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Highlights 

 

 Particle size of coconut media did not alter removal efficiency for any 

pollutants. 

 Adding activated carbon to the media increased the removal efficiency for 

VOCs. 

 Gas removal efficiency plateaued as activated carbon concentrations 

approached 50%. 

 The addition of activated carbon negatively influenced biofilter PM removal. 
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Abstract 

 

Functional green walls are gaining attention due to their air cleaning abilities, 

however the air cleaning capacity of these systems may be improved through 

substrate modification. This experiment investigated the capacity of several green 

wall media to filter a range of air pollutants. Media, consisting of differently sized 

coconut husk-based substrates, and with different ratios of activated carbon were 

evaluated through the use of scaled down model ‘cassettes’. Tests were conducted 

assessing each substrate's ability to filter particulate matter, benzene, ethyl acetate and 

ambient total VOCs. While the particle size of coconut husk did not influence 

removal efficiency, the addition of activated carbon to coconut husk media improved 

the removal efficiency for all gaseous pollutants. Activated carbon as a medium 

component, however, inhibited the removal efficiency of particulate matter. Once the 

substrate concentration of activated carbon approached ~50%, its gas remediation 

capacity became asymptotic, suggesting that a 50:50 composite medium provided the 

best VOC removal. In full-scale botanical biofilter modules, activated carbon-based 

substrates increased benzene removal, yet decreased particulate matter removal 

despite the addition of plants. The findings suggest that medium design should be 

target pollutant dependent, while further work is needed to establish plant viability in 

activated carbon-based media. 

 

Keywords 

 

Air quality; biofilter; VOC; PM; bioremediation   

 

 

1 Introduction 

 

There is a growing need to enhance indoor air quality and maintain it at 

acceptable levels through energy efficient technologies [1, 2]. In recent decades, 

significant research has demonstrated the potential of potted-plants to remove a range 

of volatile organic compounds (VOCs) [3-9], with the mechanism of removal largely 

attributed to microbial degradation of pollutants that diffuse into the potted-plant 

substrate [4, 5, 7, 8]. The efficacy of potted-plants notwithstanding, their application 

for VOC removal in situ may be less efficient than demonstrated in many laboratory 

studies, due to pollutant removal capacity overestimates stemming from the use of 

small test chambers with high concentrations of pollutants [10].  

Green wall technology, specifically active botanical biofiltration, builds upon 

the remediation capacities of potted-plants through the use of active airflow to the 

substrate, and greater plant density for a given floor area [11]. In these systems, the 

volume of polluted air to which the system is exposed is increased by actively 

drawing air through the substrate, which is kept moist by regular irrigation. In doing 

so, polluted air is drawn through the porous substrate, which supports a microbial 

population capable of VOC degradation [12]. In this process, gaseous pollutants are 

removed in three steps: firstly, they are transferred from the gas phase to the liquid 

film within the biofilter; secondly, pollutants diffuse within the film; and finally, 

pollutants diffuse to substrate microbial cells where they are degraded, or are 

otherwise adsorbed onto the packing material of the biofilter [13]. It is therefore 

advantageous to use relatively porous materials with large surface areas to increase 
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liquid film area, reduce the diffusion pathway length between film and adsorption 

site, and to increase the number of adsorption sites [14]. 
Studies of other vegetated filtration systems have demonstrated that media 

plays a critical role in their functionality, as the substrate not only provides the 

physical support for plants, but facilitates the primary removal processes for 

pollutants. Green wall systems designed specifically for pollution removal have 

focused on the use of use coco-coir [15, 16]. However, it is unclear how this media 

would perform under varying pollutant loading of different pollutants. Prodanovic et 

al. [16] investigated the processes that govern pollutant removal performance of coir 

media in green walls and suggested that a combination of coir with adjunct substrates 

might prove to be the best option for optimal application in green walls for pollutant 

removal. 
Previous studies have highlighted activated carbon as an excellent adsorbent 

for VOCs in botanical [3, 17] and microbial biofilters [18-22]. While activated carbon 

is known to be an effective substrate in microbial biofilters, its application in 

botanical biofilters requires it to also provide conditions that support plant health. 

Aydogan and Montoya [3] trialed a number of novel substrates for VOC removal and 

found a substrate consisting of wetted activated charcoal removed formaldehyde 

efficiently, but could not sustain long term plant health. Wang and Zhang [17] 

developed a botanical air filtration substrate composed of a 50:50 mix (by volume) of 

shale pebbles and activated charcoal, recording high removal rates for formaldehyde 

and toluene, however it was unclear which substrate components were responsible for 

the VOC removal. Furthermore, activated carbon-based botanical biofilters have not 

previously been assessed for their particulate matter (PM) filtration capacity, thus 

further research is needed before such systems can be comprehensively evaluated for 

practical use in air cleaning systems that target multiple pollutants.  

