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ABSTRACT
With the explosive usage of smart mobile devices, sustainable access to wireless networks (e.g., WiFi) has
become a pervasive demand. Most mobile users expect seamless network connection with low cost. Indeed,
this can be achieved by using an accurate received signal strength (RSS) map of wireless access points.
While existing methods are either costly or unscalable, the recently emerged mobile crowdsensing (MCS)
paradigm is a promising technique for building RSS maps. MCS applications leverage pervasive mobile
devices to collaboratively collect data. However, the heterogeneity of devices and the mobility of users
could cause inherent noises and blank spots in collected dataset. In this paper, we study (1) how to tame
the sensing noises from heterogenous mobile devices, and (2) how to construct accurate and complete RSS
maps with random mobility of crowdsensing participants. First, we build a mobile crowdsensing system
called iMap to collect RSS measurements with heterogeneous mobile devices. Second, through observing
experimental results, we build statistical models of sensing noises and derive different parameters for each
kind of mobile device. Third, we present the signal transmission model with measurement error model, and
we propose a novel signal recovery scheme to construct accurate and complete RSS maps. The evaluation
results show that the proposed method can achieve 90% and 95% recovery rate in geographic coordinate
system and polar coordinate system, respectively.

INDEX TERMS RSS map; Crowdsensing; Wireless access points.

I. INTRODUCTION
With the proliferation of smart mobile devices, mobile
crowdsensing has become a promising paradigm. Mobile
users can exploit their smartphones to cooperatively perform
large-scale sensing tasks [1]. Based on mobile crowdsensing,
both industry and academia have developed numerous novel
applications [2], such as traffic monitoring [3], [4], route
planning [5], [6], air quality sensing [7], [8], localization [9],
[10] and digital map construction [11]–[13].

Nevertheless, the above crowdsensing applications usu-
ally require high network bandwidth for data transmission.
In terms of cost and efficiency, WiFi networks enable the

compute-intensive applications to provide more reliable com-
puting services for mobile users. For instance, the public
WiFi access points (APs) have been pervasively deployed in
metropolises, especially in indoor environment (e.g., apart-
ments, shopping centers, airports, etc.) [14]. In contrast, the
Quality of Service (QoS) of outdoor WiFi network is difficult
to quantify [15].

The major concerns of outdoor access points are signal
coverage and transmission capacity [16]. These information
can be obtained from the Received Signal Strength (RSS).
However, it is non-trivial to collect complete RSS data in
large areas, and many researchers have put their efforts to
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achieve it. Ayon et al. [17] proposed SpecSense, a platform
for large scale spectrum monitoring. Similarly, Wu et al.
[18] presented CrowdWiFi, a vehicular crowdsensing system
for looking up roadside WiFi networks. In [19], the authors
proposed CRAD, a crowdsensing based approach to detect
rogue APs. The above works focus more on data collection
rather than the accuracy and reliability of raw crowdsensed
RSS data.

However, our experimental results show that the accuracy
and reliability of RSS data can be seriously influenced by the
mobility pattern of users and the heterogeneity of devices.
Even on the same observing spot, the RSS measurements
from different devices can always have mismatches or mis-
alignments. This is due to the differential capabilities of
mobile devices in sensing signals. To address this issue,
in [20], an Expectation Maximization based mechanism is
proposed to compute the maximum likelihood estimation of
sensor noises. Furthermore, Xiang et al. [21] proposed an it-
erative algorithm to reduce the error-rate of crowdsensed RSS
data. Moreover, Kim et al. presented a mobile crowdsensing
framework for large-scale WiFi fingerprinting system [22],
using physical-layout and signal-strength measurements.

