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Abstract

In this paper, we present a novel and general network
structure towards accelerating the inference process of con-
volutional neural networks, which is more complicated in
network structure yet with less inference complexity. The
core idea is to equip each original convolutional layer
with another low-cost collaborative layer (LCCL), and the
element-wise multiplication of the ReLU outputs of these
two parallel layers produces the layer-wise output. The
combined layer is potentially more discriminative than the
original convolutional layer, and its inference is faster for
two reasons: 1) the zero cells of the LCCL feature maps will
remain zero after element-wise multiplication, and thus it is
safe to skip the calculation of the corresponding high-cost
convolution in the original convolutional layer; 2) LCCL
is very fast if it is implemented as a 1 × 1 convolution or
only a single filter shared by all channels. Extensive ex-
periments on the CIFAR-10, CIFAR-100 and ILSCRC-2012
benchmarks show that our proposed network structure can
accelerate the inference process by 32% on average with
negligible performance drop.

1. Introduction

Despite the continuously improved performance of con-
volutional neural networks (CNNs) [1, 10, 21, 24, 30, 32],
their computation costs are still tremendous. Without the
support of high-efficiency servers, it is hard to establish
CNN models on real-world applications. For example, to
process a 224 × 224 image, AlexNet [21] requires 725M
FLOPs with 61M parameters, VGG-S [1] involves 2640M
FLOPs with 103M parameters, and GoogleNet [32] needs
1566M FLOPs with 6.9M parameters. Therefore, to lever-
age the success of deep neural networks on mobile devices
with limited computational capacity, accelerating network
inference has become imperative.

∗This work was done when Xuanxi Dong was an Intern at 360 AI In-
stitute.
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Figure 1. Basic acceleration block. The orange panel in the figure
shows two different kinds of low-cost collaborative kernels. One
uses 1 × 1 convolution, and the other uses shared kernels (W

′
i =

W
′
j for i, j ∈ [1, T ]). The black response map represents the out-

put of the original convolutional layer with the kernel W , and the
orange response map is generated by the low-cost collaborative
layer. The purple cells represent the zero elements, of which the
calculation of corresponding positions can be skipped in the origi-
nal convolutional layer. We apply element-wise multiplication on
the activated response maps from the original convolutional layer
and low-cost layer to generate the final results of this basic accel-
eration block.

In this paper, we investigate the acceleration of CNN
models based on the observation that the response maps
of many convolutional layers are usually sparse after
ReLU [26] activation. Therefore, instead of fully calculat-
ing the layer response, we can skip calculating the zero cells
in the ReLU output and only compute the values of non-zero
cells in each response map. Theoretically, the locations of
zero cells can be predicted by a lower cost layer. The val-
ues of non-zero cells from this lower-cost layer can be col-
laboratively updated by the responses of the original filters.
Eventually, the low-cost collaborative layer (LCCL) accom-
panied by the original layer constitute the basic element of
our proposed low-cost collaborative network (LCCN).
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To equip each original convolutional layer with a LCCL,
we apply an element-wise multiplication on the response
maps from the LCCL and the original convolutional layer,
as illustrated in Fig. 1. In the training phase, this architec-
ture can be naturally trained by the existing stochastic gra-
dient descent (SGD) algorithm with backpropagation. First
we calculate the response map V

′
of the LCCL after the

activation layer, and use V
′

to guide the calculation of the
final response maps.

Despite the considerable amount of research where a
sparse-based framework is used to accelerate the network
inference, e.g. [7, 8, 22, 23, 25], we claim that LCCN
is unique. Generally, most of these sparsity-based meth-
ods [22, 25, 31] integrate the sparsity property as a regu-
larizer into the learning of parameters, which usually harms
the performance of network. Moreover, to further accel-
erate performance, some methods even arbitrarily zeroize
the values of the response maps according to a pre-defined
threshold. Compared with these methods, our LCCN au-
tomatically sets the negatives as zero, and precisely calcu-
lates the positive values in the response map with the help
of the LCCL. This two-stream strategy reaches a remark-
able acceleration rate while maintaining a comparable per-
formance level to the original network.

The main contributions are summarized as follows:

• We propose a general architecture to accelerate CNNs,
which leverages low-cost collaborative layers to accel-
erate each convolutional layer.