The addition of activated carbon to the plant growth substrate in a botanical 

biofilter system may substantially enhance these systems’ potential to efficiently 

remove gaseous pollutants. Research is, however, required to assess the quantitative 

effects of the addition of activated carbon. The research presented here aimed to 

optimize the pollutant removal capacity of an existing botanical biofilter system 

through substrate modifications. This was achieved by characterizing the benzene, 

ethyl acetate, ambient TVOC and PM single pass removal efficiency (SPRE) 

performance of three sizes of coconut husk biofilter substrates. Then, using the best 

performing substrate size fraction with the incorporation of activated carbon 

adsorbents, further possible improvements in pollutant removal were tested. Finally 

the best performing substrate identified was tested in a full-scale botanical biofilter 

with plants, using the species Nephrolepis exaltata bostoniensis, as this species has 

previously been identified as an efficient phytoremediator of PM [23] and VOCs  [7, 

24]. 

 

2 Methods 

 

2.1 Test cassettes  

 

To test the effectiveness of different substrates on reducing VOC and PM, 

substrate cassettes were designed to facilitate the use of a large number of fully 

independent replicates (Figure 1). Previous work has shown that repeated exposure of 

the plant / microbe system to VOCs enhances draw down rates [25], and thus would 

introduce severe carry over effects if samples were used more than once. Further, it 
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has been demonstrated that the performance of air cleaning media at repeated doses of 

VOCs cannot directly reflect their performance at typical indoor concentrations [25].  

Cassettes were constructed from PVC piping (85 x 85 mm, 482.1 cm3). Media 

were encased within a loose weave high-density polyethylene (HDPE) membrane 

within the PVC housing unit. A diameter of 85 mm was chosen to match the air intake 

inlet of a green wall module that has previously been tested for air pollutant 

remediation [23, 26, 27], while an 85 mm depth corresponds to the approximate 

shortest horizontal airflow path length through these green wall units, thus this design 

reflected airflow that followed the path of least resistance through the central outlet at 

the front face of the green wall unit; resulting in a conservative estimate of system 

performance. 

 

 
Figure 1. Cassettes that contained the test substrates.  

 

2.2 Medium combinations tested  

 

2.2.1 Coconut husk-based media 

Three different sized fractions of coconut husk-based media were trialed, with 

each treatment independently replicated 6 times (Figure 2). These consisted of a fine 

fraction (coir fibers with a diameter of ~0.5 mm), a medium fraction (particles of 5–

15 mm) and a coarse fraction (particles of 8–35 mm). Coconut husk has been used in 

several functional green wall studies, with the literature thus far indicating that it is a 

functional substrate for active green walls and is capable of serving as packing media 

in biofilters. Coconut husk used in biofilters typically has a water content of 72.5 %, 

is 95% organic matter, has a specific surface area of 0.75 m2/g, and has a water 

holding capacity of 5.5g[H20]/g dry material. All media were packed to a density 

equivalent to that used in green wall modules. Media were tested for air pollutant 

removal after saturation to field capacity and draining overnight.  
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Figure 2. The different coconut-based media. Pictured from left to right: fine, 

medium and coarse grades. 

 

2.2.2 Carbon based media  

Using the results from Section 2.2.1, the highest performing coconut husk 

substrate was used for a series of trials that incorporated differing proportions of 

granular activated carbon (GAC; EA1000 4 mm; Activated Carbon Technologies Pty 

Ltd, Melbourne, Australia). This GAC is specifically made for the removal of 

atmospheric VOCs, and is manufactured from steam-activated coal, producing a large 

surface area and high degree of microporosity [28]. Typical analysis provided by the 

manufacturer for the activated carbon indicates the apparent density is 0.45-0.50 

g/mL, moisture as packed is 2%, surface area is 1000m2/g min, and carbon 

tetrachloride activity is 65% min. The following ratios of coarse coconut husk to 

GAC by volume were assessed: 0:100, 10:90, 20:80, 30:70, 40:60, 50:50, 60:40; with 

the coarse coconut husk and GAC having bulk densities of ~0.20 g/cm3 and ~0.52 

g/cm3 respectively. Each ratio was replicated 4 times. Prior to cassette construction, 

the GAC was rinsed thoroughly with water to remove residual fine particles. Before 

testing, all substrate media used in the experiments were watered to field capacity (the 

maximum volume of water the substrate can hold) and left to drain overnight.  

