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ABSTRACT 1 

Chlorophyll-a measurements in the form of in situ observations and satellite ocean 2 

colour products are commonly used in data assimilation to calibrate marine 3 

biogeochemical models. Here, a two size-class phytoplankton biogeochemical model, 4 

with a 0D configuration, was used to simulate the surface chlorophyll-a dynamics 5 

(simulated surface Chl-a) for cyclonic and anticyclonic eddies off East Australia. An 6 

optical model was then used to calculate the inherent optical properties from the 7 

simulation and convert them into remote-sensing reflectance (Rrs). Subsequently, Rrs 8 

was used to produce a satellite-like estimate of the simulated surface Chl-a 9 

concentrations through the MODIS OC3M algorithm (simulated OC3M Chl-a). 10 

Identical parameter optimisation experiments were performed through the 11 

assimilation of the two separate datasets (simulated surface Chl-a and simulated 12 

OC3M Chl-a), with the purpose of investigating the contrasting information content 13 

of simulated surface Chl-a and remotely-sensed data sources. The results we present 14 

are based on the analysis of the distribution of a cost function, varying four 15 

parameters of the biogeochemical model. In our idealised experiments the OC3M 16 

algorithm underestimates the simulated chlorophyll-a concentration in offshore eddies 17 

off East Australia (Case I waters), because of the weak relationship between large-18 

sized phytoplankton and remote-sensing reflectance. Although Case I waters are 19 

usually characteristic of oligotrophic environments, with a photosynthetic community 20 

typically represented by relatively small-sized phytoplankton, mesoscale features such 21 

as eddies can generate seasonally favourable conditions for a photosynthetic 22 

community with a greater proportion of large phytoplankton cells. Furthermore, our 23 

results show that in mesoscale features such as eddies, in situ chlorophyll-a 24 

observations and the ocean colour products can carry different information related to 25 

phytoplankton sizes. Assimilating both remote-sensing reflectance and measurements 26 

of in situ chlorophyll-a concentration reduces the uncertainty of the parameter values 27 

more than either data set alone, thus reducing the spread of acceptable solutions, 28 

giving an improved simulation of the natural environment.  29 

  30 
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1. INTRODUCTION 1 

 2 

Satellite sensors measuring radiance in the visible range such as MERIS, 3 

OLCI, SeaWiFS and MODIS provide useful ocean color data to support the marine 4 

sciences community (McClain, 2009; Antoine et al., 2014). Such datasets can be used 5 

to estimate surface ocean circulation patterns (Barton, 2002; Pegau et al., 2002), 6 

phytoplankton primary production (Longhurst et al., 1995; Carr et al., 2006) and to 7 

investigate upwelling regions (Poulain et al., 2004; Farikou et al., 2015). Furthermore, 8 

the satellite ocean color data can be used to estimate chlorophyll-a concentrations 9 

(Chl-a), which is often used to calibrate biogeochemical models, optimizing their 10 

biological parameters (Hemmings et al., 2003; Laiolo et al., 2016). 11 

Radiance measured at the satellite sensor comprises the combination of 12 

surface-reflected radiance, water-leaving radiance and atmospheric radiance 13 

(Robinson, 2004). The only component that provides information on ocean properties, 14 

such as Chl-a concentration, is the water-leaving radiance; therefore corrections are 15 

applied to remove atmospheric and surface-reflected radiance components from the 16 

water upwelled signal (e.g. Schroeder et al., 2007). The intensity and spectral 17 

characteristics of the water-leaving radiance are determined by the scattering and 18 

absorption properties of the water, dissolved matter, and particulates in the water, 19 

including organic and inorganic components (e.g. Kirk, 1983; Gordon et al., 1988; 20 

IOCCG, 2006). The optical properties of all these elements define the inherent optical 21 

properties (IOPs) of the water column (Dickey et al., 2006). Specifically, light can be 22 

absorbed or scattered: while scattering is the physical process that deviates the angle 23 

of the photon path, absorption removes photons permanently from their path (Dickey 24 

et al., 2006). The absorption process is fundamental for phytoplankton 25 

photosynthesis, allowing phytoplankton to synthesize organic compounds from 26 

inorganic carbon dioxide (CO2) and nutrients, providing organic matter, directly or 27 

indirectly, for almost all marine life (Falkowski, 2012). The measures of absorption 28 

and scattering commonly used are absorption (a) and scattering (b) coefficients. The 29 

relationship between the scattering coefficient in a backward direction (backscattering 30 

coefficient, bb) and absorption coefficient is used to estimate remote-sensing 31 

reflectance (Rrs) (i.e., 𝑅rs ∝
𝑏 𝑏

𝑎 +𝑏 𝑏
).  32 

Phytoplankton absorption spectra vary in magnitude and shape due to the 33 
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different pigment composition and packaging (Bidigare et al., 1990; Bricaud and 1 

Stramski, 1990; Hoepffner and Sathyendranath, 1991; Ciotti et al., 2002; Lewis, and 2 

Cullen, 2002; A. Bricaud et al., 2004). The increase in cellular pigment concentration 3 

and cell size, i.e. packaging effect, flattens the specific absorption spectra (Duysens, 4 

1956; Kirk, 1976; Morel and Bricaud, 1981). Due to strong absorptive properties and 5 

high water content in phytoplankton cells, their scattering coefficients are relatively 6 

low (Aas, 1996). Because of the high ratio between cell size and wavelength, forward 7 

scattering dominates over scattering in the backward direction (Volten et al., 1998). 8 

Scattering and backscattering coefficients of phytoplankton are highly dependent on 9 

size, shape and refractive index of components of the phytoplankton cell (Jonasz and 10 

Fournier, 2007; Sullivan and Twardowski, 2009; Volten et al., 1998; Witkowski et al., 11 

1998). 12 

Marine biogeochemical models are useful tools that help to understand, 13 

conceptualize and predict marine environmental processes, including phytoplankton 14 

dynamics, represented in the basic Nutrient, Phytoplankton, Zooplankton and Detritus 15 

(NPZD) structure of these models (Fennel and Neumann, 2004). Marine 16 

biogeochemical models usually comprise numerous parameters and estimating their 17 

values is a non-linear problem (Matear, 1995; Athias et al., 2000; Jones et al., 2016). 18 

Thanks to their continuous acquisition and spatial coverage, ocean color data are 19 

particularly suitable for data assimilation in marine biogeochemical models, with 20 

most studies using remotely-sensed Chl-a as the product to assimilate.  21 

Data assimilation (DA) is a useful process that combines observations and 22 

models to estimate variables. In the biogeochemical modelling space there are two 23 

uses of DA, state estimation and parameter estimation. In state estimation, DA is 24 

performed to improve the predictive power of models. In this approach the state 25 

variables are modified to fit the observations and produce a more realistic evolution of 26 

the ocean state (e.g. Shulman et al., 2013; Teruzzi et al., 2014; Ciavatta et al., 2016). 27 

A more common application of DA in biogeochemical modeling is related to 28 

optimization of parameters. In this case the model parameters are modified to fit the 29 

constraints (e.g. Doron et al., 2013; Laiolo et al., 2016; Gharamti et al., 2017). The 30 

parameter optimization involves usually three main steps: (1) running the model 31 

forward in time, (2) comparing simulation results with the observations through a cost 32 

function to quantify the differences between the two datasets, and (3) modifying the 33 

parameter values accordingly until the best fit to the data is obtained (i.e. minimize 34 
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the cost function value). Ocean color DA is a field in development that can improve 1 

the accuracy of biological variables in marine biogeochemical models. While 2 

analyzing or assimilating ocean color data is feasible, it is essential to consider the 3 

complexity and variability of the bio-optical properties that comprise the water-4 

leaving radiance and the derived Chl-a data (Babin et al., 2003; Oubelkheir et al., 5 

2006). Indeed, in open ocean waters (i.e. Case I waters), the complexity and 6 

variability of bio-optical properties decrease the accuracy of satellite data products of 7 

up to ± 5% for water-leaving radiance and ± 35% for the corresponding Chl-a product 8 

