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Abstract.  In robot applications requiring interaction with a partially/unknown 

environment, mapping is of paramount importance. This paper presents an effective 

surface growing algorithm for map building based on laser scan generated point 

clouds. The algorithm directly converts a point cloud into a surface and normals 

form which sees a significant reduction in data size and is in a desirable format for 

planning the interaction with surfaces. It can be used in applications such as robotic 

cleaning, painting and welding. 
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1 Introduction 

Due to newly introduced OH&S regulations, it is no longer desirable for humans to 

perform the highly necessary task of sandblasting to remove paint from metal 

structures such as bridges. Issues arise because of lead contaminated paints being 

removed and the likelihood of working in close proximity with asbestos. With the 

long-term health damage done by lead and asbestos being common knowledge 

there is motivation to perform a significant portion of this manual work with an 

autonomous system. 

  One of the major hurdles in building an autonomous system to work in an 

unknown or partially known environment is mapping. Data must be collected and 

subsequently processed into a format for use by the autonomous system and image 

rendering. Due to the abrasive and dusty nature of sandblasting it is not possible to 

build the environment map (i.e. surfaces of structural members) using traditional 



 
 
 
 
 
 
 

An Algorithm for Surface Growing from Laser Scan Generated Point Clouds   2 

techniques of lasers, cameras, infrared or sonar while blasting. This means that 

mapping of the environment and planning of robot paths and motion must be 

performed prior to the commencement of sandblasting. Due to time constraints 

where a sandblasted area requires painting within a couple of hours to avoid 

corrosion of the newly exposed metal, the time needed for mapping and planning 

must be kept to a minimum. The whole mapping process, from scanning an area 

from various locations, fusing the data, to generating surfaces which can be directly 

used for planning, control and collision detection, must be very fast and efficient. 

Therefore, an efficient 3D mapping technique is required. 

  This paper explores an efficient mapping algorithm for surface generation by 

using laser scanner data at a limited number of discrete positions in an environment 

(workspace) where a 6DOF robot arm is used for cleaning or painting. This 

algorithm allows for simplicity in gathering and fusing scanned data. Generated 

maps can be used for 3D path planning, collision detection and robot control. 

2 Related Works 

There has been work done in the past on semi-automated sandblasting systems [1, 

2]. However, the issue of mapping the environment/area to be sandblasted was 

excluded and direct tele-operation with a camera was opted for. These systems are 

reliant upon human control, based upon human decisions and hence require direct 

human supervision. 

  Much research has been performed on the creation of 3D CAD objects for CAM 

and painting with some CAD packages allowing point clouds to be imported and 

rendered. The generation of virtual objects from scans data is time consuming and 

the aim is to create enclosed objects. Software packages exist (Qhull) with the 

ability to wrap and render points into a convex hull shape. However simply 

rendering the surface is not sufficient for the application in this paper. Besides 

graphically representing an environment, the usefulness of the environment map in 

robot path and motion planning, collision detection/avoidance and control is also 

vital. 

  Current point cloud graphing methods such as marching cubes [3], tetrahedrons 

[4] and volumetric method [5] can produce complex detailed surfaces with millions 
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of triangles. Rendered images are optimised for display purposes but are not 

directly usable for planning and control. In order to identify significant surfaces 

additional processing is required. In general these methods have focused on 

creating hulls out of point clouds. However, for a robot system in complex 

structural environments, it is not possible to scan structures completely. Generally it 

is only possible to create an unwrapped 3D mesh shell which has no thickness. 

Processing must be directly on the point cloud with no assumptions on the number 

of view points or completeness of shape. Other work has been done on surface 

matching from a point cloud to create surfaces out of a point cloud [6]. This method 

however, is time consuming and can not be directly used for this application. 

  Research has also been performed on information-based visual multi-robot 

mapping [7]. Alternate techniques of 3D mapping are proposed with the focus upon 

collision avoidance, [8]. These algorithms are fast but they do not build a 3D map 

for navigation of an end effector over surfaces. There are 3D mapping techniques 

[9, 10] by integrating tilted 2D scan data. However these systems are expensive, 

meant for longer range and do not focus upon detailed surface interaction with the 

environment. Some theoretical algorithms which turn point clouds directly into a 

path [11] can not be directly utilised in this application. 

  Methods of facial recognition using Principal Component Analysis (PCA) have 

been examined [12, 13] as well as 2D position estimation using PCA [14]. PCA 

mathematical methods have been utilised in this paper to assist in the processing 

and reduction of 3D range data and to determine surfaces and normals. The aim for 

this present application is to map and work within the robot arm’s workspace at 

known discrete base positions, hence methods of localisation while mapping are left 

for future work. 