 

2.2.3 Full-scale botanical biofilters 

In order to produce practical outcomes for the horticultural infrastructure 

industry, the air cleaning potential of the optimized system was tested to indicate how 

efficiently VOCs and PM could be removed by complete biofilter-modules containing 

the modified substrate. Additionally, these trials incorporated any effects caused by 

plant interactions with the substrate. 

 The most efficient substrates identified in Sections 2.2.1 and 2.2.2 were used 

in full-scale active green wall modules containing plants (Figure 3). These 

experiments utilized the biofilter modules previously described by Irga et al. [26]. For 

these experiments, all green wall modules utilized the species Nephrolepis exaltata 

bostoniensis as the botanical component. 
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Figure 3. A full-scale green wall module containing Nephrolepis exaltata 

bostoniensis. 

 

2.3 Experimental set up  

The experiments used a flow-through chamber set up to assess air pollutant 

SPREs (Figure 4). The flow-through procedure used a sealed Perspex chamber (0.6 X 

0.6 X 0.6 m; 216 L), with one removable side, thus allowing cassette or green wall 

module placement in the chamber. Ducting from one side of the chamber led to a 

secondary chamber in which air pollutants were generated. Air pollutants flowed 

through the fitted ducting with active airflow provided by an in-duct axial impeller 

(FANTECH TEF-100 fan 16 W), before flowing through the biofilter. A second fan 

within the chamber was used to create a homogenous concentration of pollutants, and 

limited precipitation of particles before exhaust into another ducting system that led to 

an additional chamber that housed air pollutant concentration monitoring instruments. 

Air was exhausted to waste through a vacuum exhaust after sampling. Vacuum 

pressure was adjusted such that the pressure drop across the cassettes or green wall 

modules approximated that which occurs when the system is running unrestricted 

(~24.5 Pa [29]). The pressure drop of all substrate types was quantified individually to 

determine the required vacuum pressure (see Section 2.4).  ACCEPTED M
ANUSCRIP
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Figure 4. Flow-through chamber set up used to assess single pass removal 

efficiencies. A = pollutant generation chamber; B = axial impeller; C = cassette 

holding substrate (or active botanical biofilter); D = Perspex chamber; E = 

dispersal fan; F = pollutant detecting instrument; G = vacuum exhaust.  

Trials for each pollutant were run independently, i.e. with a single pollutant 

type per run. Media were tested for their SPRE of a high dose and ambient 

concentration of PM, as well as vapor phase ethyl acetate, benzene and ambient total 

volatile organic compounds (TVOCs).  

High dose PM was generated by burning 2 μL of filtered retail-grade diesel 

fuel (Shell) absorbed onto a 0.75 cm2 536:2012 80 gsm square of paper in the 

pollutant generation chamber, providing a particle concentration and size distribution 

similar to some polluted environments [30] (for particle size distribution details, see 

Table 1S). Trials for each replicate were recorded for 8 minutes, which was sufficient 

time for the PM concentration to return to ambient levels for all treatments. Ambient 

PM trials were run using the same method, without generating any PM, therefore 

assessing each substrate’s capacity to filter ambient PM from the laboratory 

atmosphere (see Table 2S). The average particle density and size distribution of the 

filtered airstream was measured with a laser nephelometer (Graywolf PC- 3016A, 

Graywolf Sensing Solutions, Connecticut, USA; counting efficiency: 50% at 0.3 µm; 

100% for particles >0.45 µm (as per ISO 21501-4) with a concentration limit of 

4,000,000 particles / ft3 at 5% coincidence loss). To ensure data independence, 

average PM concentration was recorded for five mutually exclusive PM fractions: 

PM0.3-0.5, PM0.5-1.0, PM1.0-2.5, PM2.5-5.0, and PM5.0-10.0.  

Media were also tested for their SPREs of gaseous ethyl acetate and benzene. 