(McClain, 2009). Furthermore, on a global scale, there is a non-uniform distribution 9 

of accuracy in the derived Chl-a concentration, with a significant error increase in 10 

coastal waters (i.e. Case II waters, Odermatt et al., 2012). Marine biogeochemical DA 11 

is now moving beyond the assimilation of Chl-a derived from remotely sensed ocean 12 

colour. Jones et al. (2016) have already shown that in a coastal domain (Case II 13 

water), assimilating a combination of remote-sensing reflectance wavebands leads to 14 

a significant improvement over assimilating ocean colour derived Chl-a.  15 

 16 

1.1. Model simulations to understand observation platforms 17 

In this study, we exploit the recent development of optical models linked to 18 

phytoplankton dynamics (e.g. Dutkiewicz et al., 2015; Baird et al., 2016; Jones et al., 19 

2016), presenting an idealized study for East Australia open ocean (Case I) waters. 20 

Specifically, we used a two phytoplankton size class dependent biogeochemical 21 

model (Environmental Modeling Suite, EMS), with a 0D configuration, to simulate 22 

Chl-a dynamics from a published set of parameter values (hereafter ‘original 23 

parameter set’, Table 2; Laiolo et al., 2016) in cyclonic and anticyclonic eddies off 24 

East Australia. We called the obtained synthetic dataset “simulated surface Chl-a” 25 

(Fig. 1a). We then use the same output from EMS to obtain the IOPs and the 26 

corresponding Rrs through an optical model (Appendix; Baird et al., 2016). Rrs was 27 

converted to Chl-a concentration through the OC3M algorithm (Moderate Resolution 28 

Imaging Spectroradiometer or MODIS, three band Chl-a algorithm; 29 

https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/#sec_2; O'Reilly et al., 1998), obtaining 30 

a satellite-like Chl-a product that we called “simulated OC3M Chl-a” (Fig. 1a). We 31 

explore the properties of the synthetic datasets obtained evaluating a defined cost 32 

function in a DA parameter optimization problem. Twin experiments were performed 33 

(Fig. 1b) in which, with perturbed parameter values, we investigated the ability of the 34 

https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/#sec_2
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DA system to recover the parameter values from an unperturbed EMS simulation. 1 

 2 

2. MATERIALS AND METHODS 3 

 4 

2.1. Study Region and Biogeochemical Model Description  5 

The region selected for this study is located in the eastern Australian ocean, 6 

between 30◦ and 40◦S and 150◦ and 160◦E (Fig. 2). This area is crucial for Australia’s 7 

marine ecology and economy, fisheries and tourism (Hobday and Hartmann, 2006; 8 

Brieva et al., 2015). Furthermore, it is strongly influenced by the major western 9 

boundary current of the South Pacific, the Eastern Australian Current (EAC) (Mata et 10 

al., 2000; Ridgway and Dunn 2003). The EAC originates from the warm oligotrophic 11 

waters of the Coral Sea and during its southward flow forms eddies that stimulate 12 

phytoplankton growth and enhance primary production (Falkowski et al., 1991; 13 

Hassler et al., 2010; Doblin et al., 2016). These phenomena are particularly intense in 14 

the area we selected (Ridgway and Dunn, 2003).  15 

A marine Nutrient, Phytoplankton, Zooplankton and Detritus (NPZD) 16 

biogeochemical model, EMS, was used in this study. It was developed to couple 17 

physical, chemical, and biological processes (CSIRO Coastal Environmental 18 

Modelling Team, 2014; 19 

http://www.emg.cmar.csiro.au/www/en/emg/software/EMS.html). For this study, 20 

EMS was set up with the same structure as used in Laiolo et al. (2016), with a 0D 21 

configuration, two phytoplankton and zooplankton size dependent classes 22 

characterized by a variable C:Chl-a ratio (Baird et al., 2013). Forcing functions 23 

driving the phytoplankton dynamics, and therefore the total Chl-a, were the 24 

temperature within the mixed layer and nutrients below the mixed layer, both 25 

acquired from the CSIRO Atlas of Regional Seas dataset (CARS; 26 

http://www.marine.csiro.au/~dunn/cars2009/; Ridgway et al., 2002). Surface incident 27 

irradiance was obtained from the seasonal climatology of the selected study area 28 

(Large and Yeager, 2008). EMS was configured as 0D, representing a well-mixed 29 

mixed layer depth; therefore, biological components were considered as 30 

concentrations equally distributed within this layer. 31 

 32 

http://www.emg.cmar.csiro.au/www/en/emg/software/EMS.html
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2.2. Simulated surface Chlorophyll-a and simulated OC3M Chlorophyll-a 1 

synthetic dataset 2 

To obtain the simulated surface Chl-a synthetic dataset two distinct EMS 3 

simulations were carried out. Following Laiolo et al. (2016), EMS was configured 4 

with two phytoplankton size classes (2 μm and 40 μm diameter), to simulate the 5 

typical Chl-a seasonal dynamics in a cyclonic (CE) and anticyclonic eddy (ACE) off 6 

East Australia (Table 2; Fig. 3a, b). CE and ACE are two ideal case studies as they 7 

represent two distinct environments with different phytoplankton dynamics and 8 

concentrations (Fig. 3a, b; Angel and Fasham, 1983; Moore et al., 2007; Laiolo et al., 9 

2016). Once the CE and ACE Chl-a time-series were extracted from the EMS 10 

simulations, it was possible to calculate the corresponding Rrs, based on optical model 11 

presented in Baird et al. (2016). The optical model performance has been previously 12 

assessed with MODIS Rrs in an area adjacent to the East Australia study region (i.e., 13 

Great Barrier Reef; Baird et al., 2016). First, the IOPs were computed from the state 14 

variables (e.g. Chl-a concentration) and model parameters (e.g. cell dimension). Then 15 

the apparent optical properties (AOPs) including Rrs were calculated through the 16 

relationship with backscattering and absorption coefficients (i.e., 𝑅rs ∝
𝑏 𝑏

𝑎 +𝑏 𝑏
) (Fig. 17 

1b; Baird et al., 2016). Additional details about the optical model calculations of IOPs 18 

and Rrs are given in the Appendix. To explore the relationship between EMS 19 

phytoplankton biomass and corresponding Rrs, we set up the optical model to take into 20 

account both absorption and scattering for pure seawater and phytoplankton cells. 21 

Because our study area covers only Case I waters, where phytoplankton is the main 22 

component responsible for variations in optical properties (Gordon and Morel 1983; 23 

Morel and Prieur 1977; Mobley et al., 2004), other optically significant seawater 24 

constituents such as coloured dissolved organic matter (CDOM), non-algal 25 

particulates (NAP) and benthic reflectance were not considered.  26 

The Rrs time-series was then used to obtain the simulated OC3M Chl-a 27 

product, following the OC3M algorithm 28 

(https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/#sec_2; O'Reilly et al., 1998). The 29 

NASA OC3M algorithm consists of a fourth-order polynomial relationship between 30 

logarithms of Rrs ratios and Chl-a: 31 

log10(Chl-𝑎) = 𝑎0 + ∑ 𝑎i
4
i=1 (log10 (

max (𝑅rs(443),   𝑅rs(488)

𝑅rs(551)
))

𝑖

  (1) 32 

where ai is a sensor specific coefficient (MODIS: a0= 0.2424, a1=-2.7423, a2=1.8017, 33 

https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/#sec_2
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a3=0.0015, a4=-1.2280), Rrs(443), Rrs(488) and Rrs(551) represent remote sensing 1 

reflectance at 443 nm, 488 nm and 551 nm respectively.  2 

 3 

2.3. Settings of the twin experiments 4 

Twin experiments are used to assess the ability of a data assimilation system 5 

to recover model parameter values from model output (e.g. Kidston et al., 2011). In 6 

this study we conducted four twin experiments in total. For both ACE and CE, we 7 

recover the original parameter values from (1) the simulated surface Chl-a and (2) 8 

from the simulated OC3M Chl-a dataset (Fig. 1b). To recover the model parameter 9 

values we used a conjugate gradient algorithm, used to solve optimization problems 10 

with marine biogeochemical models (Fasham et al., 1995; Evans, 1999). The 11 

simulated surface Chl-a and simulated OC3M Chl-a datasets were assimilated in 12 

separate experiments changing two parameters simultaneously for each experiment. 13 