Nevertheless, assume that the noises in RSS data can be
reduced or even eliminated, it is still difficult to construct a
complete RSS map. Because the crowdsensed data is usually
incomplete and can not cover every spot on the map. Due
to the different trajectories of mobile users, there are blank
spots without any data in RSS maps. These blank spots are
especially challenging in constructing large-scale RSS maps,
as the sensing cost is in proportion to the crowdsensing
coverage [23]. Wang et al. [24] discussed the above issues
and designed a general framework for sparse mobile crowd-
sensing applications. In [25], the authors proposed a crowd-
sensing based WiFi radio map construction mechanism for
mobile users to choose appropriate access points. Wu et al.
proposed PRESM, a privacy preserving RSS map generation
scheme for crowdsensing networks [26]. However, the above
works neglect the importance of data quality in building WiFi
related digital maps. Therefore, how to construct accurate and
complete RSS maps for outdoor APs remains challenging.

Here, two challenges need to be formally addressed.
• First, how to build accurate RSS maps with unpre-

dictable noises in crowdsensed data. In our experiments,
the difference of collected RSS data between two smart-
phones could be up to 40 dBm. Such noises, either from
the sensing errors or malicious measurements, should
all be fairly tamed for constructing accurate RSS maps.

• Second, how to construct complete RSS maps with the
missing data in blank spots. In practical crowdsensing,
it is hard to fully cover the target area considering the
random mobility of mobile users as well as the overall
cost. The RSS maps need to be accurately constructed
with incomplete sensing data.

In this paper, we propose iMap, towards system implemen-
tation and data analysis for crowdsensing based outdoor RSS
maps. Our system enables mobile users to use their sensor-

embedded smartphones to collaboratively collect RSS data in
the wild. Through systematically analyzing the collected RSS
measurements from heterogenous devices, we have found the
following facts.

• First, although the noise is inevitable, for each type
of smartphones, the crowdsensed data could fit into a
statistical model fairly well. Moreover, the variances be-
tween two different types of smartphones could roughly
fit into a specific linear model. In addition, we recruit
a group of volunteers to collect RSS data with three
different types of smartphones. The experimental results
validate the above claims. Hence, we can leverage the
features of RSS data to estimate the data quality.

• Second, even the crowdsensed RSS data is incomplete,
we can still form a sufficiently sparse matrix on it.
By leveraging compressive sensing methods, we can
sample the sparse matrix to adaptively recover the data
on unsensed spots.

Based on the above observations, in this work, we apply
a model-based mechanism to reduce errors and noises in
RSS data. With more reliable data, we can further apply an
adaptive sparse sampling algorithm to recover RSS data and
build complete RSS maps. The major contributions of this
paper are listed as follows.

• To the best of our knowledge, iMap is the first crowd-
sensing system for constructing accurate and complete
RSS maps in the wild. We develop an application for
mobile users to collect RSS measurements. Meanwhile,
we use a cloud-based central sever for RSS data storage
and processing.

• We conduct real-world experiments and analyze the
RSS data from diverse aspects. Based on the exper-
imental results, we investigate the error models for
heterogenous smartphones.

• We propose a compressive sensing based RSS data sam-
pling and recovery algorithm. The experimental results
show that the proposed algorithm can achieve 90% and
95% recovery rates in geographic coordinate system and
polar coordinate system, respectively.

The rest of paper is organized as follows. We introduce
the design and implementation of iMap system in Section II.
Then, in Section III we present and explore the crowdsensing
experiments to collect RSS data. In Section IV, we propose
the signal propagation model and measurement error model.
We further devise a sparse sampling based algorithm to
recover the blank spots and show the experimental results of
signal recovery. Finally, We conclude this work in Section V.

II. SYSTEM DESIGN
The proposed iMap system is designed for building accurate
and reliable RSS maps. The main functions include RSS data
collection, data processing and RSS map visualisation. By
running iMap application on their smartphones, mobile users
can participate in measuring RSS of surrounding wireless ac-
cess points. In the meantime, iMap will automatically attach
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FIGURE 1: The architecture of iMap system

location information to collected RSS data. The crowdsensed
data is then uploaded to a cloud-based server that is responsi-
ble for calibrating the noises and generating the visualisation
data. With the iMap system, we can leverage crowdsensing
paradigm to measure the signal strength of access points in
large-scale urban areas. Accordingly, we conduct real-world
experiments with iMap in an urban square in Wuxi City,
China. The details of experimental results will be presented
in Section III.