Both of these VOCs are problematic in indoor environments [31, 32], and were 

chosen to assess how the system treats relatively hydrophilic VOCs (ethyl acetate: 

solubility at 25°C = ~80.3g/L [33]) and relatively hydrophobic VOCs (benzene: 

solubility at 25°C = ~1.71g/L [34]). Trials were additionally conducted with ambient 

total VOCs (TVOCs) to assess the removal efficiency at low-level (500-600 ppb) 

concentrations. VOC removal was tested using the flow-through chamber method 

previously described, with benzene and ethyl acetate generated by placing 4.0 mL of 

the liquid chemical into a 10 mL sealed glass vial and extracting 2.5 mL of the vapor 

saturated headspace with a gas chromatograph syringe, before injection into the 

pollutant generation chamber of the flow through system. Each injection put through 

either 1.275 x 10-5 or 1.253 x 10-5 mol of gaseous benzene and ethyl acetate 

respectively. The concentration of the effluent gas was monitored with a 
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photoionization detector (ppbRAE 3000, RAE Systems, San Jose, CA, USA), which 

has a detection resolution of 1 ppbv of VOC concentrations ranging from 1 ppbv to 

10000 ppbv. Ambient laboratory air TVOCs were measured and assessed in a similar 

manner without any VOC generation. In these trials, the labs ambient air with an 

average TVOC concentration of 585.12 ± 52.67 ppbv was continuously flowing 

through the chamber.  
Blank (empty chamber) control data for all PM and VOC treatments were 

assessed to ensure that the flow through system without media did not affect PM or 

VOC concentrations. All test cassettes and full-sale botanical biofilters used the 

experimental set up described above to test their SPREs of air pollutants. For trials 

that tested the SPREs of full-scale botanical biofilters, these modules were placed 

within the flow-through chamber, in the location denoted ‘C’ in Figure 4. 

 

2.4 Performance evaluation and substrate characteristics  

All biofilter trials were compared to a control specific to each pollutant, which 

was obtained using the same process without any biofilter in the chamber. This 

procedure was replicated ≥ 10 times for each pollutant to provide an accurate measure 

of the generated pollutant concentrations (see Tables 1S-3S). The SPRE for each 

pollutant treatment was calculated as the difference between air pollutant 

concentration within the duct with and without the application of the biofilter 

treatments. 

In addition to the pollutant removal characteristics of the media, the air filled 

porosity, substrate water holding capacity and pressure drop were determined for each 

treatment. Air filled porosity is the proportion of a medium that is filled with air and 

thus indicates the degree of aeration of the medium [35], and is therefore an important 

consideration for a medium subject to active airflow. Air filled porosity was measured 

as the volume of water displaced by a known volume of saturated substrate. 

Substrate water holding capacity is important for plant health, but may also 

affect pollutant filtration [36]. Water holding capacity was measured as the difference 

in mass between cassettes that were watered to field capacity and allowed to drain for 

1 day, and the cassettes’ corresponding mass after drying at 60 °C for 1 week to 

remove all free water. Pressure drop is the resistance to airflow across each cassette. 

The pressure drop across each treatment cassette was measured with a Sensirion 

digital sensor (SDP610 125 Pa) placed between the fan and the cassette. Values were 

recorded every second over a ~2 minute period, providing an average pressure drop 

value for each substrate treatment.  

 

2.5 Data analysis  

To compare PM SPRE across the three different sized coconut husk-based 

particles, two separate one-factor PERMANOVAs (PAST Ver 3.15) were conducted. 

One-factor ANOVAs (IBM SPSS Statistics Ver 21) were conducted to compare the 

SPREs of ethyl acetate, benzene, and ambient TVOCs amongst the different coconut 

husk-based treatments, and also for the coconut husk-based treatments to compare 

pressure drop, air filled porosity and water-holding capacity.  

To assess the influence of GAC concentration as a predictor for the SPRE of 

VOCs, independent non-linear logarithmic loss function regression analyses (IBM 

SPSS Statistics Ver 21) were conducted. Three independent general linear model 

regression analyses (IBM SPSS Statistics Ver 21) were conducted to determine if the 

percentage of GAC significantly influenced the variation in pressure drop, air filled 

porosity and water holding capacity.  
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The best performing GAC-based substrate and the best performing coconut 

husk-based substrate were compared in full-scale botanical biofilter modules for air 

pollutant removal. The SPRE of ethyl acetate and benzene between treatments were 

compared using ANOVA. To compare the PM filtration performance between the 

treatments, a multivariate PERMANOVA was used, with the SPRE of the mutually 

exclusive PM fractions as independent response variables. 

 

3 Results and Discussion 

3.1 Coconut husk-based substrates 

The coconut husk-based substrate results for the SPRE of the tested pollutants 

are presented in Figure 5. There were no significant differences in the SPRE of PM 

amongst the differently-sized coconut husk-based substrates for both the high dose 

PM treatment (pseudo-F = 2.813, p = 0.060) and the ambient PM treatment (pseudo-F 

= 0.897, p = 0.509). ANOVA revealed that there were no significant differences in the 

SPRE of ethyl acetate (F = 1.249, p = 0.315), benzene (F = 0.731, p = 0.498), and 

ambient TVOCs (F = 0.727, p = 0.5) amongst the coconut husk treatments. It should 

be noted in the following figures that SPREs < 0 indicate that the treatments were 

releasing PM into the outlet duct. 