• To the best of our knowledge, this is the first work
to leverage a low-cost layer to accelerate the network.
Equipping each convolutional layer with a collabora-
tive layer is quite different from the existing accelera-
tion algorithms.

• Experimental studies show significant improvements
by the LCCN on many deep neural networks when
compared with existing methods (e.g., a 34% speedup
on ResNet-110).

2. Related Work

Low Rank. Tensor decomposition with low-rank
approximation-based methods are commonly used to accel-
erate deep convolutional networks. For example, in [5, 18],
the authors exploited the redundancy between convolutional
filters and used low-rank approximation to compress con-
volutional weight tensors and fully connected weight ma-
trices. Yang et al. [34] use an adaptive fastfood transform
was used to replace a fully connected layer with a series of
simple matrix multiplications, rather than the original dense
and large ones. Liu et al. [25] propose a sparse decomposi-
tion to reduce the redundancy in convolutional parameters.

In [36, 37], the authors used generalized singular vector de-
composition (GSVD) to decompose an original layer to two
approximated layers with reduced computation complexity.

Fixed Point. Some popular approaches to accelerate
test phase computation are based on “fixed point”. In [4],
the authors trained deep neural networks with a dynamic
fixed point format, which achieves success on a set of state-
of-the-art neural networks. Gupta et al. [9] use stochas-
tic rounding to train deep networks with 16-bit wide fixed-
point number representation. In [2, 3], a standard network
with binary weights represented by 1-bit was trained to
speed up networks. Then, Rastegari et al. [27] further ex-
plored binary networks and expanded it to binarize the data
tensor of each layer, increasing the speed by 57 times.

Product Quantization. Some other researchers focus
on product quantization to compress and accelerate CNN
models. The authors of [33] proposed a framework to accel-
erate the test phase computation process with the network
parameters quantized and learn better quantization with er-
ror correction. Han et al. [10] proposed to use a prun-
ing stage to reduce the connections between neurons, and
then fine tuned networks with weight sharing to quantify
the number of bits of the convolutional parameters from
32 to 5. In another work [15], the authors trained neural
networks with extremely low precision, and extended suc-
cess to quantized recurrent neural networks. Zhou et al.
[39] generalized the method of binary neural networks to
allow networks with arbitrary bit-width in weights, activa-
tions, and gradients.

Sparsity. Some algorithms exploit the sparsity property
of convolutional kernels or response maps in CNN archi-
tecture. In [38], many neurons were decimated by incorpo-
rating sparse constraints into the objective function. In [8],
a CNN model was proposed to process spatially-sparse in-
puts, which can be exploited to increase the speed of the
evaluation process. In [22], the authors used the group-
sparsity regularizer to prune the convolutional kernel tensor
in a group-wise fashion. In [7], they increased the speed
of convolutional layers by skipping their evaluation at some
fixed spatial positions. In [23], the authors presented a com-
pression technique to prune the filters with minor effects on
the output accuracy.

Architecture. Some researchers improve the efficiency
of networks by carefully designing the structure of neu-
ral networks. In [13], a simple model was trained by dis-
tilling the knowledge from multiple cumbersome models,
which helps to reduce the computation cost while preserv-
ing the accuracy. Romero et al. [28] extended the knowl-
edge distillation approach to train a student network, which
is deeper but thinner than the teacher network, by extract-
ing the knowledge of teacher network. In this way, the stu-
dent network uses less parameters and running time to gain
considerable speedup compared with the teacher network.
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Iandola et al. [16] proposed a small DNN architecture to
achieve similar performance as AlexNet by only using 50x
fewer parameters and much less computation time via the
same strategy.

3. Low-Cost Collaborative Network
In this section, we present our proposed architecture

for the acceleration of deep convolutional neural networks.
First, we introduce the basic notations used in the following
sections. Then, we demonstrate the detailed formulation of
the acceleration block and extend our framework to gen-
eral convolutional neural networks. Finally, we discuss the
computation complexity of our acceleration architecture.

