*1, Jin Pan #2, Shaode Huang #3 

 # School of Electronic Engineering, University of Electronic Science and Technology of China 
* Faculty of Engineering and Information Technology, University of Technology Sydney 

1yyl_uestc@163.com 
2panjin@uestc.edu.cn 

3ShaodeHuang@std.uestc.edu.cn 
 
 

Abstract—In this paper, we propose a novel adaptive 
beamforming algorithm combining methods of electromagnetism 
and signal processing, which embeds antennas' active pattern 
(AP) in the diagonal loading (DL) method. It can significantly 
reduce the beamformer's performance degradation brought by 
the inconsistency between hypothesized idealized antenna models 
and practical ones. Embedding AP adds the array's 
electromagnetic characteristics to the algorithm, therefore 
improves the performance of the robust beamformer. Simulation 
and measurement results indicate that the proposed method has 
an appealing performance when there are mismatches of 
antennas' physical aperture. 
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I.  INTRODUCTION  

Widely used in in many fields such as sonar, radar, 
communications and navigation, the adaptive beamforming 
system performs well in selecting useful information, anti-
interference and reducing noise. In traditional theory, antennas 
are assumed to be isotropic, identical, and omnidirectional 
elements placed in infinite free space. However, the ideal 
assumption can cause serious performance degradations in 
practical implementations due to the ignored array's 
imperfections (e.g., gain and phase mismatches, and mutual 
coupling between elements), particularly for increasingly 
widely used miniature apertures. Robust beamforming 
algorithms have been proposed to deal with these imperfections 
by treating array's response inconsistencies as non-specific 
manifold mismatches. One of the most popular robust 
beamforming approaches is the diagonal loading (DL) method 
(also known as loaded sample matrix inversion (LSMI) 
beamformer) [1], whose main idea is to add a quadratic penalty 
variable to the objective function and regularize the solution for 
the weight vector. As [1] does not give a clear way to obtain 
the value of DL factor, the worst-case-based [2] and other 
methods [3-5] are proposed to improve it. According to [3-5], 
most robust beamforming methods solve uncertain problems 
based on mathematical modelling and analysis of the signal 
(e.g., statistics, optimization, and eigenanalysis of matrix), but 
do not particularly analyze the array's electromagnetic 
characteristics. [6] reports some work exploiting the gain and 
frequency properties of practical antennas, without considering 
mutual coupling effect. [7] improves by incorporating the 
antenna's active pattern (AP) [8], which has a distinctive ability 
of calculating elements' radiation including its impact on the 

array environment (both mutual coupling between elements 
and workspace radiation). However, it greatly relies on the 
exact information of antennas' electromagnetic characteristics 
and is quite sensitive to measurement mismatches. 

In this paper, we creatively propose the active pattern based 
diagonal loading (APDL) method by employing the AP 
method in the DL algorithm. Via both simulation and 
experiments with real measurements, we demonstrate that the 
APDL beamformer achieves an appealing performance (e.g., 
higher signal to interference and noise ratio, SINR). It has 
better tolerance to both engineering and electromagnetic 
mismatches caused by elements' modeling, manufacturing, 
aperture assembling, and channel debugging. 

II. PROBLEM FORMULATION 

A narrowband system with an M-element two-dimension 
antenna array is considered. Without considering any 
imperfections, its steering vector a  can be written as: 

   1, , , , , M
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where 2k f v  is the wavenumber, f  and v  denote 
frequency and the speed of the electromagnetic wave, 
respectively.   and   are the angles, and ir  is the location 
vector of the i th sensor. 

Assume antenna elements are omnidirectional. Let ( )s t  and 

( )i t  be the transmitted data symbol and interference symbol 
respectively, at time t . The signal received at the array can be 
given by: 
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of array observations. sa  and ia  are the steering vectors of 

signal and interference respectively, and  tn  is an 1M   

vector denoting the combined interference and noise 
components.  