Whilst no differences were observed for pollutant removal across the 

substrates, significant differences in pressure drop were recorded (Table 1; F = 

27.852, p < 0.000). Post-hoc Tukey HSD tests showed that the coarse substrate had a 

significantly lower pressure drop than the fine and medium substrates (p < 0.000 for 

both comparisons). Further, significant differences amongst the water holding 

capacities of the different coconut husk-based substrates were found (Table 1; F = 

37.980, p < 0.000). Post-hoc Tukey HSD tests found all treatments to have 

significantly different water holding capacities relative to each other, with the coarse 

substrate’s water content significantly lower than both other media (p < 0.000 for both 

comparisons), and the fine medium significantly higher than the medium substrate (p 

= 0.043). Additionally, air filled porosity was significantly different between 

treatments (Table 1: F = 134.756, p < 0.000). Post-hoc Tukey HSD revealed that the 

coarse substrate had a significantly higher air filled porosity than both the fine and 

medium substrates (p < 0.000 for both comparisons). 
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Figure 5. Average SPREs (%) recorded by the fine, medium and coarse coconut 

husk-based media treatments (n = 6). A = ambient PM SPRE; B = High dose PM 

SPRE; C = VOC SPRE. Error bars represent standard error of the mean. No 

significant differences in the SPRE of the high dose PM treatment, ambient PM 

treatment, ethyl acetate, benzene and ambient TVOCs. 

 Unexpectedly, the fine and medium particle size coconut fibre substrates 

appeared to emit some PM during the trials (Fig 5), with some PM2.5–10 emitted in the 

ambient PM trial, and PM0.3-1 released in the high dose SPRE trial. It should be noted 

that the ordinate scales of these figures are in units of percentage of the initial dose, so 

the absolute % values of PM cannot be compared between figures 5a and b. Whilst 

we cannot determine why different PM fraction sizes were emitted between these two 

trials, clearly the release of PM from a system designed for indoor air treatment is 

detrimental to its overall performance. Although it is likely that the release of these 

particles would decline with longer-term use of the biofilter’s ventilation system, we 

must nonetheless present these findings as further evidence that the smaller fraction 

coconut fibre substrates are inferior for practical use. 

 

Table 1. The water holding capacity, pressure drop and air filled porosity of the 

fine, medium and coarse coconut husk-based substrates. Values represent 

averages ± standard error of the mean (n = 6). 

Substrate 

Water holding capacity 

(%) 

Pressure drop 

(Pa) 

Air filled porosity 

(%) 

Coarse 41.03 ± 1.26* 52.87 ± 0.31* 53.27 ± 0.98* 

Medium 50.82 ± 1.40* 55.29 ± 0.19 31.34 ± 0.85 

Fine 55.64 ± 1.45* 55.50 ± 0.31 28.24 ± 1.57 

* indicates statistically significant at p < 0.000. 

These findings indicate that the coarse coconut husk material was the best 

performing substrate, due to its significantly lower pressure drop and equivalent 

pollutant removal performance. The pressure drop findings are unsurprising due to the 

significantly higher air filled porosity of the coarse medium. Although particle size 

does not theoretically affect porosity for well-sorted particles [37], the larger 

variability in size and shape of the coarse media resulted in a larger air filled porosity. 

A lower pressure drop is desirable as it allows a greater volume of air to be processed 

by the biofilter, while media with higher pressure drops require greater mechanical 

ventilation energy to process equivalent volumes of air. Similarly, the water holding 

capacity is an important metric for plant growth, and although the coarse substrate 

had a significantly lower water holding capacity than the other coconut husk-based 

substrates, it’s capacity has been shown to be sufficient to maintain plant health with a 

manageable watering regime [38]. The apparent release of PM by several treatments 

was very surprising, and is discussed in the following section. 

Due to the favorable properties of the coarse coconut husk-based media, it was 

selected as the base substrate for the subsequent GAC trials.  