The purpose of these experiments was to investigate the information content of the 14 

two synthetic datasets in relation with the optimized parameters. 15 

As Laiolo et al. (2016) showed, the information content of the Chl-a data is 16 

insufficient to constrain all parameters in EMS (104 in total), so we chose a sub-set of 17 

parameters to test the ability to recover the solution when uncertainty is included in 18 

the input dataset (i.e. ± 10% for simulated OC3M Chl-a, as we are using two 19 

wavelengths, equation (1), McClain, 2009; and ± 5% for simulated surface Chl-a 20 

based on Hooker et al., 2012). The key processes that control the evolution of 21 

phytoplankton concentration are phytoplankton growth, mortality and zooplankton 22 

grazing. Phytoplankton growth is generally determined from the availability of light 23 

and nutrients while the two biological parameters that largely determine the 24 

phytoplankton dynamics are the phytoplankton mortality and grazing rate (Laiolo et 25 

al., 2016). Therefore, the sub-set of parameters included phytoplankton natural 26 

mortality rate and zooplankton prey capture rate for both small and large size classes 27 

(i.e. four parameters in total). Furthermore, selecting parameters that affect the two 28 

phytoplankton size classes dynamics allowed us to explore the relation between 29 

phytoplankton sizes with simulated surface Chl-a and the simulated OC3M Chl-a. 30 

To quantify the difference between the Chl-a synthetic dataset obtained with 31 

the ‘original parameter set’ and the Chl-a dynamics from the twin experiments (Fig. 32 

1b), a cost function (x) was defined as: 33 
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 𝑥 =
1

𝑁
∑

(ln 𝑇𝑅𝑈𝐸_𝑀𝑂𝐷𝑡−ln 𝐷𝐴_𝑀𝑂𝐷𝑡)2

(ln 𝐷𝐴_𝑀𝑂𝐷𝑡∙(𝑒𝑟𝑟 %/100))2
𝑇
 𝑡=1      (2) 1 

where TRUE_MODt represents the Chl-a value at day t of Chl-a dataset obtained with 2 

the ‘original parameter set’ which ranged from 1 to 365 (number of days in a year), 3 

DA_MODt the Chl-a value of the DA simulated data at day t, err% is the accuracy of 4 

the selected dataset and N represents the degrees of freedom (i.e. N = 364). The 5 

logarithmic transformation was applied to achieve normal distribution of the Chl-a 6 

concentrations around the mean seasonal value. Furthermore, to assess that the mean 7 

of the Chl-a dataset obtained with the ‘original parameter set’ and the mean of the 8 

Chl-a dynamics from the DA experiments were consistent, we defined (α) as:  9 

 𝛼 =
(ln 𝑇𝑅𝑈𝐸_𝑀𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − ln 𝐷𝐴_𝑀𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2

𝛿2

𝑁

      (3) 10 

where 𝑇𝑅𝑈𝐸_𝑀𝑂𝐷 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝐷𝐴_𝑀𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represent the mean of the Chl-a dataset obtained 11 

with the ‘original parameter set’ and the mean of the DA simulated Chl-a dataset; N 12 

represents the degrees of freedom (i.e. N = 364) and; δ is a measure of the dataset 13 

accuracy:  14 

 δ = ln 𝐷𝐴_𝑀𝑂𝐷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∙ (err %/100)      (4) 15 

An acceptable fit to the dataset was considered when both (2) and (3) have 16 

values of approximately equal to one or less. To illustrate the relationship between the 17 

two datasets and the selected parameters, we plot our results in the form of cost 18 

function distribution diagrams (e.g. Dowd, 2011), with a final cost function value 19 

calculated as the sum of the quantities defined in equation (2) and (3): 20 

𝐶𝑂𝑆𝑇 = 𝑥 + 𝛼        (5) 21 

To produce these diagrams, the analyzed parameters were subjected to a range of 22 

perturbations (i.e. ± 40% from the ‘original parameter set’ value). 23 

 24 

3. RESULTS  25 

 26 

3.1. Simulated surface Chlorophyll-a and simulated OC3M Chlorophyll-a 27 

dataset 28 

Simulations were undertaken with environments (temperature, mixed layer 29 

depth) characteristic of cold-core eddies (CE) and warm-core eddies (ACE). As 30 

expected, the simulations produced higher total Chl-a in the CE compared to the ACE 31 

environment, with a generally greater Chl-a in the large phytoplankton class than the 32 
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small size class (Fig. 3a, b). In our idealized experiment, the comparison of the 1 

simulated surface Chl-a with the simulated OC3M Chl-a showed significant 2 

differences in their seasonal cycle: for both CE and ACE the OC3M algorithm 3 

underestimated the simulated surface Chl-a concentration throughout the entire year 4 

(Fig. 3a – d). To separate large and small phytoplankton signals in the simulated 5 

OC3M Chl-a (Fig. 3c and d) we first removed all optical factors related to only one 6 

phytoplankton size class from the EMS simulation. Then we calculate the optical 7 

properties and the Rrs related to the second phytoplankton class through the optical 8 

model. In the CE environment, the OC3M algorithm underestimated the mean 9 

simulated surface Chl-a by about a factor of three (mean simulated surface Chl-a = 10 

0.27 mg m-3; mean simulated OC3M Chl-a = 0.083 mg m-3), while in the ACE 11 

environment the OC3M algorithm underestimated the mean simulated surface Chl-a 12 

by a factor of two (mean simulated surface Chl-a = 0.20 mg m-3; mean simulated 13 

OC3M Chl-a = 0.077 mg m-3). Because the simulated OC3M Chl-a is a poor 14 

representation of the simulated surface Chl-a we did not perform twin experiments 15 

between these two synthetic datasets. When contrasting simulated OC3M Chl-a with 16 

simulated surface Chl-a we determined that they are linearly correlated for the small 17 

phytoplankton but uncorrelated for the large phytoplankton (Fig. 3e and f).  18 

 19 

3.2. Twin experiments 20 

To assess the information content of the simulated surface Chl-a and 21 

simulated OC3M Chl-a datasets we show how the cost function (5) varied as 22 

parameter values changed. The visualization of the cost function spread around the 23 

global minimum (i.e. cost function equal to zero, using the prescribed parameter 24 

values in Table 1) allowed us to better understand the relationship between 25 

parameters as well as the information content of the two different datasets that could 26 

be used to constrain the model.  27 

In Figure 4, as stated in the methods section 2.3, the acceptable region is based 28 

on a cost function value (5). The magnitude of the cost function was assessed in 29 

relation to several different parameter combinations. In Figure 4 the red and blue 30 

shaded areas shows the acceptable parameter values for simulated surface Chl-a and 31 

simulated OC3M Chl-a respectively; within this area, light blue and red show a cost 32 

function equal to one, highlighting local minima. Blue and red dashed lines show the 33 

simulated OC3M Chl-a and simulated surface Chl-a cost values respectively. An 34 
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acceptable solution should have a cost value that meets both (x)<1 and (α)<1, 1 

represented in the figures by values less than two for both simulated surface Chl-a 2 

and simulated OC3M Chl-a (shaded areas). The diagram axes show the parameters 3 

selected for the simulation used to evaluate the cost function and the perturbation 4 

applied to their original values (Table 2). The black circle in the centre of each panel 5 

shows the global minimum (i.e. parameter values used to generate the synthetic 6 

dataset to constrain the system, thus here the cost function equals zero).  7 

First, the large phytoplankton mortality and large zooplankton prey capture 8 

rate show similar patterns in the cost function values for simulated surface Chl-a and 9 

simulated OC3M Chl-a (Fig. 4a). Specifically, the simulated surface Chl-a region of 10 

acceptable parameter values is totally included inside the simulated OC3M Chl-a 11 

acceptable region, showing a tighter relationship between simulated surface Chl-a and 12 

parameters affecting large phytoplankton growth (Fig. 4a). Second, with small 13 

phytoplankton mortality and small zooplankton prey capture rate, the two different 14 

data constraints produce overlapping regions of acceptable parameter values (Fig. 4b) 15 

for both datasets (i.e. simulated surface Chl-a and simulated OC3M Chl-a). In this 16 

case, the simulated OC3M Chl-a region of acceptable parameter values is included 17 

inside the simulated surface Chl-a region, showing the OC3M Chl-a better constrains 18 

parameters affecting small phytoplankton growth (Fig. 4b). The region of acceptable 19 

parameter values span similar regions and the DA would not be able to determine 20 

unique values for both parameters (Fig. 4a and b). In summary, for large 21 

phytoplankton and zooplankton parameter combinations, simulated surface Chl-a 22 

more tightly constrains the acceptable parameter values than simulated OC3M Chl-a 23 