3.1. Preliminary

Let’s recall the convolutional operator. For simplicity,
we discuss the problem without the bias term. Given one
convolution layer, we assume the shapes of input tensor U
and output tensor V areX×Y ×C andX×Y ×T , whereX
and Y are the width and height of the response map, respec-
tively. C and T represent the channel number of response
map U and V . A tensor W with size k× k×C ×T is used
as the weight filter of this convolutional layer. Vt(x, y) rep-
resents the element of V (x, y, t). Then, the convolutional
operator can be written as:

Vt(x, y) =

k∑
i,j=1

C∑
c=1

Wt(i, j, c)U(x+ i− 1, y + i− 1, c) (1)

where Wt(x, y) is the element of W (x, y, t).
In the LCCN, the output map of each LCCL should

have the same size as the corresponding convolutional layer,
which means that the shape of tensor V

′
isX×Y ×T . Sim-

ilarly, we assume the weight kernel of V
′

is W
′
. Therefore,

the formula of the LCCN can be written as:

V
′
t (x, y) =

k
′∑

i,j=1

C∑
c=1

W
′
t (i, j, c)U(x+ i− 1, y + i− 1, c) (2)

3.2. Overall Structure
Our acceleration block is illustrated in Fig. 1. The

green block V ∗ represents the final response map collab-
oratively calculated by the original convolutional layer and
the LCCL. Generally, it can be formulated as:

V ∗t (x, y) =

{
0 if V

′
t (x, y) = 0

V
′
t (x, y)× Vt(x, y) if V

′
t (x, y) 6= 0

(3)

where V is the output response map from the original con-
volutional layer and V

′
is from LCCL.

In this formula, the element-wise product is applied to V
and V

′
to calculate the final response map. Due to the small

size of LCCL, the computation cost of V
′

can be ignored.

Meanwhile, since the zero cells in V
′

will stay zero after
the element-wise multiplication, the computation cost of V
is further reduced by skipping the calculation of zero cells
according to the positions of zero cells in V

′
. Obviously,

this strategy leads to increasing speed in a single convolu-
tional layer. To further accelerate the whole network, we
can equip most convolutional layers with LCCLs.

3.3. Kernel Selection

As illustrated in the orange box in Fig. 1, the first form
exploits a 1×1×C×T kernel (k

′
= 1) for each original ker-

nel to collaboratively estimate the final response map. The
second structure uses a k

′ × k′ ×C × 1 filter (we carefully
tune the parameter k’ and set k’ = k) shared across all the
original filters to calculate the final result. Both these col-
laborative layers use less time during inference when com-
pared with the original convolutional layer, thus they are
theoretically able to obtain acceleration.

In many efficient deep learning frameworks such as
Caffe [19], the convolution operation is reformulated as ma-
trix multiplication by flattening certain dimensions of ten-
sors, such as:

V = U∗ ×W ∗ s.t. U∗ ∈ RXY×k2C , W ∗ ∈ Rk2C×T (4)

Each row of the matrix U∗ is related to the spatial posi-
tion of the output tensor transformed from the tensor U , and
W ∗ is a reshaped tensor from weight filters W . These effi-
cient implementations take advantage of the high-efficiency
of BLAS libraries, e.g., GEMM1 and GEMV2.

Since each position of the skipped cell in V ∗ corresponds
to one row of the matrix U∗, we can achieve a realistic
speedup in BLAS libraries by reducing the matrix size in the
multiplication function. Different structures of the LCCL
need different implementations. For a k×k×C×1 kernel,
the positions of the skipped cells in the original convolu-
tional layer are the same in different channels. In this situa-
tion, we can reduce the size of U∗ to S

′ × k2C, where S
′

is
the number of non-zero elements in V

′
. For a 1×1×C×T

kernel, the positions of zero cells are different in different
channels, so it is infeasible to directly use the matrix-matrix
multiplication function to calculate the result of LCCL, i.e.
V
′
. In this case, we have to separate the matrix-matrix

multiplication into multiple matrix-vector multiplications.
However, this approach is difficult to achieve the desired
acceleration effect. The unsatisfying acceleration perfor-
mance of 1× 1×C × T filters is caused by the inferior ef-
ficiency of multiple GEMV, and some extra operations also
cost more time (e.g., data reconstruction). Therefore, we
choose the k × k × C × 1 structure for our LCCL in our
experiments, and leave the acceleration of 1 × 1 × C × T
filters as our future work.