 

3.2 Granular activated carbon and coconut-based media 

 All treatments showed highly variable SPREs for both the ambient and high 

dose PM concentrations. It is possible that this variability could be reduced with the 

addition of plants due to their functional role in increasing PM filtration efficiency 
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[23]. Significant differences amongst media with different portions of GAC were 

observed for their high dose PM SPREs for several independently-sized PM fractions 

(Figure 6; PERMANOVA: pseudo-F = 3.621, p < 0.000), with the location of this 

difference due to the apparent release of PM by the 60% GAC treatment relative to 

the 0% treatment. No significant differences amongst the media were observed for 

ambient PM SPREs (Figure 6; PERMANOVA: pseudo-F = 1.954, p = 0.0518).  

Despite a lack of significant differences among treatments for ambient PM 

SPRE, there were several instances where the PM SPRE of the GAC treatments was 

negative, indicating that these substrates were generating PM above ambient 

concentration. This was particularly evident in the 30% and 40% GAC treatments, 

which generated considerable concentrations of the PM0.3-0.5, PM2.5-5 and PM5-10 

fractions. The nature of this PM release is currently unknown, although it is possible 

that these particles may be water droplets, which are known to be detected with laser 

nephelometry [39]. Alternatively, GAC pellets consist of compressed fine particles 

and it is possible that some became aerosolized under active airflow. Further work 

that characterizes the composition of these particles is needed to make this distinction. 

This marks an important finding, as previous studies that have highlighted GAC as an 

effective filter for VOC removal have not assessed PM release (e.g. [17]).  

A series of non-linear logarithmic loss function regression analyses indicated 

that the concentration of GAC significantly predicted the SPRE of ethyl acetate 

(Figure 7A; F = 65.466, d.f. = 1 and 22, R2 = 0.748, p < 0.000) benzene (Figure 7B; F 

= 29.582, d.f. = 1 and 22, R2 = 0.573, p < 0.000) and ambient TVOCs (Figure 7C; F = 

5.528, d.f. = 1 and 22, R2 = 0.201, p = 0.028).  
A series of general linear model regressions found that the percentage of GAC 

in the media did not significantly influence substrate pressure drop (Table 2; R2 = 

0.099, p = 0.173), air filled porosity (Table 2; R2 = 0.013, p = 0.713) or water holding 

capacity (Table 2; R2 = 0.246, p = 0.061), while the low R2 values in every case 

indicated that the percentage of GAC in the media accounted for very little variability 

in these three dependent variables. 
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Figure 6. Average PM SPRE (%) across a range of independent PM sizes media 

with different concentrations of GAC (n = 4). Figure legends represent the ratio 

of GAC to coconut husk; A = ambient PM SPRE; B = high dose PM SPRE. 

Error bars represent standard error of the mean.  
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Figure 7. Average SPRE (%) across media containing different ratios of GAC to 

coconut husk (n = 4). A = ethyl acetate SPRE; B = benzene SPRE; C = Ambient 

TVOC SPRE. Error bars represent standard error of the mean. 

 

ACCEPTED M
ANUSCRIP

T



15 
 

Table 2. The water holding capacity, pressure drop and air filled porosity of 

substrates with varying concentrations of granular activated carbon. Values 

represent averages ± standard error of the mean (n = 4). 

GAC to coarse 

coconut husk 

ratio 

Water holding capacity 

(%) 

Pressure drop 

(Pa) 

Air filled 

porosity (%) 

0:100 41.03 ± 1.26 52.65 ± 0.38 52.17 ± 1.08 

10:90 46.63 ± 1.73 51.35 ± 0.39 49.77 ± 2.06 

20:80 46.45 ± 1.07 50.64 ± 0.36 51.60 ± 1.24 

30:70 45.63 ± 0.88 51.41 ± 0.13 45.10 ± 2.20 

40:60 43.42 ± 0.49 51.30 ± 0.47 51.23 ± 0.92 

50:50 42.16 ± 0.48 53.16 ± 0.36 51.81 ± 1.09 

60:40 41.59 ± 0.96 53.05 ± 0.25 49.73 ± 1.86 

* no regression analyses were statistically significant at p = 0.05. 

 

 The addition of higher proportions of GAC improved the ethyl acetate, 

benzene and ambient TVOC SPREs. As the GAC to coconut husk ratio in the media 

approached ~50%, the SPRE of these gases plateaued, suggesting that the addition of 

GAC above this level provides no additional performance benefit. This concentration 

of GAC was also used by Wang and Zhang [17], who achieved high removal 

efficiencies for toluene and formaldehyde. The current results have further 

highlighted the value of GAC in biofilter media to remove both hydrophilic and 

hydrophobic VOCs.  