(compare size of red shaded area to blue shaded area; Fig. 4a). In contrast, for the 24 

small plankton parameters, simulated OC3M Chl-a more tightly constrains the 25 

acceptable parameter spread than the simulated surface Chl-a data (Fig. 4b). As both 26 

eddy environments show similar cost function distribution diagrams, here we show 27 

results related to CE only. 28 

We then explored cases where a combination of large and small plankton 29 

parameter values varied. First, we considered the case where small zooplankton prey 30 

capture rate and large phytoplankton natural mortality rate varied (Fig. 4c). The 31 

regions of acceptable parameters were different for the two datasets, with a small area 32 

of overlap that includes the global minimum (central area of Fig. 4c). Second, we 33 

considered the case where small phytoplankton natural mortality and large 34 
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zooplankton prey capture rate varied (Fig. 4d). Again the region of acceptable 1 

parameter values was different for simulated surface Chl-a and simulated OC3M Chl-2 

a (red versus blue shaded areas, respectively), with a small region of overlap 3 

matching the global minimum (Fig. 4c and d).  4 

In Figure 4c, to produce acceptable results that fit the simulated surface Chl-a 5 

(i.e. red area), the large phytoplankton natural mortality parameter value (Y axis) has 6 

to be tightly constrained (i.e. between -10% and +10%), while the parameter in the X 7 

axis (i.e. small zooplankton prey capture rate) does not have an impact on the cost 8 

function spread (its value can vary between -40% and +40% producing acceptable 9 

results). In the same subplot (Fig. 4c), if we consider the simulated OC3M Chl-a 10 

acceptable solution area instead (i.e. blue area), the small zooplankton prey capture 11 

rate (X axis) is more tightly constrained (between -40% and +10%) than the large 12 

phytoplankton natural mortality parameter (Y axis, between -40% and +40%). These 13 

features are consistent with all the subplots in Figure 4, suggesting that the simulated 14 

OC3M Chl-a better constrains the parameters affecting small phytoplankton dynamics 15 

while simulated surface Chl-a better constrains the parameters affecting large 16 

phytoplankton dynamics. This is consistent with the regions of acceptable parameters 17 

evident in Figure 4a and b.  18 

 19 

4. DISCUSSION 20 

The idealised twin experiments allowed us to investigate information content 21 

of two key data streams – in situ Chl-a and Chl-a derived from water leaving 22 

radiances. By comparing the model derived Chl-a with Chl-a computed from 23 

simulated water leaving radiances, we could investigate the resulting impact on key 24 

parameters in a biogeochemical model, and how it would impact parameter 25 

optimization using DA. By working with model simulations, as well as simulated in-26 

water IOPs from which it was possible to calculate Rrs and the corresponding OC3M 27 

Chl-a product, the phytoplankton dynamics in two different oceanic environments 28 

(CE and ACE) could be generated in a consistent manner. 29 

The first key point to emerge from our theoretical study was that the simulated 30 

OC3M Chl-a product was a poor proxy for the total simulated surface Chl-a 31 

concentration (Fig. 3a - d), suggesting that existing biogeochemical models that 32 

assimilate Chl-a from ocean colour data could have relatively large inaccuracies. For 33 

both CE and ACE simulations, the relationship between large phytoplankton Chl-a 34 
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and simulated OC3M Chl-a was poor, with the simulated OC3M Chl-a showing little 1 

sensitivity to the amount of simulated Chl-a in the large phytoplankton (Fig. 3c and 2 

d). The simulated OC3M Chl-a was unable to detect our large phytoplankton cells 3 

and this caused a large (up to 3 times) under-estimate of total Chl-a. In contrast, for 4 

the small phytoplankton cells the OC3M Chl-a was good estimator of simulated 5 

surface Chl-a. 6 

The second key point was that the simulated surface Chl-a better constrained 7 

parameters affecting large phytoplankton growth while simulated OC3M Chl-a better 8 

constrained parameters related to small phytoplankton dynamics (Fig. 4a and b). This 9 

suggests important features about the information that could be extracted from the 10 

two data streams, highlighting a stronger relationship between simulated surface Chl-11 

a with parameters affecting large phytoplankton dynamics, and simulated OC3M Chl-12 

a with parameters affecting small phytoplankton dynamics. 13 

The third key point to emerge when we tried to determine both small and large 14 

plankton parameters (Fig. 4c and d) was that simulated surface Chl-a and simulated 15 

OC3M Chl-a contained independent information and if applied together they could 16 

dramatically reduce the region of acceptable parameter solutions. Specifically, in a 17 

real world scenario, a combination between ocean colour data and in situ Chl-a 18 

concentration measurements could provide enough information for the DA to reduce 19 

the spread of acceptable solutions for both small and large plankton parameters. 20 

Indeed, for the cases considered here, the DA would find the global minimum, 21 

rejecting wide areas that could include several local minima (Fig. 4c and d). 22 

For our model setup we chose two phytoplankton size classes, where the 23 

radius of the large phytoplankton class was 20 times greater than the small 24 

phytoplankton class (2 and 40 μm diameter, respectively). Our choice of the size 25 

phytoplankton classes was based on eddies off East Australia (Laiolo et al., 2016). 26 

Furthermore, observations of phytoplankton concentrations in similar oligotrophic 27 

regions are consistent with this study, showing large phytoplankton (mainly diatoms) 28 

occurring within CE and higher concentrations of small phytoplankton including 29 

picocyanobacteria located in the surrounding oligotrophic waters (e.g. Jeffrey and 30 

Hallengraeff, 1980; Rodriguez et al., 2003; Vaillancourt et al., 2003; Brown et al., 31 

2008).  32 

While use of two size classes with 20 times difference in radius may 33 

accentuate the distinctive information carried by simulated surface Chl-a and 34 



 14 

simulated OC3M Chl-a, it is known that phytoplankton size influences the IOPs of 1 

the water column (Bricaud et al., 1995; Ciotti et al., 2002; Volten et al., 1998; Jonasz 2 

and Fournier, 2007; Mouw et al., 2012). Our theoretical study suggests a weak 3 

relationship between large sized phytoplankton (e.g., chain forming diatoms, 4 

dinoflagellates and colonial cyanobacteria) and Rrs, leading to an under-estimation of 5 

the satellite derived Chl-a concentration when large phytoplankton dominate the 6 

photosynthetic community (Fig. 3). The detected Rrs is a consequence of the IOPs of 7 

the water column or, in other words, the result of either light absorption and/or 8 

scattering in the water column (Dickey et al., 2006). To explore these properties in 9 

our study, we used the optical model of Baird et al. (2016) to assess how absorption 10 

and backscattering were responding to different Chl-a and carbon (C) ratios, while 11 

maintaining a constant Chl-a concentration (0.3 mg m-3) for both phytoplankton size 12 

classes (small = 2 μm and large = 40 μm) (Fig. 5).  13 

These analyses highlighted that for the small phytoplankton class, as C 14 

increases (i.e. increasing number of cells but same amount of total Chl-a 15 

concentration), there is a corresponding increase in both absorption (Fig. 5a) and 16 

backscatter (Fig. 5c) signals. While the increase in the backscatter signal is related to 17 

the higher C concentration (Fig. 5c), the slight increase in the absorption (Fig. 5a) is 18 

related to the packaging of pigments relative to the energy impinging on the 19 

geometric cross-section of the cell (i.e. package effect; Ciotti et al., 2002; Bricaud et 20 

al., 2004; Ciotti and Bricaud 2006; Astoreca et al., 2012). Therefore, due to the 21 

dimension of the phytoplankton cells the packing effect is less evident in the small 22 

phytoplankton class for different C:Chl-a concentrations. Conversely, for the large 23 

phytoplankton class different C:Chl-a have a smaller impact on the backscatter signal 24 