1matrix-matrix multiplication function
2matrix-vector multiplication function
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Figure 2. Connection strategy of collaborating LCCL with the original convolutional layer. The top figure shows the pre-activation residual
block [12]; the bottom figure shows a “Bef-Aft” connection strategy to speed up the residual block. “Activ” represents that the collaborative
layer is followed by BN and ReLU activation. The first LCCL receives the input tensor before being activated by BN and ReLU, and the
second one receives the input tensor after BN and ReLU. (Best viewed in the original pdf file.)

3.4. Sparsity Improvement

According to the previous discussion, the simplest way
for model acceleration is directly multiplying the tensor
V
′

and tensor V . However, this approach cannot achieve
favourable acceleration performance due to the low sparsity
rate of V

′
.

To improve the sparsity of V
′
, ReLU [26] activation is a

simple and effective way by setting the negative values as
zeros. Moreover, due to the redundancy of positive activa-
tions, we can also append L1 loss in the LCCL to further
improve the sparsity rate. In this way, we achieve a smooth
L1L2(X) = µ‖X‖+ ρ|X| regularizer penalty for each V

′
:

‖X‖ =

√√√√ n∑
i=1

X2
i , |X| =

n∑
i=1

|X| (5)

However, there are thousands of free parameters in the reg-
ularizer term and the additional loss always degrades the
classification performance, as it’s difficult to achieve the
balance between the classification performance and the ac-
celeration rate.

Recently, the Batch Normalization (BN) [17] is proposed
to improve the network performance and increase the con-
vergence speed during training by stabilizing the distribu-
tion and reducing the internal covariate shift of input data.
During this process, we observe that the sparsity rate of each
LCCL is also increased. As shown in Table 1, we can find

Layer With BN Without BN
conv1 conv2 conv1 conv2

res-block-1.2 38.8% 28.8% 0.0% 0.0%
res-block-2.2 37.9% 23.4% 0.0% 0.2%
res-block-2.2 17.8% 40.4% 0.0% 40.7%

Table 1. Sparsity of the LCCL for different activations with the
same training setting. “With BN” means we activate the response
map of the LCCL by BN and ReLU; “Without BN” means we only
use ReLU activation. “x.y” means the y-th block at x-th stage of
ResNet. We equip six convolutional layers with LCCL on ResNet-
20 model.

that the BN layer advances the sparsity of LCCL followed
by ReLU activation, and thus can further improve the accel-
eration rate of our LCCN. We conjecture that the BN layer
balances the distribution of V

′
and reduces the redundancy

of positive values in V
′

by discarding some redundant ac-
tivations. Therefore, to increase the acceleration rate, we
carefully integrate the BN layer into our LCCL.

Inspired by the pre-activation residual networks [12], we
exploit different strategies for activation and integration of
the LCCL. Generally, the input of this collaborative layer
can be either before activation or after activation. Taking
pre-activation residual networks [12] as an example, we il-
lustrate the “Bef-Aft” connection strategy at the bottom of
Fig. 2. “Bef” represents the case that the input tensor is from
the flow before BN and ReLU activation. “Aft” represents
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the case that the input tensor is the same to the original con-
volutional layer after BN and ReLU activation. According
to the “Bef-Aft” strategy in Fig. 2. the “Bef-Bef”, “Aft-Bef”
and “Aft-Aft” strategies can be easily derived. During our
experiments, we find that input tensors with the “Bef” strat-
egy are quite diverse when compared with the correspond-
ing convolutional layer due to different activations. In this
strategy, the LCCL cannot accurately predict the zero cells
for the original convolutional layer. So it is better to use the
same input tensor as the original convolutional layer, i.e. the
“Aft” strategy.

3.5. Computation Complexity

Now we analyze the test-phase numerical calculation
with our acceleration architecture. For each convolutional
layer, the forward procedure mainly consists of two com-
ponents, i.e. the low cost collaborative layer and the skip-
calculation convolutional layer. Suppose the sparsity (ratio
of zero elements) of the response map V

′
is r. We formu-

late the detailed computation cost of the convolutional layer
and compare it with the one equipped with our LCCL.