3 Sandblasting Environment and Scan Acquisition 

In this sandblasting application an autonomous system will work in the 

environment underneath bridges (Fig. 1a). Tracks will be placed on the scaffold in 

the channels between sets of two I-beams. A robot arm is mounted on a base 

platform which moves along the track. The developed 3D laser scanning tool maps 

the environment to be cleaned. 
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Fig. 1.  a) Actual I-beam channel requiring mapped and sandblasted (b) The autonomous 
system (left); (c) Laser mounted on a digital servo for high precision 3D scanning (right) 

  The 6DOF robot arm is able to move the end effector to various positions within 

its workspace (Fig. 1b). The 3D scanning operation is performed by a separate 

scanning tool developed from a 204000mm, -120°120° URG Hokuyo 2D laser 

scanner (URG-04LX) mounted on a high accuracy, repeatable digital servo (Fig. 

1c). The setup is inexpensive, easy to control and highly effective. 

  The laser scan produces a complete 2D range data set D at 10Hz. To minimise the 

error and noise, n scans are taken at each increment. Basic filtering is performed on 

the n range values dj by first removing q outliers from either side of the data set and 

then averaging the remaining n-2q values.  
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  After each scan is taken the servo is tilted by 1/3° through its -60°60° range 

(Fig. 2a). The tilt increment of 1/3° was chosen to parallel the 2D laser range 

scanner’s pan increments of 0.36° (Fig. 2b). It is desirable for the point cloud to be 

spaced relatively evenly between 2D scan sweep lines and next tilt angles (Fig. 2c). 

         

Fig. 2.  a) Tilt Scan (Side view): Increments of 1/3°; b) Pan Scan (Top view): Increments of 
0.36°; c) 3D Scan Points on wall at 1m range (within workspace): distance between points 
(o=points within circle radius µ; x=points outside circle) 

In a complete 2D scan the laser scanner determines the distance and angle to 

maximum of 768 points. The 120° range of the servo tilt system by increments of 

1/3° produces 360 scanning positions (≈0.5sec). At each robot arm pose 240° pan x 
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120° tilt scan at ranges 204000mm can be conducted to produce a maximum of 

276480 points in 3D space taking a maximum of 180sec. In each discrete platform 

position the several scans are taken to map the workspace. 

  During successive scan iteration, the previous scan generated point cloud is 

processed to determining a valid 3D map for virtual interaction and graphical 

output. The surfaces and identified important points, sections, features and corners 

can be used to plan an efficient collision free movement of the robot arm. 

4 The Surface Growing Algorithm 

Once the 3D point cloud has been attained the surface growing algorithm works 

towards creating a 3D occupancy grid, identifying important surface coverage 

points and generating bound planes. The algorithm is performed in several stages. 

First the workspace is divided into equally sized adjoining cubes; points are indexed 

to the cubes within which they exist. Points are then grouped around a randomly 

selected home point. The data is analysed to determine the plane of best fit for the 

points. This along with the normals is outputted. Then finally the planes and 

normals which make up the surfaces are displayed. 

4.1 Cubes Index 

Initially the workspace of the 6DOF robot arm is described by several hundred 

thousand raw data points in 3D space. This workspace is divided into adjoining 

cubes with dimensions µ. An index is developed of each cube and the points 

contained. Indexing is done very quickly taking less than a second for several 

hundred thousand points. This step reduced the time of the closest points search 

used in the next step, since searching is limited to the points in the current and 

surrounding indexed cubes. The cube index makes the calculation of the surfaces 

and the important points at least 10 times quicker. 

4.2 Growing Surfaces 

The first step is to randomly select a point which is then called the home point. Then 

use the cube matrix to search the enclosing 1 and surrounding 26 cubes (Fig. 3a and 
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3b) and find a set of points, P, within a certain distance, µ, from the initial home 

points (Fig. 3c). Searching the 3D cube matrix rather than the entire workspace 

reduces the calculation time to microseconds rather than seconds. 

       (a)                     (b)                    (c)                   (d) 

Fig. 3.  a) Home point somewhere in center cube; b) Determine the distance to points with a 

cube index of the home point (red) or within surrounding 26 cubes; c) Do PCA on points 

within µ of home point to get plane; d) Register points within ±µ of the plane 

  If there are enough points within the volume surrounding the home point 

(V=4/3πµ3mm), then PCA is performed on these points (Fig. 3c). This involves 

determining the covariance matrix cov(P) for this set of 3D points and then 

evaluating the 3 eigenvectors vλ and corresponding eigenvalues λ. If there is a small 

enough correlation <α between an eigenvector and the remaining two then that 

eigenvector vmin(λ) is determined to be the normal to the data set .If there are enough 

points within µ of the home point and µ of the plane (Fig. 3d), plane equations, 

boundaries, enclosed points and home points are registered. 