A. DESIGN OVERVIEW
We build the iMap system on two ends, i.e., the user end
and the server end. In the user end, we develop an mobile
application for users to measure RSS values of surrounding
wireless access points. In the server end, we build a cloud-
based online server as a data center, The user’s data is
organised by its location information. We further process the
data through the online server to visualize RSS maps.

The architecture of iMap system is shown in Fig. 1, where
the user-end mobile application consists of four modules.
The content provider is one of the main function modules.
It encapsulates the original crowdsensed data, acting as the
interface for transmitting data to the local database. To dis-
play the collected RSS data of observed at current location,
the locally stored data is sent to user interface module pe-
riodically. Similarly, the local RSS data will be sent to the
connection manager module. The connection manager mod-
ule will handle the communication and data exchange be-
tween smartphones and the central server. We build an online
server based on LeanCloud [27] and implement the Simple
Object Access Protocol (SOAP) in the data input module.
The requests from mobile users of accessing database are
processed through the data input module. Furthermore, we
emulate a JavaScript based interface to extract RSS data
that divided by the geographic information. After that, the
visualisation module will iteratively attach RSS data to the
map. The map information management module is set up to
transfer and store visualisation data into the central database.

FIGURE 2: The overview of iMap mobile application

In the cloud-based central server, the RSS data is organized
by its geographic coordinate. In addition, the online server
provides the participating users with latest RSS dataset for
visualisation on iMap application. We describe the details of
system architectures in the following subsections.

B. SMARTPHONE AS A CLIENT: THE REAL-TIME
MEASUREMENT
In the iMap application (as shown in Fig. 2), we build a
real-time RSS data processing module. As Android operating
system has provided specific classes in signal sensing, we
mainly use four important classes (i.e., WifiManager, Scan-
Result, WifiConfiguration and WifiInfo) in RSS data pro-
cessing module. The WifiManager class provides a variety
of APIs for WiFi management, such as WiFi scanning, es-
tablishing network connection and configuration options. We
instantiate WifiManager class by simply invoking Contex-
t.getSystemService(Context.WIFI_SERVICE). We further
call its public method getScanResults to return a table
list of access points in the latest scan. From this table list,
we can acquire complete information of surrounding access
points, including SSID, MAC address, levels (RSS values),
capabilities and frequency. Considering the generality, we
run the scanning module for 5 times at each sensing spot and
take the average value of crowdsensed RSS data.

C. COMMUNICATION TO THE SERVER: GEOGRAPHIC
DATA PROCESSING
In fact, it is non-trial to build RSS Maps. During signal
sensing process, iMap application uses the LocationManager
class to access the system’s location services. This allows
iMap to obtain real-time updates of each device’s geographic
location. We leverage the location information provided by
either GPS (Global Positioning System) or cellular network
to localize each mobile user and tag coordinate information
to the RSS data. The iMap application will periodically
upload the latest RSS data to the central server through inter-
connection manager. We use Json as the data transmission
format in iMap, and we separate uploaded data in central
server by geographic coordinates. More importantly, the co-
ordinate is also the key unit for RSS visualization. As iMap
application imports the SDK provided by LeanCloud. mobile
users are able to send RSS data from the application to the
cloud-based central server. Once a user opens the application,
the iMap will send update requests to the central server
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and download the latest RSS dataset based on the current
location.

D. CENTRAL SERVER: RSS MAP VISUALISATION
The central server is built on the Lean Cloud and it is
responsible for data aggregation and RSS map visualization.
Considering efficiency and accuracy, we leverage a commer-
cial map platform called ‘Amap’ to visualize RSS maps on
mobile devices. With Amap’s location SDK (software devel-
opment kit) and API (application programming interface), we
apply the getLongitudemethod and getLatitudemethod to
acquire the geographic location of each mobile user. When
users are moving, the requestLocationData method is in-
voked to capture the real-time longitude and latitude data. In
the practical setting, we programme the iMap application to
request for updated geographic coordinates when the change
of location exceeds 5 meters. Meanwhile, iMap will re-
scan wireless access points once the geographic coordinates
are updated. We visualize WiFi access points on Amap by
two steps. First, we use the marker class in the Amap
SDK to mark the individual access point on the map. The
different colors represent the different levels of RSS (high,
medium or low). Second, we apply InfoWindow method to
add information windows on the access points. When a user
clicks the marker, the information window will pop up and
show detailed information about the corresponding access
point.