Architecture FLOPs Speed-Up Ratio
CNN XY Tk2C 0
basic XY TC(k′2 + k2r) 1− (k′2/k2 + r)

(1× 1 kernel) XY TC(1 + k2r) 1− (1/k2 + r)
(weight sharing) XY Tk2(1 + Cr) 1− (1/C + r)

Table 2. Theoretical numerical calculation acceleration for convo-
lutional layers.

As shown in Table 2, the speedup ratio is highly depen-
dent on r. The term 1/C costs little time since the channel
of the input tensor is always wide in most CNN models and
it barely affects the acceleration performance. According to
the experiments, the sparsity r reaches a high ratio in cer-
tain layers. These two facts indicate that we can obtain a
considerable speedup ratio. Detailed statistical results are
described in the experiments section.

In residual-based networks, if the output of one layer in
the residual block is all zero, we can skip the calculation
of descendant convolutional layers and directly predict the
results of this block. This property helps further accelerate
the residual networks.

4. Experiments
In this section, we conduct experiments on three bench-

mark datasets to validate the effectiveness of our accelera-
tion method.

4.1. Benchmark Datasets and Experimental Setting

We mainly evaluate our LCCN on three benchmarks:
CIFAR-10, CIFAR-100 [20] and ILSVRC-12 [29]. The
CIFAR-10 dataset contains 60,000 32 × 32 images, which

are categorized into 10 classes and each class contains 6,000
images. The dataset is split into 50,000 training images and
10,000 testing images. The CIFAR-100 [20] dataset is sim-
ilar to CIFAR-10, except that it has 100 classes and 600
images per class. Each class contains 500 training images
and 100 testing images. For CIFAR-10 and CIFAR-100,
we split the 50k training dataset into 45k/5k for validation.
ImageNet 2012 dataset [29] is a famous benchmark which
contains 1.28 million training images of 1,000 classes. We
evaluate on the 50k validation images using both the top-1
and top-5 error rates.

Deep residual networks [11] have shown impressive per-
formance with good convergence behaviors. Their sig-
nificance has increased, as shown by the amount of re-
search [12, 35] being undertaken. We mainly apply our
LCCN to increase the speed of these improved deep residual
networks. In the CIFAR experiments, we use the default pa-
rameter setting as [12, 35]. However, it is obvious that our
LCCN is more complicated than the original CNN model,
which leads to a requirement for more training epochs to
converge into a stable situation. So we increase the training
epochs and perform a different learning rate strategies to
train our LCCN. We start the learning rate at 0.01 to warm
up the network and then increase it to 0.1 after 3% of the to-
tal iterations. Then it is divided by 10 at 45%, 70% and 90%
iterations where the errors plateau. We tune the training
epoch numbers from {200, 400, 600, 800, 1000} according
to the validation data.

On ILSVRC-12, we follow the same parameter settings
as [11, 12] but use different data argumentation strategies.
(1) Scale augmentation: we use the scale and aspect ratio
augmentation [32] instead of the scale augmentation [30]
used in [11, 12]. (2) Color augmentation: we use the pho-
tometric distortions from [14] to improve the standard color
augmentation [21] used in [11, 12]. (3) Weight decay: we
apply weight decay to all weights and biases. These three
differences should slightly improve performance (refer to
Facebook implementation3). According to our experiences
with CIFAR, we extend the training epoch to 200, and use a
learning rate starting at 0.1 and then is divided by 10 every
66 epochs.

For the CIFAR experiments, we report the acceleration
performance and the top-1 error to compare with the re-
sults provided in the original paper [12, 35]. On ILSVRC-
12, since we use different data argumentation strategies, we
report the top-1 error of the original CNN models trained
in the same way as ours, and we mainly compare the ac-
curacy drop with other state-of-the-art acceleration algo-
rithms including: (1) Binary-Weight-Networks (BWN) [27]
that binarizes the convolutional weights; (2) XNOR-
Networks (XNOR) [27] that binarizes both the convolu-
tional weights and the data tensor; (3) Pruning Filters for Ef-

3https://github.com/facebook/fb.resnet.torch
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Figure 3. Sparsity for the response maps from each collaborative convolutional layer in ResNet-20. We use LCCL to modify 18 convo-
lutional layers to speed up ResNet-20. “x.y” represents the y-th residual block in the x-th generalized convolutional block. “conv1” and
“conv2” represent the first and the second collaboration convolutional in the corresponding residual block.

ficient ConvNets (PFEC) [23] which prunes the filters with
small effect on the output accuracy from CNNs.