(Fig. 5d), due to the greater dimension of the phytoplankton cells, but a higher impact 25 

on the absorption coefficient (Fig. 5b), due to the reduced package effect caused by an 26 

higher number of larger phytoplankton cells. Because Rrs is derived from the 27 

relationship between absorption and backscatter ( 𝑅rs ∝
𝑏 𝑏

𝑎 +𝑏 𝑏
), Rrs for large 28 

phytoplankton was nearly independent of the C:Chl-a (Fig. 5f), while variable 29 

C:Chl‑a strongly influenced the Rrs for small phytoplankton, particularly in the blue 30 

region of the spectrum (Fig. 5e).  31 

As phytoplankton abundance increases, usually the proportion of larger 32 

phytoplankton cells rises (e.g. Fig. 3a and b) and both absorption and scattering 33 
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spectra are affected. Previous studies show the size of photosynthetic cells has a direct 1 

impact on the light absorption efficiency: bigger cells have a lower and spectrally 2 

flatter absorption coefficient when compared to smaller phytoplankton cells due to the 3 

packaging effect (Ciotti et al., 2002; Bricaud et al., 2004; Ciotti and Bricaud, 2006; 4 

Astoreca et al., 2012; Bricaud et al., 1995). This is consistent with results presented in 5 

Figure 5a and 5b. The package effect reduces absorption and can therefore increase 6 

the error of estimated Chl-a concentration from observed remote-sensing reflectance 7 

(Marra et al., 2007; Mouw et al., 2012). Much less is known about the backscattering 8 

of oceanic particles (portion of scattered photons that leave the water column and 9 

hence can be measured by satellite sensors) and its relationship with phytoplankton 10 

size (Morel and Maritorena, 2001). Factors such as cell shape and internal structure 11 

rather than cell size seem to have a bigger impact on backscattering efficiency than 12 

size alone (Vaillancourt et al., 2004). Our backscattering analyses are consistent with 13 

Stramski and Kiefer (1991), who demonstrated backscattering from Case I waters is 14 

dominated by small particles (less than 1 μm), with a much smaller backscattering 15 

contribution from cells larger than 8 μm. Our analyses therefore suggest that both 16 

absorption and scattering are involved in the weak Rrs signal generated from large 17 

phytoplankton cells. Lack of the other optically significant components (e.g. NAP and 18 

CDOM) in our model can also affect the results, however their influence on optical 19 

properties in the study region is minimal.  20 

Results presented in this study suggest that Chl-a concentration within open 21 

ocean mesoscale features, in CE in particular, could be higher than the estimated 22 

concentration from the ocean colour product calculated through the OC3M algorithm. 23 

This reflects a phytoplankton community composed mainly of relatively large 24 

photosynthetic cells such as diatoms, with direct implications on primary production 25 

estimates and biogeochemical cycles of different elements. In oligotrophic 26 

environments, like East Australia offshore waters, picophytoplankton (e.g. 27 

Prochlorococcus; Partensky et al., 1999) are often an important component of the 28 

phytoplankton community, however, eddies (CE in particular) can provide a 29 

favourable environment for the growth of larger phytoplankton (e.g. diatoms) 30 

(McGillicuddy and Robinson, 1997; Rodriguez et al., 2003; Vaillancourt et al., 2003; 31 

Brown et al., 2008; Doblin et al., 2016; Laiolo et al., 2016). Indeed, eddies are hot 32 

spots of biological activity, with cyclonic eddies alone enhancing the global primary 33 

production by 20% (Falkowski et al., 1991; McWilliams, 2008). The area we selected 34 
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for this study is strongly influenced by eddies that originate from the EAC: an average 1 

of 28 eddies with a minimum lifetime of 10 weeks occur every year in our study 2 

domain (calculated from Chelton et al., 2011 eddies database). Furthermore, in the 3 

same region, climate change projections reveal a strengthening of the EAC with a 4 

consequent increase in eddy phenomena (Matear et al., 2013). Surprisingly, recent 5 

studies show similar primary production (CE= 337 mg C m-2 d-1, ACE=272 mg C m-2 6 

d-1, calculated from Laiolo et al., 2016) and average Chl-a concentration (CE=0.30 7 

mg m-3, ACE=0.25 mg m-3; Everett et al., 2012; calculated from Chelton et al., 2011 8 

dataset) in eddies located in eastern Australian waters and the adjacent Tasman Sea, 9 

respectively. Both these studies (i.e. Everett et al., 2012 and Laiolo et al., 2016) used 10 

ocean colour data, therefore the similarities found in CE and ACE could be related to 11 

an underestimation of the Chl-a concentration in CE, associated with the typical 12 

higher abundance of large sized phytoplankton in these mesoscale features. Although 13 

it is well known that CE on their own enhance the global primary production by 14 

~20% (Falkowski et al., 1991; McWilliams, 2008), published observations that 15 

compare East Australia CE and ACE in situ primary productivity are not available 16 

yet.  17 

The notion that small celled phytoplankton dominate oligotrophic waters is 18 

clearly not representative of all open ocean systems. Nevertheless, all open ocean 19 

waters are categorised as Case I waters and the current MODIS OC3M algorithm 20 

converts Rrs from these waters to the Chl-a concentration product. Despite the area 21 

selected for this case study being located in open ocean waters, we focused only on 22 

mesoscale features, known to enhance phytoplankton growth in oligotrophic systems. 23 

Simulation and observational studies are consistent in showing that in oligotrophic 24 

waters, seasonal increases in Chl-a concentration are generally related to large-sized 25 

phytoplankton cells increasing within a background of smaller phytoplankton (e.g. 26 

McAndrew et al., 2007; Mouw et al., 2012). This behaviour is consistent with the 27 

phytoplankton dynamics in CE and ACE off East Australia (Doblin et al., 2016; 28 

Laiolo et al., 2016), suggesting that there could be an underestimation by the OC3M 29 

Chl-a concentration product across the global ocean (Case I waters) related to local 30 

and regional increases in the abundance of large sized phytoplankton abundance. 31 

 32 

5. CONCLUSION 33 
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Ocean colour data play a key role in informing and calibrating marine 1 

biogeochemical models through DA methods (Hemmings et al., 2003). For this study, 2 

the development of optical models linked to marine biogeochemical models (e.g. 3 

Baird et al., 2016; Jones et al., 2016), made it possible to explore properties of 4 

MODIS ocean colour data used for DA purposes. Our idealised experiments suggest 5 

that the OC3M algorithm can underestimate the Chl-a concentration in open ocean 6 

mesoscale features such as cyclonic (cold core) eddies, because of the weak 7 

reflectance signal from large sized phytoplankton classes such as diatoms, that are 8 

typically found within CE boundaries. For our idealized model setup where we 9 

consider two phytoplankton groups that have contrasting size (2 and 40 μm), the 10 

simulated surface Chl-a and simulated OC3M Chl-a data streams provide distinct 11 

information for the large and small phytoplankton dynamics respectively. While our 12 

model setup may be simplified compared to natural systems in that we only have two 13 

sizes of phytoplankton, it raises an important issue about the role of size on the 14 

conversion of remotely sensed reflectance to a chlorophyll-a product. 15 

  16 
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Tables 1 

Table 1: Abbreviations and symbols  2 

Abbreviations / Symbols Definition Unit 

EAC East Australian Current  

CE Cyclonic eddy  

ACE Anticyclonic eddy  

EMS Environmental Modelling Suite   

Chl-a Chlorophyll-a concentration  mg m-3 

C Carbon concentration mg m-3 

simulated OC3M Chl-a Satellite-like Chl-a product obtained 

from EMS output 

mg m-3 

simulated surface Chl-a In situ-like Chl-a measurements mg m-3 

IOPs Inherent optical properties  

AOPs Apparent optical properties  

Rrs Remote sensing reflectance sr-1 

a Absorption coefficient m-1 

bb Backscattering coefficient m-1 

OC3M Band ratio algorithm of Chl-a 

concentration for data from MODIS 

radiometer - equation (1) 

 

 3 

 4 

  5 
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Table 2: EMS ‘original parameter set’ for cyclonic eddy (CE) and anticyclonic eddy 1 

(ACE) used to obtain the simulated surface Chl-a dataset; Tref refers to reference 2 

temperature (Laiolo et al., 2016). The sub-set of parameters included in this study is 3 

composed of large phytoplankton natural (linear) mortality, small phytoplankton 4 

natural (linear) mortality rate, large zooplankton natural (quadratic) mortality and 5 

small zooplankton natural (quadratic) mortality. 6 

Parameter CE ACE Unit 

Large zooplankton growth efficiency 0.34 0.34  

Small zooplankton growth efficiency 0.30 0.29  

Large phytoplankton natural (linear) mortality rate 0.01 0.01 day−1 

Small phytoplankton natural (linear) mortality rate 0.02 0.02 day−1 

Large zooplankton natural (quadratic) mortality rate 0.8 0.35 (mmol N/m3)-1 day−1 