E. INCENTIVE MECHANISM: DATA ACCESS CONTROL
To motivate more users to participate in RSS map crowd-
sensing, we further design an incentive mechanism with data
access control. By the first-time use of iMap application, a
mobile user can only access the RSS data within the district
he is localized. When a user uploads a new piece data from a
different district, the corresponding RSS data of that district
will be released to the user. Once the RSS data is unlocked,
iMap application will send requests to the central server and
download the new data. The above data access control flow
is automatically executed in the iMap application. In our
future work, we will investigate how to use authentication
mechanism to improve user’s incentive in crowdsensing.

III. EXPERIMENTAL STUDY AND OBSERVATION
By leveraging the iMap system, we first conduct an ex-
perimental study with 18 volunteers from the university.
The volunteers are divided into three groups, using three
different types of smartphones, e.g., Samsung, Motorola and
Smartisan. Each participant takes random walk in a 5000
square-meter urban area for two sessions. In the first session,
the participants walk randomly in groups for 30 minutes.
In the second session, each participant takes random walk
individually for another 30 minutes. In both sessions, the
iMap application is running on each volunteer’s smartphone.
At last, each group will upload the crowdsensed data to
the cloud server. We make the following observations and
analysis on collected data.
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FIGURE 3: Measurement deviations of different smart-
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FIGURE 4: Spatial distribution for the measurement devia-
tions between Samsung smartphone and Moto smartphone

A. DIVERSITY OF RSS MEASUREMENTS
First, we explore the diversity of RSS measurements with
deviation and spatial deviation.

1) Deviations of RSS measurements
Specifically, we compare the deviation of measurements col-
lected by different smartphones in Fig. 3. Here, we use the
measurements of Samsung smartphones as the benchmark.
In Fig. 3(a), the measurement deviations of both Moto and
Smartisan have positive and negative values. This indicates
that the noises caused by heterogeneity are fluctuant. As
illustrated in Fig. 3(b), about 90% of the absolute deviations
between Smartisan and Samsung are less than 15 dBm.
Meanwhile, from Smartisan to Samsung, the absolute de-
viations are within 15 dBm for 80% measurements. If we
narrow down the deviation range, still about 60% of absolute
deviations are less than 10 dBm for Moto’s measurements
and 50% of absolute deviations are less than 5 dBm for Smar-
tisan’s measurements. Note that, the maximum deviations
can be up to 50 dBm for both Moto and Smartisan. The above
results show that, the deviations between the measurements
of different devices are significant and can cause inaccuracy
of RSS map. Hence, noises among heterogeneous devices
need to be carefully addressed.

2) Spatial deviations of RSS measurements
We further explore the spatial distribution of measurement
deviations. In this experiment, we still use the measurements
of Samsung as the benchmark. Fig. 4 shows the measurement
deviations and absolute measurement deviations between
Moto and Samsung in spatial distribution. The deviations are
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FIGURE 6: Probability distribution of the measurement deviations of different devices
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FIGURE 7: Linear relationship between the measurements of different devices
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FIGURE 8: Probability distribution of the residual errors after linear fitting
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FIGURE 5: Spatial distribution for the measurement devi-
ations between Samsung smartphone and Smartisan smart-
phone

randomly distributed, where the large deviations fall into the
area between 15 to 40 meter on X axis and 10 to 50 meter on
Y axis. Most of absolute deviations are smaller than 10 dBm
and only a few exceed 20. Similarly, Fig. 5 shows the spatial
distribution of deviations between Smartisan and Samsung.