The limitation of GACs capacity to adsorb gaseous pollutants at 50% by 

volume may result from the rate at which the gaseous pollutants transfer to the 

aqueous phase, which must occur before the pollutants can be adsorbed onto the GAC 

[40]. These observations correspond with those of Darlington et al. [1], who recorded 

greater toluene, ethyl benzene and o-xylene biofiltration rates, at lower temperatures, 

which decreased microbial activity but increased the solubility of the tested 

compounds, suggesting that the transition from the gas phase to the solubilized water 

phase is the rate limiting step rather than microbial activity. The current observation 

of the higher SPRE for the more soluble VOC ethyl acetate relative to benzene, 

supports this conclusion. Although a dry medium may remove this limiting step, 

water is essential for plant growth, and therefore testing dry media would be of no 

practical value. There is insufficient time in SPRE trials for significant microbial 

metabolism to occur, thus making VOC removal likely a solely physiochemical 

property of the substrate (which may, nonetheless, be affected by microbial 

properties). 

 Although these findings highlight the potential of certain botanical biofilter 

substrates to filter and / or adsorb various air pollutants, it is possible that the cassette 

results would vary when applied to full-size biofilters that are able to distribute 

pollutants through their larger media volume via a plenum. Furthermore, the 

interaction between plant and substrate should be assessed to determine the system’s 

realistic air cleaning potential. 

 

3.3 Full scale tests 
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This section compared the SPRE of ethyl acetate, benzene and a high dose PM 

treatment between two full-scale green wall modules: one containing a substrate of 

coarse coconut husk only, and the other containing a composite substrate consisting of 

a 50:50 ratio of coarse coconut husk to GAC (by volume).  

The contact time between pollutant and filtration materials ranged between 

11.2 and 11.3 minutes. Significant differences in benzene SPRE were observed 

between treatments (Figure 8; ANOVA, F = 117.39, d.f. = 1, 6, p < 0.000), with the 

composite substrate biofilter recording an average of 25.66% higher benzene removal 

efficiencies than the coarse coconut husk substrate treatment.  

The SPRE of ethyl acetate was exceptionally high across both treatments, with 

both biofilters removing ~78% of the VOC on a single pass. There was no significant 

difference between the treatments (Figure 9; ANOVA, F = 0.003, d.f. = 1, 6, p = 

0.961). 

Multivariate PERMANOVA found significant differences between the 

treatments for the SPRE of a range of PM sizes (Figure 9; pseudo-F = 5.699, p = 

0.033).  

 

 
Figure 8. Average SPRE (%) of VOCs by botanical biofilters (n = 4). Error bars 

represent standard error of the mean. 
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Figure 9. Average ambient PM SPRE (%) across a range of independent PM 

sizes media with different percentages of GAC (n = 4). Error bars represent 

standard error of the mean. 

Both substrates demonstrated similar SPREs for ethyl acetate, despite 

differences between these substrates when trialed in cassette format. The removal 

rates observed indicate that active biofilter ethyl acetate removal may be dependent 

upon an interaction effect between the plants and substrate, with the coarse coconut 

husk substrate removing this VOC more efficiently with plants present. It is possible 

that the plant roots may provide hydrophilic adsorbent sites for ethyl acetate, thereby 

increasing SPRE. Plant roots release a considerable proportion of the plant’s total 

fixed carbon [41, 42]. While this process assists the plants by promoting beneficial 

interactions with the soil microbial community to prevent pathogenic infection and 

increase water and nutrient uptake [43], it also alters the rhizospheric chemical 

composition [44] and can increase the bioavailability and plant uptake of soil 

contaminants [45-47]. Tu et al. [48] found that phytic acid and oxalic acid were the 

primary low molecular weight organic acids released from the roots of N. exaltata 

bostoniensis. It is possible that the presence of these chemicals will increase ethyl 

acetate dissolution into the rhizosphere due to the interaction of the polar functional 

groups of these molecules. It is also possible that the plant root exudates may have 

had a stronger influence on the SPRE of ethyl acetate than the presence of GAC, 

however this trend may not be seen to the same extent with benzene as a result of the 

strongly nonpolar structure of this VOC. Consequently the presence of plants has a 

strong impact on the removal efficiency of different VOCs. Although no study has 

tested the relative effects of different plant species on their SPRE for any VOCs, 

several studies using potted-plants in static chambers have revealed differences 

between species. For example Kim et al. [49] reported differences in formaldehyde 
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removal efficiencies amongst 86 tested species, with ferns recording the highest 

removal rates, followed by herbs and woody foliage plants. These patterns are 

surprising due to clear evidence that VOC removal is driven by microorganisms in the 

root zone [8], suggesting that different plants may be encouraging different substrate 

microbial communities, thus affecting their VOC removal rates. As expected from the 

cassette trials, coconut husk biofilters were more effective at removing PM than 

GAC-containing units. This was most likely due to the co-detection of PM released 

from the GAC substrate filters. 