Small zooplankton natural (quadratic) mortality rate 0.35 0.35 (mmol N/m3)-1 day−1 

Large phytoplankton maximum growth rate at Tref 1.8 1.8 day−1 

Large phytoplankton cells diameter 40 40 μm 

Small phytoplankton maximum growth rate at Tref 1.0 1.0 day−1 

Small phytoplankton cells diameter 2 2 μm 

Small zooplankton maximum growth rate of at Tref 0.4 0.4 day−1 

Small zooplankton swimming velocity 0.0015 0.0016 m/s 

Large zooplankton maximum growth rate at Tref 0.90 0.4 day−1 

Large zooplankton swimming velocity 0.053 0.055 m/s 

Remineralization rate 0.10 0.10 day−1 

Sinking velocity 5.00 5.00 m/day 

 7 

  8 
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Figure captions 1 

Figure 1. Diagrams representing how the two synthetic datasets were created (panel 2 

a) and how the twin experiments were conducted (panel b). 3 

 4 

Figure 2. Australian region and the study area highlighted by the dashed line (150° E 5 

– 160° E; 30° S – 40° S). To illustrate the main features (cyclonic eddy CE, 6 

anticyclonic ACE, East Australian Current EAC) occurring in the study area, the 7 

satellite image of surface Chl-a calculated with OC3M algorithm using reflectance 8 

acquired with the MODIS radiometer (2nd April 2016) and the current pattern based 9 

on altimeter data is shown. Data source: Integrated Marine Observing System 10 

(http://oceancurrent.imos.org.au/oceancolour.php) 11 

 12 

Figure 3. Simulated seasonal climatology of total Chl-a concentration (solid black 13 

line), Chl-a in small phytoplankton (blue dotted) and Chl-a in large phytoplankton 14 

(red dashed line) for CE (a) and ACE (b) off East Australia. The green line represents 15 

seasonal climatology for CE (a) and ACE (b) off East Australia (Laiolo et al. 2016) 16 

calculated from GlobColour (25 km spatial resolution, 8-day average; 17 

http://hermes.acri.fr/index.php?class=archive), while the shaded green areas represent 18 

the corresponding standard deviation. The middle panel shows for the same 19 

simulations, the corresponding simulated OC3M Chl-a obtained from the Rrs 20 

calculated from the simulated surface Chl-a for the two phytoplankton classes (panels 21 

a and b) for CE (c) and ACE (d). Note there is a different scale on the Chl-a 22 

concentration between panel a - c and b - d. The lower panel compares the simulated 23 

surface Chl-a, with the corresponding simulated OC3M Chl-a for CE (e) and ACE (f). 24 

 25 

Figure 4. For various pairs of parameters, the region of parameter values that 26 

produced acceptable fits to the data. Here we show results for CE as similar plots 27 

were obtained for ACE. Black circles represent the global minimum, where the cost 28 

function is equal to zero. Red shaded areas represent acceptable solutions for the 29 

simulated surface Chl-a assimilation; within this area, light red shows cost function 30 

equal to one highlighting local minima. Red dashed lines show the simulated surface 31 

Chl-a cost values. Blue dashed lines and blue shaded areas show the simulated OC3M 32 

Chl-a cost values. Shaded blue areas represent acceptable solutions; within this area, 33 

http://hermes.acri.fr/index.php?class=archive
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light blue shows a cost function equal to one, highlighting local minima. Acceptable 1 

solutions (i.e. (x)<1 and (α)<1) are represented by values less than two. 2 

 3 

Figure 5. Absorption, backscattering and Rrs spectra of small (2 μm) (left column) 4 

and large (40 μm) (right column) phytoplankton classes for different ratios of 5 

phytoplankton Carbon (C) to Chl-a. The black lines represent a scenario with 0.3 mg 6 

m-3 of Chl-a and 6 mg m-3 C (C:Chl-a 20:1); the red lines represent a scenario with 7 

0.3 mg m-3 of Chl-a and 15 mg m-3 C (C:Chl-a 50:1); the green lines represent a 8 

scenario with 0.3 mg m-3 of Chl-a and 30 mg m-3 C (C:Chl-a 100:1); and the blue 9 

lines represent a scenario with 0.3 mg m-3 of Chl-a and 45 mg m-3 C (C:Chl-a 150:1). 10 

The amount of Chl-a and C in the left and right columns are equal and entirely 11 

distributed in the small phytoplankton class (left) or large phytoplankton class (right). 12 

Panels a and b show absorption spectra, panels c and d backscattering and panels e 13 

and f the Rrs for the two phytoplankton classes. 14 

  15 
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APPENDIX 1 

Bio-optical model 2 

First the IOPs (i.e., absorption, scattering and backscattering) of the water 3 

column are calculated from the model state variables and parameters. Then, the 4 

optical model solves for the AOPs including the remote-sensing reflectance (Rrs). Rrs 5 

at two wavelengths can then be processed through the OC3M algorithm to obtain an 6 

estimation of the Chl-a. 7 

 8 

Inherent optical properties (IOPs) 9 

Absorption coefficient. The absorption-cross section (α) of a spherical cell without 10 

considering internal scattering is given by (Duysens, 1956; Kirk, 1975): 11 

α = π𝑟2 (1 −
2(1−(1+2γ𝑐i𝑟)e−2γ𝑐i𝑟)

(2γ𝑐i𝑟)2 )    (a.1) 12 

where (r) represents the radius of cell, (γ) the pigment-specific absorption coefficient, 13 

(ci) the homogeneous intracellular pigment concentration. π𝑟2 is the projected area of 14 

a sphere and the bracketed term can range from 0 for no absorption (γ𝑐i𝑟 = 0) to 1 15 

when the cell is fully opaque (γcir → ∞). The total absorption (𝑎𝑇,λ), is given by: 16 

𝑎𝑇,λ =  𝑎𝑤,λ + ∑ 𝑛𝑥α𝑥,λ
𝑁
𝑥=1     (a.2) 17 

where 𝑎𝑤,λ represents clear water absorption, N the number of phytoplankton classes 18 

(in our case 𝑁 ≤ 2 large and small phytoplankton), 𝑛 the concentration of cells (cell 19 

m-3) and 𝛼λ the absorption cross-section (m2 cell-1).  20 

 21 

Scattering coefficient. The total scattering coefficient is given by: 22 

𝑏T,λ =  𝑏w,λ + 𝑏phy,λ ∑ 𝑛x𝑐i,x𝑉x
𝑁
𝑥=1    (a.3) 23 

𝑏w,λ is the scattering coefficient due to clear water, the phytoplankton scattering is the 24 

product of the Chl-a specific phytoplankton scattering coefficient (𝑏phy,λ) and the 25 

water column concentration of all classes (∑ 𝑛x𝑐i,x𝑉x
𝑁
𝑥=1 ), where N represents the 26 

number of phytoplankton classes, 𝑛 the concentration of cells (cell m-3), 𝑐i is the Chl-27 

a concentration in the cell and 𝑉 is the cell volume. The value for 𝑏phy,λ is set to 0.2 28 

(mg Chl-a m-2)-1 for all wavelengths, a typical value for marine phytoplankton (Kirk, 29 

1994).  30 

 31 
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Backscattering coefficient. Backscattering coefficient (bb) has a component due to 1 

pure seawater and a component due to particulates. The particulate component for 2 

phytoplankton is strongly related to cell carbon (and therefore cell size) and the 3 

number of cells (Vaillancourt et al., 2004): 4 

𝑏𝑏𝑝ℎ𝑦,λ
∗ = 5 × 10−15𝑚𝐶

1.002   (a.4) 5 

were 𝑚𝐶 is the carbon content of the cells, here in pg cell-1. The total backscatter then 6 

becomes: 7 

𝑏b,λ = �̃�w𝑏w,λ + 𝑏bphy,λ
∗ 𝑛    (a.5) 8 

where the backscatter ratio of pure seawater, (�̃�w is 0.5 and 𝑛 is the concentration of 9 

cells. 10 

 11 

Remote sensing reflectance (Rrs) 12 

To calculate the Rrs at the surface, we need to consider the light returning from 13 

multiple depths and the bottom. The ratio of the backscattering coefficient to the sum 14 

of backscattering and absorption coefficients for the whole water column, 𝑢λ, is: 15 