If )(
1

)min( 


 mid  then  minvn 


 (2) 

  An attempt is made to register all points. However, if there are insufficient points 

within µ, of a home point, then this home point will not be registered and is 

considered scanner noise. The output of this step is a number of planes (Fig. 3d).  

4.3 Graphical Output 

The planes generated can be directly used for robotic planning and collision 

detection. For the purposes of creating a graphical representation of the 

environment, the surfaces of structural members are built based upon these planes. 

As identified, rendering surfaces from point clouds has been extensively examined 

by other researchers. Conversely this Surface Growing algorithm’s aim is to 

identify surfaces to interact with from a point cloud. 
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  Initially a single set of points representing the surface of a sphere radius µ is 

determined (Fig. 4a). For each identified plane, shift the point-represented sphere to 

have the centre at the home point and determine the points of the sphere within a 

threshold of the plane (Fig. 4b). Finally draw a disk from the points within the 

threshold and the plane’s normal vector from the home point (Fig. 4c). The 

culmination of disks, the graphical output, is shown in section 5.3. 

(a)  (b)  (c)  

Fig. 4.  Graphing algorithm’s output planes to display surfaces: a) Point cloud represents the 
surface of a sphere with the center at home point; b) Determine pts lying ≈ on the plane; c) 
Use points to display an approx. disk 

 

4.4 Important Characteristics of the Algorithm 

This algorithm combines different mathematical techniques such as 3D occupancy 

grids, principal component analysis on 3D data and point cloud analysis to create a 

novel solution to this surface growing problem. It achieves speed by a simple yet 

effective method, and is able to output results in a format optimised to meet the 

requirements of the specified application. 

5 Results and Discussion 

This section explains the application specific thresholds and the testing of the 

algorithm. The results are examined including plane/point registration, timing and 

memory reduction. Finally the usages of the algorithm outputs are discussed. 

5.1 Application Specific Thresholds 

There are several important thresholds that need to be calculated for this specific 

application. Firstly, based upon likely data produced by the laser scanning tool in 

the sandblasting environment the optimal value for µ was determined.  µ is used 

for: the dimensions of cubes that divide the workspace; the radius of the closet 

points sphere used to find the surface and the maximum distance from the points to 

the surface. Fig. 5.1 describes how computational time, number of planes and 
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percentage of point registered vary for µ=150mm. These functions are optimised 

so as to achieve: the minimum time, maximum number of planes and maximum 

percentage registered. It was found that µ=12mm produced the best results. Other 

considerations included the maximum possible cubes enclosed in a workspace, the 

specified laser scanner error (±10mm), the output of surfaces for planning and the 

sandblasting nozzle which outputs a blast stream covering a radius of 515mm. 
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Fig. 5.  (1) With respect to µ(mm) (a) ∆ time; (b) No. of planes; (c) Points registered (%) 

        (2) With respect to min(pts); (a) ∆ time; (b) No. of planes ; (c) Points registered (%) 

  The other value that needs to be empirically evaluated was the minimum number 

of points, min(pts), that constitute a plane. Insufficient points result in planes 

created at incorrect angles since there are too few points to correctly perform 

Principle Component Analysis (PCA) upon. Requiring an excessive number of 

points results in difficulties in point registration, gaps in the surface and time 

inefficiency. Fig. 5.2 shows how the time, number of planes and percentage of point 

registered changes with different values of min(pts). The graphically displayed 

functions were optimised to determine the maximum possible min(pts), which 

results in the maximum planes and percentage of point registration, while 

minimizing time. The optimal result was determined to be min(pts) = 10 points. 

Additionally, by reexamining Fig. 2a and 2b and considering that the radius of the 

workspace is approximately 1000mm, the grid of points are about 5mm apart at this 

distance.  Fig. 2c shows the point grid with greater than 10 points around the centre 

home point for µ=12mm anywhere within the workspace range.  

(1) (2)

a)

b)

c)
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5.2 Testing overview 

This section shows results from tests on different working environments with 

different volumes of scan data. This allows for comparisons of the output, the time 

taken, the percentage of points registered and the quality of surfaces created. 

Quality is based upon comparisons between the generated surface and the actual 

surfaces from the environment. An in-depth test case is presented to highlight the 

methods. Following this are the results of 50 test cases as well as a breakdown of the 

timing of the entire process. This includes: initial scanning; fusion of data from 

several locations; division into 3D cubes, numerical analysis to minimise points, 

grow surfaces/normals; then finally rendering and graphing an output for the user. 