4.2. Experiments on CIFAR-10 and CIFAR-100

First, we study the influence on performance of using
different connection strategies proposed in the Kernel Se-
lection and Sparsity Improvement sections. We use the
pre-activation ResNet-20 as our base model, and apply the
LCCL to all convolutional layers within the residual blocks.
Using the same training strategy, the results of four different
connection strategies are shown in Table 3.

Both collaborative layers with the after-activation
method show the best performance with a considerable
speedup ratio. Because the Aft strategy receives the same
distribution of input to that of the corresponding convolu-
tion layer. We also try to use the L1L2 loss to restrict the
output maps of each LCCL. But this will add thousands of
extra values that need to be optimized in theL1L2 loss func-
tion. In this case, the networks are difficult to converge and
the performance is too bad to be compared.

Structure Top-1 Err. Speed-Up
Aft-Aft 8.32 34.9%
Aft-Bef 8.71 24.1%
Bef-Bef 11.62 39.8%
Bef-Aft 12.85 55.4%

Table 3. Before-activation and after-activation for connection strat-
egy on ResNet-20. Each LCCL uses 3× 3× k kernel.

Furthermore, we analyze the performance influenced by
using different kernels in the LCCL. There are two forms
of LCCL that collaborate with the corresponding convolu-
tional layer. One is a tensor of size 1× 1×C × T (denoted
as 1 × 1), and the other is a tensor of size k × k × C × 1

Model 1× 1× C × T k × k × C × 1
FLOPs Ratio Error FLOPs Ratio Error

ResNet-20 3.2E7 20.3% 8.57 2.6E7 34.9% 8.32
ResNet-32 4.7E7 31.2% 9.26 4.9E7 28.1% 7.44
ResNet-44 6.3E7 34.8% 8.57 6.5E7 32.5% 7.29

Table 4. Comparison of top-1 error rate on two different collabo-
rative layers. (The ‘Ratio’ represents the speedup ratio)

(denoted as k × k). As shown in Table 4, the k × k kernel
shows significant performance improvement with a similar
speedup ratio compared with a 1×1 kernel. It can be caused
by that the k×k kernel has a larger reception field than 1×1.

Statistics on the sparsity of each response map gener-
ated from the LCCL are illustrated in Fig. 3. This LCCN
is based on ResNet-20 with each residual block equipped
with a LCCL configured by a 1× 1×C × T kernel. To get
stable and robust results, we increase the training epochs
as many as possible, and the sparsity variations for all 400
epochs are provided. The first few collaborative layers show
a great speedup ratio, saving more than 50% of the compu-
tation cost. Even if the last few collaboration layers behave
less than the first few, the k × k × C × 1 based method is
capable of achieving more than 30% increase in speed.

Hitherto, we have demonstrated the feasibility of train-
ing CNN models equipped with our LCCL using different
low-cost collaborative kernels and strategies. Considering
the performance and realistic implementation, we select the
weight sharing kernel for our LCCL. This will be used in
all following experiments as default.

Furthermore, we experiment with more CNN models[12,
35] accelerated by our LCCN on CIFAR-10 and CIFAR-
100. Except for ResNet-164 [12] which uses a bottleneck
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Depth Ori. Err LCCN Speed-up

ResNet [12] 110 6.37 6.56 34.21%
164* 5.46 5.91 27.40%

WRN [35]

22-8 4.38 4.90 51.32%
28-2 5.73 5.81 21.40%
40-1 6.85 7.65 39.36%
40-2 5.33 5.98 31.01%
40-4 4.97 5.95 54.06%
52-1 6.83 6.99 41.90%

Table 5. Top-1 Error and Speed-Up of eight different CNN models
on CIFAR-10 (symbol “*” means the bottleneck structure). Ori.
Err represents the top-1 error of the original convolution network.