There are more negative deviations and the large deviations
fall into the area between 20 to 50 meter on both X and Y
axes. In Fig. 5(b), the absolute deviations are sparse on the
map, showing that there exist noises in RSS data caused by
heterogeneity of devices.

B. EXPLORING MODELS OF MEASUREMENT
DEVIATIONS
Next, we explore the error models of measurement deviations
from RSS measurements among Samsung, Moto and Smar-
tisan.

Firstly, we explore whether the measurement deviations
of different devices satisfy the normal model. As shown in
Fig. 6, we compare the probability distribution of measure-
ment errors with normal fittings. By using the Lilliefors test,
we find that the statistical significance is only 1%, showing
the rejection of normal model assumptions.

Secondly, we explore whether the measurement deviations
satisfy the linear model. As shown in Fig. 7, the measure-
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ments of different devices follow linear models. Specifically,
we calculate the linear fittings as follows. For Samsung vs
Moto, the fitting model is 0.74737x ± 25.6226 with the
standard deviation of 5.63 dBm. For Samsung vs Smartisan,
the fitting model is 0.78078x ± 15.4472 with the standard
deviation of 6.43 dBm. For Moto vs Smartisan, the fitting
model is 0.87764x ± 3.331 with the standard deviation of
5.37 dBm.

Based on above observations, we further explore whether
the residual errors of linear fitting follows the norm model.
As illustrated in Fig. 8, we use the Lilliefors method to test
this assumption. However, the statistical significance is still
1%. Such that, the residual errors do not follow the normal
model.

C. CHALLENGES
Based on the experimental observations, we find that, to
achieve accurate RSS map construction with signal propa-
gation model and measurement error model is non-trivial.
Adding to the blank spots without any RSS data, there are
two challenges need to be formally addressed:

First, modelling the signal propagation and measurement
error. The measurement error model is essential for calibrat-
ing the noises in RSS data of different devices. However, the
model parameters are not known as a prior and the values of
parameters usually depend on the type of mobile devices.

Second, recover signal strength data with incomplete mea-
surements. Although compressed sensing can be used for
data recovering, how to design measurement matrix and
recovery algorithm still remains challenging. The goal is to
extract salient information from the k-sparse or compressible
signals, without damaging signal by the dimensionality re-
duction .

IV. SPARSE SIGNAL RECOVERY DESIGN
In this section, we present how to construct accurate and
complete RSS maps with sparse sampling and signal recov-
ery. Due to the high cost, it is not practical for participants
to collect fully complete RSS data that covers every spot
in a large district. Moreover, it is quite daunting to directly
construct an accurate and complete RSS map with partial
RSS data. Fortunately, compressive sensing methods [28],
[29] are capable of recovering sparse signals with limited
information. Hence, we leverage compressive sensing tech-
niques to recover the complete RSS maps with partially
sampled data. We first build the signal propagation model
and measurement error model. Based on that, we propose
a compressive sensing algorithm to recover RSS data on
unsensed spots.

A. SIGNAL PROPAGATION MODEL AND
MEASUREMENT ERROR MODEL
1) Signal propagation model
We adopt the typical signal propagation model from [30], i.e.,
the Pass-Loss model. The propagation model of a WiFi signal

in the wild can be given as

P kij = P 0
j − 10γj log10( dd0 ), (1)

where P 0
j denotes the transmit power of jth AP, d0 and γj

denote the reference distance and the path-loss exponent,
respectively.

2) Measurement error model
According to the experimental results, we observe that the
RSS measurements from heterogenous devices are linear
with each other. For a specific user i, the k-th measurement
on AP j is denoted as Mk

ij and the fixed error model is given
by:

Ckij = πi ·Mk
ij + ηi, (2)

where πi and ηi are two unknown parameter that depend on
the type of the smartphones.