The sample matrix inversion (SMI) beamformer is used as 
the foundation algorithm, which solves a constrained 
minimization problem:  
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where   1
1 2, , ,
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Mw w w C  w    is beamformer’s complex 

vector weights, and R̂  is the sample covariance matrix of 



signal.  H  is the Hermitian transpose. Solving (3), the 

optimal weight vector is given as: 
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where 1ˆ1/ H
s s  a R a . 

III. IMPROVED MODEL OF ARRAY STEERING VECTOR 

Affected by each antenna’s radiation characteristics (e.g., 
directivity, gain), there are always mismatches between the 
ideal steering vector a  and the actual one. In this paper, 
inspired by AP method, we use an improved array steering 
vector a , by considering array aperture's radiation property 
[6]:  
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where        1 2, , , , , , , , , , ,
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and  , ,ig f    is the known active gain response of the i  th 

antenna, which reflects array aperture’s radiation abilities. 
 , ,f  g  can be obtained and stored during the designing 

process of antennas by electromagnetic simulation software or 
actual measurements.  

Although in practice, array's radiation performance can be 
affected by array mismatches such as the fluctuation of array 
parameters during design, processing, measuring, assembling 
and application, this new steering vector model using AP is 
still a better representation of the real one in the uncertain 
environment. It is mainly because these mismatches between 
the designed and applied array generally cause little changes 
of antennas' basic radiation structures, therefore have 
negligible impact on array's electromagnetic characteristics, 
e.g., current distribution and boundary conditions. Hence, the 
radiation in the near field stays almost the same. In the far 
field, the overall shapes of radiation pattern and the directivity 
tend to be similar, although the value of gain has a high 
probability of being different to the initially designed one [9].  

In addition, as the active patterns are approximately 
continues versus angle, i.e., unlikely to have a value jump 
within a certain range. Thus, we can infer that when facing 
DOA mismatches (in a tolerable range), the new model a is 
still more approximate to the real one than a . To sum up, it 
can be mathematically express as: 

,    e e e a a e a a
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These inferences can also be validated by our own 
measurement results for practical arrays, and some of the 
representative results are given in Section V.  

IV. PROPOSED APDL ALGORITHM 

Referring to the DL method [1] and the AP method, we 
propose the APDL algorithm. By adding an extra loading item 
is added to the sample covariance matrix, its constrained 
problem can be express as: 

 ˆmin . . 1H H
ss t 

w
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Similar to the DL method,   is the DL factor, and I  denotes 
the identity matrix.  Particularly, the ideal signal steering vector 

sa  in traditional DL method is modified as sa  in our method. 
Then, the weight vector of APDL can be written as: 
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where   1ˆ1/ H
APDL s s 


 a I R a  . It has been proved that the 

loading item can reduce the impact of the array mismatches by 
reducing the interference of the small eigenvalues [4]. Usually, 
the DL factor is chosen in a more ad hoc way, typically 210 . 
Here, 2  is the noise power in a single sensor. 

 Comparing with the AP method, the APDL method is more 
robust facing the performance degradation caused by the 
imprecise prestored data, as the effectiveness of the DL factor 
had been comprehensively discussed [3].  

 The APDL beamforming algorithm has a comparable 
computational cost of the DL method whose complexity is 

3( )O M  per iteration. Although the APDL method needs to 
extract the prestored active gain data of the specific DOA, this 
procedure is barely time-consuming.  

V. SIMULATION RESULETS 

We can also improve our experimental methods through the 
AP idea. Rather than hypothesize the array mismatches as 
statistical random errors, we can simulate the practical signal 
and interference with the electromagnetic data, and then 
simulate the narrow signal received by the array as: 
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      (9) 

where  kx


 is the changing input signals affected by the 

varying sa


and ia


, due to the array’s fluctuating response 
caused by mismatches, which reflects the changing 
environment. Correspondingly, the sample covariance matrix 
is: 

   
1

1ˆ =
K

H

i

i i
K 
R x x

  
                          (10) 

In this way, we create an experimental environment which 
is closer to the practical beamforming systems' working 
environment.  