residual block
 1 × 1

3 × 3
1 × 1

 , all other models use a basic resid-

ual block
{

3 × 3
3 × 3

}
. We use LCCL to accelerate all convolu-

tional layers except for the first layer, which takes the orig-
inal image as the input tensor. The first convolutional layer
operates on the original image, and it costs a little time due
to the small input channels (RGB 3 channels). In a bottle-
neck structure, it is hard to reach a good convergence with
all the convolutional layers accelerated. The convolutional
layer with 1×1 kernel is mainly used to reduce dimension to
remove computational bottlenecks, which overlaps with the
acceleration effect of our LCCL. This property makes lay-
ers with 1 × 1 kernel more sensitive to collaboration with
our LCCL. Thus, we apply our LCCL to modify the first
and second convolutional layer in the bottleneck residual
block on CIFAR-10. And for CIFAR-100, we only mod-
ify the second convolutional layer with 3 × 3 kernel in the
bottleneck residual block. The details of theoretical numer-
ical calculation acceleration and accuracy performance are
presented in Table 5 and Table 6.

Depth Ori. Err LCCN Speed-up
ResNet [12] 164* 24.33 24.74 21.30%

WRN [35]

16-4 24.53 24.83 15.19%
22-8 21.22 21.30 14.42%
40-1 30.89 31.32 36.28%
40-2 26.04 26.91 45.61%
40-4 22.89 24.10 34.27%
52-1 29.88 29.55 22.96%

Table 6. Top-1 error and speed-up of seven different CNN models
on CIFAR-100 (symbol “*” means the bottleneck structure). Ori.
Err represents the top-1 error of the original convolution network.

Experiments show our LCCL works well on much
deeper convolutional networks, such as pre-activation
ResNet-164 [12] or WRN-40-4 [35]. Convolutional oper-
ators dominate the computation cost of the whole network,
which hold more than 90% of the FLOPs in residual based
networks. Therefore, it is beneficial for our LCCN to accel-
erate such convolutionally-dominated networks, rather than
the networks with high-cost fully connected layers. In prac-
tice, we are always able to achieve more than a 30% calcu-
lation reduction for deep residual based networks. With a

similar calculation quantity, our LCCL is capable of out-
performing original deep residual networks. For exam-
ple, on the CIFAR-100 dataset, LCCN on WRN-52-1 ob-
tains higher accuracy than the original WRN-40-1 with only
about 2% more cost in FLOPs. Note that our acceleration is
data-driven, and can achieve a much higher speedup ratio on
“easy” data. In cases where high accuracy is not achievable,
it predicts many zeros which harms the network structure.

Theoretically, the LCCN will achieve the same accuracy
as the original one if we set LCCL as an identity (dense)
network. To improve efficiency, the outputs of LCCL need
to be sparse, which may marginally sacrifice accuracy for
some cases. We also observe accuracy gain for some other
cases (WRN-52-1 in Table 6), because the sparse structure
can reduce the risk of overfitting.

4.3. Experiments on ILSVRC-12

We test our LCCN on ResNet-18, 34 with some struc-
tural adjustments. On ResNet-18, we accelerate all convo-
lutional layers in the residual block. However, ResNet-34
is hard to optimize with all the convolutional layers acceler-
ated. So, we skip the first residual block at each stage (layer
2, 3, 8, 9, 16, 17, 28, 29) to make it more sensitive to col-
laboration. The performance of the original model and our
LCCN with the same setting are shown in Table 7.

Depth Top-1 Error Top-5 Error Speed-upResNet LCCN ResNet LCCN
18 30.02 33.67 10.76 13.06 34.6%
34 26.58 27.01 8.64 8.81 24.8%

Table 7. Top-1 and Top-5 Error of LCCN on ImageNet classifica-
tion task.

We demonstrate the success of LCCN on ResNet-
18, 34 [12], and all of them obtain a meaningful speedup
with a slight performance drop.

Depth Approach Speed-Up Top-1 Acc. Drop Top-5 Acc. Drop

18
LCCL 34.6% 3.65 2.30
BWN ≈ 50.0% 8.50 6.20
XNOR ≈ 98.3% 18.10 16.00

34 LCCL 24.8% 0.43 0.17
PFEC 24.2% 1.06 -

Table 8. Comparison with other acceleration methods on ResNet.
Acc. Drop represents the accuracy drop.