B. PRELIMINARIES IN COMPRESSIVE SENSING
Compressive sensing is an innovative signal sampling
paradigm compared with Shannon/Nyquist sampling theo-
rem [31]. It is related to several topics in signal processing
[32], including sparse sampling, under-determined linear-
systems and heavy hitters. Compressive sensing theory as-
serts that a relatively small number linear combination of a
compressible or sparse signal can contain most of its salient
information [29].

1) Compressibility of Signals
Consider that a signal x is an one-dimensional signal and it
can be represented by a N × 1 vector in RN with elements
x[n], n = 1, 2, ..., N . Assuming that the basis is orthogonal
and Ψ= [ψ1|ψ2...|ψN ] is a orthogonal N ×N basis with the
vectors {ψi} as columns, then a signal x can be expressed as:

x = ψs, (3)

where s is the N × 1 column vector of weighting coefficients
si = 〈x, ψi〉 = ψTi x, and ·T denotes transposition. In fact,
x and s are the same signals with different domains. While x
is a spatial-temporal domain signal, s is under the ψ domain.
If x ∈ RN is a K-sparse signal, it is a linear combination of
only K basis vectors. Such that, only k nonzero components
exist in the si coefficients. Thus, the information can be
extracted from s by y = Φs, where Φ is an M × N
measurement matrix, y ∈ RM is measurement vector and
M � N .

2) The Problem of Recovering Signals
Different from traditional data acquisition method, compres-
sive sensing [33] [34] directly acquires a compressed signal
representation without requiring N samples. Considering a
general linear measuring process that computes M < N in-
ner products between x and vectors {φj}Mj=1 in yj = 〈x, φj〉,
we arrange the measurements yj in an M × 1 vector y and
set measurement vectors φTj as rows in an M ×N matrix Φ.
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(a) Samsung (b) Smartisan (c) Moto

FIGURE 9: Geographic RSS map constructed with sensing data from different types of smartphones

(a) Samsung (b) Smartisan (c) Moto

FIGURE 10: Polar RSS map constructed with sensing data from different types of smartphones

By substituting Ψ from Equation (3), y can be written as:

y = Φx = ΦΨs = Θs, (4)

where Θ = ΦΨ is an M × N matrix. The measurement
matrix Φ must allow the reconstruction of the length-N
signal x from M < N . The problem of recovering a signal
consists of two parts. First, design a stable Φ such that the
salient information can be extracted from any K-sparse sig-
nal without being damaged by the dimensionality reduction
from x ∈ RN to y ∈ RN . Second, design an efficient signal
recovery algorithm to reconstruct s from y. To address the
first part of the problem, the matrix Θ must satisfy restricted
isometry property (RIP) [34]:

1− ε ≤ ||Θv||2
||v||2

≤ 1 + ε. (5)

That is, the matrix Φ must preserve the lengths of particular
K-sparse vectors and satisfy Equation (5) for an arbitrary
3K-sparse vector v. However, existing studies [34] [33] show
that the RIP condition can be simply achieved with high
probability by selecting Φ as a random matrix, for example,
Gaussian Random Matrices.

To address the second part of the problem, the signal s
could be recovered via `1 optimization as

ŝ = arg
s

min ||s||1, s.t., y = Φs. (6)

Specifically, the signal s can be successfully recovered if Φ
satisfies the condition of RIP and M ≥ cK log(N/K), with
c as a small constant [29] [35].

In our case, when the measurement vector y contains

noise, then the signal s can still be recovered via

ŝ = arg
s

min ||s||1, s.t., ||Φs− y||22 ≤ ε, (7)

where ŝ is the recovered signals of s, s = ψ−1x and ε is the
bound of the noise.

C. RSS MAP CONSTRUCTION WITH PARTIAL RSS DATA

Here, we construct the RSS map with partial RSS data
collected from different types of smartphones, i.e., Samsung,
Smartisan and Moto. In Fig. 9, we construct RSS maps in
geographic coordinate system. The red spots on the maps
are unsensed spots, i.e., spots without available data. We find
that, the RSS data from Samsung performs the best in the
map construction with the least unsensed spots. Meanwhile,
the RSS maps constructed with RSS data from Smartisan are
with the largest number of unsensed spots. In terms of cov-
erage, Samsung and Moto achieves similar performance on
RSS coverage in the maps. However, the Smartisan collects
more sparse RSS data, showing the sensing errors cased by
heterogeneity of mobile devices.