As shown in Fig. 1, a practical 4-element uniform circular 
microstrip array is used as a standard model in our 
experiments. The array works for an anti-interference system 
of BeiDou navigation. In this paper, the electromagnetic 
software HFSS is used for all antenna simulations. Fig. 2 
shows the active patterns of each element. Obviously, the 
patterns are significantly different to the ideal omnidirectional 
models.  

 Assuming that there are some mismatches between the 
designed and the practical array, we simulate these different 
situations by HFSS. The corresponding AP of each mismatch is 



then abstracted and prestored. Three kinds of common 
engineering errors are studied: element's position mismatches 
(situation a), size errors of the metal working platform 
(situation b), and dielectric parameter errors of elements' 
substrate relative dielectric permittivity (RDP) (situation c) and 
loss tangent (LT) (situation d).  Although rarely individually 
discussed previously in the adaptive beamforming algorithms, 
these mismatches are almost inevitable and will influence the 
whole array's radiation performance, and consequently cause 
beamformers’ performance deterioration. The signal steering 
vector sa  used in AP and APDL method is calculated with the 
data extracted from the standard model, which is shown in Fig. 

1. Meanwhile, sa


, ia


 and R̂


 that reflect the varying 
electromagnetic environment are changing according to 
different prestored data.  In this way, we are able to simulate 
the performances of the APDL method and other typical 
beamformers when there are various mismatches. With the data 
of sa  and sa


, Fig. 3. illustrates e and e in (6) under 

different kinds of mismatches. Results are in accordance with 
(6).  

 In all simulations, the signal and interference source are 
assumed to have plane wavefronts, and DOAs are equal 
to    , 70 ,6s s      and    , 1 ,90i i      respectively. Table I 

compares element 1’s gain versus angle around the signal’s 
DOA. The results are in accordance with our inference in 
Section IV that the numerical value of gain tend to have a 
negligible change as long as the error of DOA is not serious. 

  In all experiments, 200 simulation runs are used to obtain 
each simulated point, the signal-to-noise-ratio(SNR) and 
interference-to-noise-ratio(INR) in a single sensor is equal to 
25dB and 30dB respectively. Signals are always present in the 
training data cell (training data size N=100). Additive noise in 
the array is modeled as spatially and temporally independent 
complex Gaussian noise with zero mean and unit variance. 
Five typical algorithms' mean output SINR are tested under 
mismatch situations: the SMI beamformer, the LSMI method 
[1], the WCRB [2] method using SeDuMi convex optimization 
MATLAB tool box, the AP beamformer [7], and the APDL 
method. The optimal SINR is also shown in the figures.  

 Fig. 4 presents the beamformers’ performance towards 
element’s position mismatches (element 1 is moved along the y 
axis from -2mm to 2mm, 1 mm per time).   

 As the working platform can cause the change of edge 
scattering and influence the electromagnetic radiation to the 
sensitive miniature array, in Fig. 5, we study how size errors of 
the metal working platform influence the beamformers, by 
setting the length of the elliptical metal platform's major axis 
from 132mm to 136mm. 

 

 

TABLE I 
ELEMENT 1’S GAIN VERSUS ANGLE OF 70s    

Angle 0  2  4  6   8  10  12  

Gain 0.356 0.350 0.344 0.339 0.334 0.330 0.325 

Fig. 2.  The active patterns of each element. 
(c). The active pattern of element 3. (d). The active pattern of element 4. 

(b). The active pattern of element 2. (a). The active pattern of element 1. 

 

Fig. 1.  A miniature circular microstrip array. Every right-handed circular
polarized element's center frequency is 0 1.268 .f GHz  The dielectric

substrate of each element has RDP of 20r   and LT of tan 0.004.   The

metal working platform is elliptical, with a 2 0.281 134a mm  major axis
and a 2 0.256 121b mm   minor axis. The array's radius is

0.16 38r mm    and the interelement spacing is 0.23 54 .d mm 

Each antenna is set at an inclined angle of 5    on the workbench. 