 The application of GAC as a substrate component improved the benzene 

SPRE of the biofilter, with a removal rate of 60.24%. While previous studies have 

suggested that the biofiltration of VOCs is limited by the rate at which they transfer 

into the aqueous phase [1, 50], it is possible that the combined effects of active 

airflow and highly efficient adsorbents can overcome this limitation even for 

hydrophobic VOCs such as benzene. The presence of water in the substrate possibly 

also increased the capacity of GAC to filter hydrophobic compounds [51]. Although 

GAC has both hydrophobic and hydrophilic adsorption sites [52], the interactions 

between the water and GAC allows water molecules to cluster in the hydrophilic 

micropores of GAC that would otherwise hinder its ability to adsorb hydrophobic 

compounds [36]. Consequently a hydrophobic pollutant, such as benzene, can 

generate a larger driving force for adsorption in the aqueous phase [36]. It is 

noteworthy that the coarse coconut husk substrate recorded a higher benzene SPRE 

than that recorded for the non-botanical coarse coconut husk cassette, however it is 

not known if this was due to a functional role of the botanical component or was 

simply a result of the larger module and/or plenum. 

 The addition of GAC in the composite substrate treatment reduced the 

capacity of the system to filter PM. Reduced PM removal was also a consistent 

characteristic of cassettes containing GAC substrates, and despite the presence of 

plants that are known to improve PM removal efficiency [23], the full scale composite 

substrate botanical biofilter still performed comparatively poorly for PM filtration, 

and in some cases, appeared to emit PM. This is an important finding as other studies 

that have solely tested the VOC removal of GAC based substrates have suggested that 

it is an optimal substrate choice [17]. With the current findings, it is likely that a 

composite substrate should be used with caution or in conjunction with additional PM 

filtration system components. However, if the system was run in situ for an extended 

period of time, it may be possible that PM will be emitted at only the initial run of the 

system, and this release would decline over longer-term use. 

It is clear that different media have different remediation capabilities and that 

some media remediate particular pollutants more efficiently than others. The medium 

traits that influence pollutant remediation also have important ramifications for plant 

health. While the high adsorbent capacity of GAC is beneficial in VOC remediation, 

GAC is also efficient in removing several botanically-important nutrients from 

solution, such as nitrates [53], ammonium [54] and phosphates [55]. Although 

Aydogan and Montoya [3] found that whilst a substrate of 100% wetted activated 

carbon was their best performing media for formaldehyde removal, this medium did 

not sustain long-term plant growth, and was therefore impractical as a botanical 

biofilter substrate. Wang and Zhang [17] however sustained plant health over their 

300-day trial using a 50:50 mix of activated carbon and shale pebbles. At the date of 

writing, the 50% GAC substrate module tested in the current work has effectively 

supported plant growth for 280 days without subsequent fertilization. These findings 

suggest that GAC concentrations above a threshold may not provide conditions that 
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sustain plant health. Green wall plant health is paramount, and further studies are thus 

needed before the viability of a range of plant species grown in such a substrate can 

be confidently established.  

 These results indicate a high air cleaning potential for all active green wall 

substrate treatments, and demonstrate that the application of GAC as a substrate 

component can improve the removal efficiency for certain pollutants. The use of GAC 

in active biofilter media should thus be target pollutant dependent, and tested for PM 

emissions if they may be a problem in a specific application.  
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Table 3. The water holding capacity, pressure drop and air filled porosity of the 

fine, medium and coarse coconut husk-based substrates. Values represent 

averages ± standard error of the mean (n = 6). 

Substrate 

Water holding capacity 

(%) 

Pressure drop 

(Pa) 

Air filled porosity 

(%) 

Coarse 41.03 ± 1.26* 52.87 ± 0.31* 53.27 ± 0.98* 

Medium 50.82 ± 1.40* 55.29 ± 0.19 31.34 ± 0.85 

Fine 55.64 ± 1.45* 55.50 ± 0.31 28.24 ± 1.57 

* indicates statistically significant at p < 0.000. 
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60:40 41.59 ± 0.96 53.05 ± 0.25 49.73 ± 1.86 

* no regression analyses were statistically significant at p = 0.05. 
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