5.3 In Depth Case Study 

This test case is on an I-beam channel structure including features (corners, I-beam 

webs etc). Several scans are taken from the underneath side of the I-beam channel 

(Fig. 6a) to generate a point cloud (Fig. 6b). Table 1 shows the details of this case 

study. The Surface Growing algorithm was performed and the outputs displayed 

using the technique described. Fig. 6d shows the front view with a close-up showing 

the normals (Fig. 6e). Fig. 6c shows a side view of surfaces created with a close-up 

of the plotted planes (disks) in Fig. 6f. 

Table 1.  Details Of Scanning And Surface Growing Times (sec) 

No. Pts Scans Scan Time Fusion Time Process Time Graph Time Planes 

75K 5 112.1 3 21.2 2.8 1975 

 a)   b)   c)  

d)    e)   f)  

Fig. 6.  a) Photo of structure; b) Fused raw data point cloud; c) bottom right view; d) Front 

view of planes created; e) Expanded view of the corner; f) front - showing normals (red lines) 

10mm
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5.4 Overall Results 

This section shows the results of 50 tests. Data was collected by scanning different 

structures with the identified workspace size several times, fusing the data, and 

using the Surface Growing algorithm to process this data. The results (Fig. 8a) show 

the overall algorithm time spent for the processing over the different number of 

points. Fig. 8b shows the resulting number of planes produced, the percentage of 

point registered stayed above 99% across the tests. The processing of the data also 

significantly reduces the amount of data needed to describe the surface sufficiently 

(turning 100000 scanned {x,y,z} points into 2000 surfaces is a data reduction > 

1/20) Fig. 8c shows the reduction in data from the testing results. 
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Fig. 8.  Results for increasing No. of initial points; a) Overall time (grey) and the trend line 
(black); b) No. planes; c) Data reduction: original (red *) and post processing (blue o) 

  Fig. 7 shows the overall breakdown of the total time. It is obvious how the data 

acquisition time is significantly more time consuming than the other steps in the 

process. Once the scan data is acquired it can be processed while the next 

acquisition is being performed. 

5.5 Discussion - Scanning and Surface Growing Output 

This algorithm is particularly useful in autonomous structural maintenance system 

since there are various ways that the output of this algorithm can be applied, 

including in path planning and motion planning, collision avoidance and as part of 

the next best possible view by providing 3D occupancy grids. 

  Initially a complete 3D environment map is not available but there are several 

Next Best View (NBV) algorithms [15] that could be used to determine the laser 

scanning tool’s position for the next scan. Inverse kinematics is used to determine 

a) 

b) 

c) 

     _____   

Cube Dividing:0.3%

Plotting:1.5%

Surface Making:21.8%

Acquisition:76.4%

Fig. 7.  Overall time breakdown averaged over 
all tests 
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the 6DOF robot arm pose such that the end effector has a desired position and 

bearing. The 3D occupancy grid can be used to check if the robot arm in that 

configuration collides with any points generated from initial scans [16]. If there is 

an impending collision then it is not a valid pose and if all poses to reach an 

identified NBV are exhausted then it is not a valid NBV. Hence, poses where the 

robot arm will collide with some identified, but as yet partially processed points, are 

discarded in exchange for another NBV pose. 

  Another way which the output of this algorithm can be used is in path planning. 

Since the entire area needs to be covered during sandblasting or painting, this 

algorithm outputs a set of important discrete goal points on the surfaces that would 

cover the entire known surface. Those goal points can be directly used in path 

planning which determines the path of the robot arm to follow. The Surface 

Growing algorithm also outputs the normals to these points which the end effector 

must align to within a certain angle (5° to 40° to the normal) in order to optimise the 

blasted surface quality 

  The output can also be used in collision detection by applying spherical approach 

to represent the robot arm and surfaces with a set of spheres with center at the home 

point and radius of µ. This significantly simplifies closest surface calculations and 

ultimately collision detection calculations. 

Conclusions 

The surface growing algorithm presented in this paper fulfils the requirement of 

providing useful maps of a partially known or unknown environment consisting of 

various structural members. It has the ability to transform unstructured 3D points, 

gathered and fused from multiple laser scans, into a useable format for interaction 

with surfaces in the environment. It creates 3D occupancy grids, identify important 

points, normals and bound planes. This can be directly outputted for robot arm path 

planning and motion control. 

Future work will involve integration with 3D path planning and collision detection 

between the robot arm and the environment, and the incorporation of a more 

advanced method of rendering the output for graphical display 
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