We compare our method with other state-of-the-art
methods, shown in Table 8. As we can see, similar to other
acceleration methods, there is some performance drop.
However, our method achieves better accuracy than other
acceleration methods.

4.4. Theoretical vs. Realistic Speedup

There is often a wide gap between theoretical and realis-
tic speedup ratio. It is caused by the limitation of efficiency
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of BLAS libraries, IO delay, buffer switch or some others.
So we compare the theoretical and realistic speedup with
our LCCN. We test the realistic speed based on Caffe [19],
an open source deep learning framework. OpenBLAS is
used as the BLAS library in Caffe for our experiments. We
set CPU only mode and use a single thread to make a fair
comparison. The results are shown in Table 9.

Model FLOPs Time (ms) Speed-up
CNN LCCL CNN LCCL Theo Real

ResNet-18 1.8E9 1.2E9 97.1 77.1 34.6% 20.5%
ResNet-34 3.6E9 2.7E9 169.3 138.6 24.8% 18.1%

Table 9. Comparison on the theoretical and realistic speedup.

Discussion. As shown in Table 9, our realistic speedup
ratio is less than the theoretical one, which is caused mainly
by two reasons. First, we use data reconstruction and
matrix-matrix multiplication to achieve the convolution op-
erator as Caffe [19]. The data reconstruction operation costs
too much time, making the cost of our LCCL much higher
than its theoretical speed. Second, the frontal convolution
layers usually take more time but contain less sparsity than
the rear ones, which reduces the overall acceleration effect
of the whole convolution neural network. These two defects
can be solved in theory, and we will focus on the realistic
speedup in future.

Platform. The idea of reducing matrix size in convolu-
tional networks can be applied to GPUs as well in principle,
even though some modifications on our LCCN should be
made to better leverage the existing GPU libraries. Further,
our method is independent from platform, and should work
on the FPGA platform with customization.

4.5. Visualization of LCCL

Here is an interesting observation about our LCCL. We
visualize the results of LCCN on PASCAL VOC2007 [6]
training dataset. We choose ResNet-50 as the competitor,
and add an additional 20 channels’ convolutional layer with
an average pooling layer as the classifier. For our LCCN,
we equip the last 6 layers of this competitor model with our
LCCL. After fine tuning, the feature maps generated from
the last LCCL and the corresponding convolutional layer
of the competitor model are visualized in Fig. 4. As we
can observe, our LCCL might have the ability to highlight
the fields of foreground objects, and eliminates the impact
of the background via the collaboration property. For ex-
ample, in the second triplet, car and person are activated
simultaneously in the same response map by the LCCL.

At the first glance, these highlighted areas look similar
with the locations obtained by attention model. But they
are intrinsically different in many ways, e.g., motivations,
computation operations, response meaning and structures.

-

Figure 4. The feature maps (after ReLU) generated from the
last LCCL of our LCCN and the corresponding convolutional
layer of ResNet-50 are visualized for testing samples of PASCAL
VOC2007 dataset. Each triplet represents one picture and its cor-
responding feature maps. The activated area of LCCL seems high-
light more foreground objects than that of ResNet-50. In the mean-
time, LCCL is possible to depress the background area.

5. Conclusion

In this paper, we propose a more complicated network
structure yet with less inference complexity to accelerate
the deep convolutional neural networks. We equip a low-
cost collaborative layer to the original convolution layer.
This collaboration structure speeds up the test-phase com-
putation by skipping the calculation of zero cells predicted
by the LCCL. In order to solve the the difficulty of achiev-
ing acceleration on basic LCCN structures, we introduce
ReLU and BN to enhance sparsity and maintain perfor-
mance. The acceleration of our LCCN is data-dependent,
which is more reasonable than hard acceleration structures.
In the experiments, we accelerate various models on CI-
FAR and ILSVRC-12, and our approach achieves signifi-
cant speed-up, with only slight loss in the classification ac-
curacy. Furthermore, our LCCN can be applied on most
tasks based on convolutional networks (e.g., detection, seg-
mentation and identification). Meanwhile, our LCCN is
capable of plugging in some other acceleration algorithms
(e.g., fix-point or pruning-based methods), which will fur-
ther enhance the acceleration performance.
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