 

Fig. 5. Output SINR versus the length
of the elliptical platform's major axis. 

 

Fig. 4. Output SINR versus element 
1's position. 

 

Fig. 3.  Steering vector mismatches (on 0    plane) under different

situations: a. Element 1’s position mismatch (+2mm along axis y); b.
Working platform mismatch ( 2 136a mm ); c. Element 1’s RDP mismatch

( 20.3r  ); d. Element 1’s LT mismatch ( tan 0.005   ). 



 

 

 

 We also study the situation when there are mismatches 
between the designed and the practical dielectric material, 
which may cause frequency deviation and radiation loss, and 
further influence antenna’s radiation. Fig.6(a) shows the 
beamformers’ output SINR when element 1’s RDP varies from 
19.6 to 20.4, while Fig. 6(b) demonstrates every elements' LT 
varies from 0.0005 to 0.005. Value ranges in Fig. 6 are 
determined by the material's quality index and engineering 
experience.  

Results shown in Fig. 2, Fig. 3 and Table I are in 
accordance with our inferences in Section III-A. From Fig. 4 to 
Fig. 6, we can find that APDL has better performances than the 
other tested methods when facing various common engineering 
mismatches. 

VI. MEASURED RESULTS 

The array mentioned in Section V was fabricated and 
debugged, and then measured in the microwave anechoic 
chamber. There are numerical differences of the AP between 

the designed and the practical array, as was expected. From 
the DOA of signal and interference, Table II compares the 
elements’ simulated and measured active gain data. With the 
measured data, we assessed the aforementioned algorithms' 
performance using the same parameters (e.g., DOA and INR 
with those in simulation. Fig. 7 compares the mean SINR for 
the 6 methods with varying number of training snapshots. Fig. 
8 shows how the mean output SINR changes with different 
SNRs.   

These results based on the measurement demonstrate that 
the proposed APDL method perform satisfactorily in practice. 
The consistency between measurement and simulation results 
consolidate the effectiveness and robustness of the proposed 
APDL in dealing with array imperfectness. Measurement 
results are consistent with simulation results in Section IV-A. 
Those results prove that the previously gained array data can 
improve the beamformer’s performance. 

VII. CONCLUTION 

 In this paper, we propose an improved adaptive 
beamforming algorithm, embedding arrays’ electromagnetic 
characteristics in a robust beamformer. Mathematical analysis, 
computer simulation, and measurement results illustrate that 
the method performs well when facing possible array 
mismatches such as fluctuations between design, processing, 
measuring, assembling and application. The proposed method 
is particularly suitable for beamforming systems with small and 
compact arrays, where serious mutual coupling and 
environment scattering significantly influence antennas' 
radiation and consequentially the algorithm's performance. 
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Fig. 6.  The Dielectric Parameter Errors of Elements' Substrate 

 

Fig. 8. Output SINR versus SNR for 
training data size of N=100. 

 

Fig. 7. Output SINR versus training 
data size for SNR=25dB. 

TABLE II 

THE ACTIVE GAIN OF DESIGNED ARRAY ( dG ) AND THE FABRICATED ARRAY 

( fG )  FROM THE DOA OF SIGNAL AND INTERFERENCE. 

Element’s 
number 

dG  (dB) fG (dB) 

70 , 6s s      3 , 90i i       70 , 6s s      3 , 90i i      

1 -4.91 -0.40 -3.03 -0.48 
2 -2.84 -0.50 -2.53 -0.54 
3 -3.62 -0.24 -3.38 -0.53 
4 -3.56 -0.50 -0.81 -0.12 

 

(b). Output SINR versus the elements’ 
substrate's LT. 

 

(a). Output SINR versus the element 
1's substrate's RDP.  