𝑢λ = ∑
𝑤

λ,z′𝑏
b,λ,z′

𝑎λ,z′+𝑏b,λ,z′
      (a.6) 16 

where 𝑤λ,z′ is a weighting representing the component of the Rrs due to the absorption 17 

and scattering at depth 𝑧′. 18 

𝑤λ,z =
1

𝑧1−𝑧0
(∫ exp(−2𝐾λ,z′)d𝑧′ − ∫ exp(−2𝐾λ,z′)d𝑧′z0

0

z1

0
) (a.7) 19 

=
1

𝑧1−𝑧0
∫ exp(−2𝐾λ,z′)d𝑧′z1

𝑧0
     (a.8) 20 

in this case, the integral of 𝑤λ,z to infinite depth is 1. In areas where light reaches the 21 

bottom, the integral of 𝑤λ,z to the bottom is less than one, and benthic reflectance is 22 

important. Note that the weighting of the surface expression of an IOP based on twice 23 

the vertical attenuation rate has been used in semi-analytical reflectance models (Lee 24 

et al., 2002), to consider the surface expression of depth-varying Chl-a concentration 25 

(Moline and Prezelin, 2000). 𝐾λ  represents the vertical attenuation coefficient at 26 

wavelength λ, the factor of 2 accounts for the pathlength of both downwelling and 27 

upwelling light. When considering absorption and scattering, 𝐾λ is given by: 28 

𝐾λ =
𝑎T,λ

cosθsw
√1 + (𝑔i + 𝑔iicosθsw)

𝑏T,λ

𝑎T,λ
   (a.9) 29 

The term outside the square root quantifies the effect of absorption, where 𝑎T,λ is the 30 

total absorption. The term within the square root represents scattering as an extended 31 
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pathlength through the water column, where 𝑔i and 𝑔ii are empirical constants and 1 

take values of 0.402 and 0.180 respectively (Kirk, 1991; Mobley, 1994). For waters 2 

ranging from coastal to open ocean, the average cosine of scattering varies by only a 3 

small amount (0.86 – 0.95, Kirk, (1991)), and thus uncertainties in 𝑔i and 𝑔ii do not 4 

strongly affect 𝐾λ. 5 

The below-surface remote-sensing reflectance (rrs), is given by: 6 

𝑟rs,λ = 𝑔0𝑢λ + 𝑔1𝑢λ
2    (a.10) 7 

where 𝑔0 = 0.895  and 𝑔1 = 0.1247  are empirical constants for the nadir-view in 8 

oceanic waters (Lee et al., 2002; Brando et al., 2012), and these constants result in a 9 

change of units from the unitless 𝑢 to a per unit of solid angle, sr-1, quantity 𝑟rs,λ. 10 

The above-surface remote-sensing reflectance, through rearranging Lee et al. (2002), 11 

is given by: 12 

𝑅rs,λ =
0.52rrs,λ

1−1.7rrs,λ
    (a.11) 13 

  14 



 26 

References 1 

Aas, E., 1996. “Refractive Index of Phytoplankton Derived from Its Metabolite 2 

Composition.” J Plankton Res. 18 (12), 2223–2249. 3 

https://doi.org/10.1093/plankt/18.12.2223. 4 

Angel, M. V., Fasham, M. J. R., 1983. “Eddies and biological processes,” in Eddies in 5 

Marine Science, Chap. 22, Edit. A. R. Robinson (Berlin: Springer): 492–524. 6 

Antoine, D., Babin, M., Berthon, J.-F., Bricaud, A., Gentili, B., Loisel, H., 7 

Maritorena, S., Stramski, D., 2014. Shedding Light on the Sea: André Morel's 8 

Legacy to Optical Oceanography. Ann Rev Mar Sci. 6(1), 1–21. 9 

doi:10.1146/annurev-marine-010213-135135  10 

Astoreca, R., Doxaran, D., Ruddick, K., Rousseau, V., Lancelot, C., 2012. Influence 11 

of suspended particle concentration, composition and size on the variability of 12 

inherent optical properties of the Southern North Sea. Cont. Shelf Res. 35, 13 

117–128. doi:10.1016/j.csr.2012.01.007 14 

Athias, V., Mazzega, P., Jeandel, C., 2000. Selecting a global optimization method to 15 

estimate the oceanic particle cycling rate constants. J Mar Res. 58, 675–707.  16 

Babin, M., Stramski, D., Ferrari, G. M., Claustre, H.,  Bricaud, A., Obolensky, G., 17 

Hoepffner, N., 2003. Variations in the light absorption coefficients of 18 

phytoplankton, nonalgal particles, and dissolved organic matter in coastal 19 

waters around Europe. J Geophys Res. 108(C7), 3211. 20 

doi:10.1029/2001JC000882 21 

Baird, M. E., Cherukuru, N., Jones, E., Margvelashvili, N., Mongin, M., Oubelkheir, 22 

K., Ralph, P.J., Rizwi, F.,   Robson, B.J., Schroeder, T., Skerratt, J., Steven, 23 

A.D.L., Wild-Allen, K.A., 2016. Remote-sensing reflectance and true colour 24 

produced by a coupled hydrodynamic, optical, sediment, biogeochemical 25 

model of the Great Barrier Reef, Australia: Comparison with satellite data. 26 

Environ Modell Softw. 78(C), 79–96. doi:10.1016/j.envsoft.2015.11.025 27 

Baird, M. E., Ralph, P. J., Rizwi, F., Wild-Allen, K. A., Steven, A. D. L., 2013. A 28 

dynamic model of the cellular carbon to chlorophyll ratio applied to a batch 29 

culture and a continental shelf ecosystem. Limnol Oceanogr. 58(4), 1215–30 

1226. doi:10.4319/lo.2013.58.4.1215 31 

Barton, I. J. 2002. Ocean Currents from Successive Satellite Images: The Reciprocal 32 

Filtering Technique. J Atmos Oceanic Tech. 19, 1677–1689. 33 

https://doi.org/10.1093/plankt/18.12.2223


 27 

Bidigare, R. R., Ondursek, M. E., Morrow, J. H., Kiefer, D., 1990. In Vivo 1 

Absorption Properties of Algal Pigments. Proceedings for SPIE Ocean Optics 2 

X. http://dx.doi.org/10.1117/12.21451 3 

Brando, V. E., Dekker, A. G., Park, Y. J., Schroeder, T., 2012. Adaptive 4 

semianalytical inversion of ocean color radiometry in optically complex 5 

waters. Appl Opt. 51, 2808-2833. 6 

Bricaud, A., 2004. Natural variability of phytoplanktonic absorption in oceanic 7 

waters: Influence of the size structure of algal populations. J Geophys Res. 8 

109, (C11):1526. doi:10.1029/2004JC002419 9 

Bricaud, A., Babin, M., Morel, A., Claustre, H., 1995. Variability in the Chlorophyll-10 

Specific Absorption Coefficients of Natural Phytoplankton: Analysis and 11 

Parameterization. J Geophys Res. 100, (C7):13321. 12 

https://doi.org/10.1029/95JC00463.  13 

Bricaud, A., Claustre, H., Ras, J., Oubelkheir, K., 2004. Natural Variability of 14 

Phytoplanktonic Absorption in Oceanic Waters: Influence of the Size 15 

Structure of Algal Populations. J Geophys Res. 109, C11010. 16 

doi:10.1029/2004JC002419 17 

Bricaud, A., Stramski, D., 1990. Spectral Absorption Coefficients of Living 18 

Phytoplankton and Nonalgal Biogenous Matter: A Comparison between the 19 

Peru Upwelling Area and the Sargasso Sea. Limnol Oceanogr. 35 (3), 562–20 

582. 21 

Brieva, D., Ribbe, J., Lemckert, C., 2015. Is the East Australian Current causing a 22 

marine ecological hot-spot and an important fisheries near Fraser Island, 23 

Australia? Estuar Coast Mar Sci. 153, 121–134. 24 

doi:10.1016/j.ecss.2014.12.012 25 

Brown, S. L., Landry, M. R., Selph, K. E., Yang, J. E., Rii, Y. M., Bidigare, R. R., 26 