We further construct RSS maps in polar coordinates sys-
tem in Fig. 10. In polar RSS maps, the unsensed spots are
represented by red quadrilaterals. Obviously, the areas with
blank spots are located on the edge of RSS maps. Similarly,
the Smartisan’s measurements on signal coverage are more s-
parse and inaccurate comparing with Samsung’s and Moto’s.
Next, we devise an adaptive algorithm for RSS data sampling
and recovery.
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Algorithm 1 SVT Based RSS Data Sampling and Recovery Algorithm

Input:
Initialize time interval t=0; Initialize fraction of the number of uniform samples ω ∈ [0, 1]

Output:
Recovered measurement matrix T̂ (t+ n);

1: Take uniform sampling to obtain sample set |Ωt|=η ×N ×N to initial measurement matrix M(t) with N ×N entries.
2: for t = [1 : n] do
3: Apply matrix completion and obtain partially recovered matrix T̂ (t):
4: Take an extra uniform sample Ωt+1, where |Ωt+1| = 0.5N logN ;
5: Add Ωt to Ωt+1, i.e., Ωt+1 = Ωt ∪ Ωt+1;
6: Compute new measurement matrix M(t+ 1);
7: Apply matrix completion and obtain new partially recovered matrix T̂ (t+ 1);
8: if T̂ (t+ 1)

∆
= T̂ (t)

9: Sampling Stopping Condition is met, stop sampling;
10: Return M(t+ 1) as the final matrix, break;
11: else
12: for (i, j) /∈ Ωt+1

13: Calculate I(x,y);
14: Select the largest θN logN entries into Ωt+1 into Ωt+1;
15: end if
16: t=t+1;
17: end for
18: return T̂ (t+ i);

(a) Sparse sampling and recovery in geographic coordinate sys-
tem

(b) Sparse sampling and recovery in polar coordinate system

FIGURE 11: One-dimensional sparse sampling and signal recovery

D. ADAPTIVE ALGORITHM FOR RSS DATA SAMPLING
AND RECOVERY
Consider that a WiFi AP covers an area consisting of N ×N
blocks, and we define a sensing matrix TN×N , where the
entry T ixy represents the received signal strength measured
by user i at block (x, y). We propose to adaptively recover
the RSS data matrix with a small number of measurements
at the initial stage. Then, we add more measurements to
the partially recovered data matrix. Here, we adopt Singular
Value Thresholding (SVT) from [36] to reconstruct the RSS
matrix with sequential and adaptive sampling. Based on [37],
we use a information-based metric I to quantify and evaluate
the informativeness of an entry in the sensing matrix as

follows.

I(x,y) =

∣∣∣T̂xy(t+ 1)− T̂xy(t)
∣∣∣

1
2

∣∣∣T̂xy(t+ 1) + T̂xy(t)
∣∣∣ , (8)

where (x, y) is an entry of the N × N matrix, T̂xy(t) and
T̂xy(t+ 1) denote the recovered matrices at time t and time
t + 1, respectively. The value of I(x,y) shows the informa-
tiveness of entry (x, y). If the I(x,y) is large, then the entry
(x, y) should be sampled in the next step. The definition of
Sampling Stopping Condition is as follows.
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(a) Original signals (b) Signal Recovery after sparse sampling

FIGURE 12: Two-dimensional sparse sampling and signal recovery in geographic coordinate system

(a) Original signals (b) Signal Recovery after sparse sampling

FIGURE 13: Two-dimensional sparse sampling and signal recovery in polar coordinate system

Definition 1. Sampling Stopping Condition Given two ma-
trices T̂N×N (t) and T̂N×N (t+ 1), if they satisfy:√∑

(T̂xy(t)− T̂xy(t+ 1))
2√∑

( 1
2 ((T̂xy(t) + (T̂xy(t+ 1)))

2
≤ ε, (9)

where ε is a static constant, we denote that T̂N×N (t)
∆
=

T̂N×N (t+ 1), That is to say, the original matrix has already
been correctly recovered at step t , and the recovery sampling
stops at step t+ 1.