2008. Diatoms in the desert: Plankton community response to a mesoscale 27 

eddy in the subtropical North Pacific. Deep Sea Res Part II. 55(10-13), 1321–28 

1333. doi:10.1016/j.dsr2.2008.02.012 29 

Carr, M.-E., Friedrichs, M. A. M., Schmeltz, M., Noguchi, A. M., Antoine, D., 30 

Arrigo, K. R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, 31 

R., Buitenhuis, E.T., Campbell, J., Ciotti, A., Dierssen, H., Dowell, M., 32 

Dunne, J., Esaias, W., Gentili, B., Gregg, W., Groom, S., Hoepffner, N., 33 

Ishizaka, J., Kameda, T., Le Quéré, C., Lohrenz, S., Marra, J., Mélin, F., 34 

http://dx.doi.org/10.1117/12.21451
https://doi.org/10.1029/95JC00463


 28 

Moore, K., Morel, A., Reddy, T. E., Ryan, J., Scardi, M., Smyth, T., Turpie, 1 

K., Tilstone, G., Waters, K., Yamanaka, Y., 2006. A comparison of global 2 

estimates of marine primary production from ocean color. Deep Sea Res Part 3 

II. 53(5-7), 741–770. doi:10.1016/j.dsr2.2006.01.028 4 

Chelton, D. B., Schlax, M. G., Samelson, R. M., 2011. Global observations of 5 

nonlinear mesoscale eddies. Prog Oceanogr. 91, 167–216. 6 

doi:10.1016/j.pocean.2011.01.002 7 

Ciavatta, S., Kay, S., Saux-Picart, S., Butenschön, M., Allen, J. I., 2016. Decadal 8 

reanalysis of biogeochemical indicators and fluxes in the North West 9 

European shelf-sea ecosystem. J Geophys Res. 121(3), 1824–1845. 10 

doi:10.1002/2015JC011496 11 

Ciotti, Á. M., Bricaud A., 2006. Retrievals of a size parameter for phytoplankton and 12 

spectral light absorption by colored detrital matter from water-leaving 13 

radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol 14 

Oceanogr. 4(7), 237–253. doi:10.4319/lom.2006.4.237 15 

Ciotti, Á. M., Lewis, M. R., Cullen, J. J., 2002. Assessment of the relationships 16 

between dominant cell size in natural phytoplankton communities and the 17 

spectral shape of the absorption coefficient. Limnol Oceanogr. 47(2), 404–18 

417. doi:10.4319/lo.2002.47.2.0404 19 

CSIRO Coastal Environmental Modelling Team, 2014. CSIRO Environmental 20 

Modelling Suite: Scientific Description of the Optical, Carbon Chemistry and 21 

Biogeochemical Models Parameterised for the Great Barrier Reef. Hobart, 22 

TAS: Commonwealth Scientific and Industrial Research Organisation Marine 23 

and Atmospheric Research. 24 

Dickey, T., Lewis, M., Chang, G., 2006. Optical oceanography: Recent advances and 25 

future directions using global remote sensing and in situ observations. Rev. 26 

Geophys. 44, RG1001. doi:10.1029/2003RG000148 27 

Doblin, M. A., Petrou, K., Sinutok, S., Seymour, J. R., Messer, L. F., Brown, M. V., 28 

Norman, L., Everett, J. D., McInnes, A. S., Ralph, P. J., Thompson, P. A., 29 

Hassler, C. S., 2016. Nutrient uplift in a cyclonic eddy increases diversity, 30 

primary productivity and iron demand of microbial communities relative to a 31 

western boundary current. PeerJ. 4(11), e1973. doi:10.7717/peerj.1973 32 

Doron, M., Brasseur, P., Brankart, J.-M., Losa, S. N., Melet, A., 2013. Stochastic 33 

estimation of biogeochemical parameters from Globcolour ocean colour 34 



 29 

satellite data in a North Atlantic 3D ocean coupled physical–biogeochemical 1 

model. J of Marine Syst. 117-118, 81–95. doi:10.1016/j.jmarsys.2013.02.007 2 

Dowd, M., 2011. Estimating parameters for a stochastic dynamic marine ecological 3 

system. Environmetrics. 72(3), 501–515. doi:10.1002/env.1083 4 

Dutkiewicz, S., Hickman, A. E., Jahn, O., Gregg, W. W., Mouw, C. B., Follows, M. 5 

J., 2015. Capturing optically important constituents and properties in a marine 6 

biogeochemical and ecosystem model. Biogeosciences. 12(14), 4447–4481. 7 

doi:10.5194/bg-12-4447-2015 8 

Duysens, L. N. M., 1956. The Flattening of the Absorption Spectra of Suspensions as 9 

Compared to that of Solutions. Biochim Biophys Acta. 19, 1–12. 10 

https://doi.org/10.1016/0006-3002(56)90380-8 11 

Evans, G. T., 1999. The role of local models and data sets in the joint global ocean 12 

flux study. Deep Sea Res. Part I. 46, 1369–1389. doi: 10.1016/S0967-13 

0637(99) 00010-2 14 

Everett, J. D., Baird M. E., Oke P. R., Suthers I. M., 2012. An avenue of eddies: 15 

Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. 16 

J Geophys Res. 39, L16608. doi:10.1029/2012GL053091 17 

Falkowski, P., 2012. The power of plankton. Nature. 483, 17–20. 18 

Falkowski, P., Ziemann, D., Kolber, Z., Bienfang, P., 1991. Role of eddy pumping in 19 

enhancing primary production in the ocean. Nature. 352, 55–58. 20 

Farikou, O., Sawadogo, S., Niang, A., Diouf, D., Brajard, J., Mejia, C., Dandonneau, 21 

Y., Gasc, G., Crepon, M., Thiria, S., 2015. Inferring the seasonal evolution of 22 

phytoplankton groups in the Senegalo-Mauritanian upwelling region from 23 

satellite ocean-color spectral measurements. J Geophys Res. 120(9), 6581–24 

6601. doi:10.1002/2015JC010738 25 

Fasham, M. J., Evans, G. T., Kiefer, D. A., Creasey, M., Leach, H., 1995. The use of 26 

optimization techniques to model marine ecosystem dynamics at the JGOFS 27 

station at 47 degrees N 20 degrees. Philos Trans Royal Soc B. 348 pp. 203–28 

209. doi: 10.1098/rstb.1995.0062 29 

Fennel W., Neumann T., 2004. Introduction to the Modelling of Marine Ecosystems. 30 

Amsterdam: Elsevier Oceanography Series. 31 

Gharamti, M. E., Samuelsen, A., Bertino, L., Simon, E., Korosov, A., Daewel, U., 32 

2017. Online tuning of ocean biogeochemical model parameters using 33 

ensemble estimation techniques: Application to a one-dimensional model in 34 



 30 

the North Atlantic. J Marine Syst. 168, 1–16. 1 

doi:10.1016/j.jmarsys.2016.12.003 2 

Gordon, H. R., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., 3 

Clark, D. K. 1988. A semianalytic radiance model of ocean color. J Geophys 4 

Res. 93(D9), 10909–10924. doi:10.1029/JD093iD09p10909 5 

Hassler, C. S., Djajadikarta, J. R., Doblin, M. A., Everett, J. D., Thompson, P. A., 6 

2010. Characterisation of water masses and phytoplankton nutrient limitation 7 

in the East Australian Current separation zone during spring 2008. Deep Sea 8 

Res Part II. 58(5), 664–677. doi:10.1016/j.dsr2.2010.06.008 9 

Hemmings, J. C. P., Srokosz, M. A., Challenor, P., Fasham, M. J. R., 2003. 10 

Assimilating satellite ocean-colour observations into oceanic ecosystem 11 

models. Philos Trans Royal Soc A. 361, 33–39.  12 

Hobday, A. J., Hartmann, K., 2006. Near real-time spatial management based on 13 

habitat predictions for a longline bycatch species. Fish Manag Ecol. 13, 365–14 

380. doi: 10.1111/j.1365-2400.2006.00515.x 15 

Hoepffner, N., Sathyendranath, S., 1991. Effect of Pigment Composition on 16 

Absorption Properties of Phytoplankton. Mar Ecol Prog Ser. 73, 11–23. 17 

Hooker, S. B., Clementson, L., Thomas, C.S., Schlüter, L., Allerup, M., Ras, J., 18 
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