We present the sampling and recovering algorithm as in
Algorithm 1. First, the algorithm takes uniform sampling to
generate a |Ωt|=η × N × N , where the η is the fraction
number of the total samples. Note that a larger η leads to a
higher sampling cost, while a smaller η reduces the reflected
real information in data matrix. Next, the Singular Value
Thresholding based matrix completion is applied to obtain

a partially recovered matrix T̂ (t). After that, the adaptive
samples are taken for generating a new recovered matrix
T̂ (t+1). The algorithm compares the two recovered matrices
to check whether the sampling stopping condition is satisfied,
i.e., T̂ (t + 1)

∆
= T̂ (t). If the condition is satisfied, then the

sampling step stops and the algorithm outputs T̂ (t + 1) as
the final recovered data matrix. Otherwise, the algorithm will
compute I for each entry that is not included in the latest
sample set. The largest θN logN entries will be added into
Ωt+1, where θ=

∑
xy φij

N×N and φ is calculated as follows.

φij =

{
1
|T̂xy(t+1)−T̂xy(t)|
1
2 |T̂xy(t+1)+T̂xy(t)| > µ

0 otherwise
, (10)

where µ is a small constant.
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E. RSS DATA SAMPLING AND RECOVERY RESULTS
We apply the SVT based RSS data sampling and recovery
algorithm on the collected dataset, in both geographic coor-
dinate system and polar coordinate system. We set η and ε
to be 12.5% and 0.05, respectively [37]. We take the average
values of RSS data collected by three types of smartphones.
The total number of measurements is more than 18000 and
the experiment area is divided into 900 sensing blocks.

Fig. 11 shows the one-dimensional sparse sampling and
signal recovery results. We plot the original RSS data with
blue curves and the recovered RSS data with red curves.
Under the geographic coordinate system and polar coordinate
system, the number of sparsely sampled data entries are
287 and 231, respectively. The average recovery error in
geographic coordinate system is relatively higher (26.0121
dBm) than that of polar coordinate system (14.7471 dBm),
showing that the constructed RSS map under polar map is
more accurate.

We further attach the geographic and polar coordinates to
RSS data, making it become two-dimensional. In recovering
the two-dimensional RSS data, the algorithm is set to take on-
ly 240 samples. Fig. 12(a) shows that the original RSS map in
geographic coordinate system is incomplete and inaccurate.
There are blank spots in original RSS Map and the diffusion
of signal is not normal. In Fig. 12(b), the recovered RSS
data has more smooth diffusion and completely covers the
900 sensing blocks, with the recovery rate of 90%. In polar
coordinate system, as revealed by Fig. 13(a), the original RSS
data is more sparse on the map. Nevertheless, the proposed
algorithm still recovers almost all RSS data and achieves a
high recovery rate of 95% in RSS map. The above RSS data
sampling and recovery results demonstrate the validation of
SVT based algorithm in recovering crowdsensed RSS data.
With the recovered RSS data, we can build more accurate
and complete RSS maps for outdoor wireless access points.

V. CONCLUSION
In this work, we have investigated the possibility of building
accurate and complete RSS maps with raw data collected by
heterogeneous mobile devices. We have developed an inno-
vative iMap system for mobile users to crowdsense signals
of outdoor wireless access points. We have further tested
the system with different types of smartphones and observed
the collected RSS measurements with model-based analysis.
To construct accurate and complete RSS maps, we have
devised an compressive sensing based algorithm to recover
RSS data with adaptive sampling. The experimental results
show that the proposed method can achieve accurate and
complete recovery with partial RSS data. The recovery rates
are 90% and 95% in geographic coordinate system and polar
coordinate system, respectively.
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