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Abstract

In matching problems with minimum and maximum type-specific quotas, there may

not exist a stable (i.e., fair and non-wasteful) assignment (Ehlers et al., 2014). This

paper investigates the structure of schools’ priority rankings which guarantees stability.

First, we show that there always exists a fair and non-wasteful assignment if for each

type of students, schools have common priority rankings over a certain number of bot-

tom students. Next, we show that the pairwise version of this condition characterizes

the maximal domain of two schools’ priority rankings over same type students to guar-

antee the existence of stable assignments. To prove the existence theorem, we propose

a new mechanism Deferred Acceptance with Precedence Lists (DAPL), which is feasi-

ble, non-wasteful, strictly PL-fair and group strategy-proof for any priority rankings.

Strict PL-fairness is weaker than fairness, but DAPL satisfies fairness under our suffi-

cient condition. We also show that there is no strategy-proof mechanism that Pareto

dominates DAPL whenever the outcome of DAPL is Pareto dominated by a stable

assignment.
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1 Introduction

While the modern matching theory has provided solutions to many real-world allocation

problems, there are still important problems that have yet to be solved due to technical

difficulties. One of such problems is matching with type-specific minimum quotas. In many

school districts in the United States, maximum and minimum quotas are separately set for

different groups of students in order to achieve gender, racial or socioeconomic diversity

at schools. For instance, New York City requires Educational Option (EdOpt) schools to

keep the diversity of ability levels by accepting students from different ranges of test scores.

For each EdOpt school, 16 percent of students must score below the grade level on the

standardized test, 68 percent must score at the grade level, and 16 percent must score

above the grade level (Abdulkadiroğlu et al., 2005). In the public school choice program in

Cambridge, US, students are classified into high and low socioeconomic groups, and each

school is required to admit certain percentages of students from each group (Fragiadakis and

Troyan, 2017). Type-specific minimum quotas are also observed in the matching problems

between students and supervisors (Kawagoe and Matsubae, 2017). University departments

(especially in natural science) set minimum quotas to supervisors because (i) supervisors

need some students to operate their laboratories, and (ii) the departments aim to achieve

an equal share of educational burden among the supervisors. And in many cases, these

constraints only apply to students from a certain program or field, which requires quotas be

type-specific.

Despite the prevalence of type-specific minimum quotas, theoretically proposing a desir-

able solution to this problem is still a difficult task. Ehlers (2010) and Ehlers et al. (2014)

formulated this problem and found a general impossibility result that the set of feasible,

fair and non-wasteful assignments may be empty (Theorem 1). This is in contrast with the

standard matching problem with only maximum type-specific quotas, where we can always

find a stable assignment by the Deferred Acceptance (DA) mechanism (Abdulkadiroğlu and

Sönmez, 2003; Abdulkadiroğlu, 2005). And in most of the literature which pursued stabil-

ity in this problem, the authors proposed solutions by (i) interpreting constraints as soft

bounds (Ehlers et al., 2014) or (ii) dropping or weakening one of (or both of) fairness and

non-wastefulness (Ehlers et al., 2014; Fragiadakis and Troyan, 2017; Goto et al., 2016, 2017).
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In this paper, we propose designing the priority rankings of schools to ensure stability

without weakening stability itself.1,2 As we discuss in subsection 3.1 and Section 4, the prior-

ity structure is part of the choice variables for the mechanism designer in many applications.

To design priority rankings appropriately, we need to answer the following question: What is

the domain of priority rankings for which we can (or cannot) ensure the existence of fair and

non-wasteful assignments under type-specific constraints? We first provide a positive answer

to this. When schools have common priority among a certain number of bottom students

for each type (we call this condition B-common priority), we show that there always exists

a feasible, fair and non-wasteful assignment (Theorem 2). The threshold of bottom students

varies across schools, and it is computed by the capacity and type-specific constraints of

all schools. Intuitively, if a student is ranked lower than other same type students at some

school (and if her ranking is low enough), then she is so in any other school as well. The

priority order between different types of students can differ across schools in an arbitrary

way.

Second, we also show that the pairwise version of B-common priority characterizes the

maximal domain of two schools’ priority rankings over same type students to guarantee the

existence of a feasible, fair and non-wasteful assignment (Theorem 3). This implies that

pairwise B-common priority is necessary (in a weak sense) to ensure stability.

To show the existence theorem, we propose a new mechanism called Deferred Acceptance

Mechanism with Precedence Lists (DAPL). In DAPL, we transform the original problem into

a corresponding problem with only maximum quotas. To be more specific, we divide the

schools into smaller divisions, and add a null division for each type of students. If students are

assigned to null divisions at the end of the DA stage, they must fill the remaining minimum

quotas. In order to successfully sort students into the school divisions and the null divisions

using the standard DA, we add a certain number of artificial students. The priority order of

each null division is defined by an exogenously given precedence list.

DAPL has many desirable properties for general priority rankings of schools. We show

that DAPL is always (i) feasible, (ii) non-wasteful, (iii) strictly PL-fair, and (iv) group

strategy-proof (Proposition 1). Although strict PL-fairness is a stronger version of PL-

fairness introduced by Fragiadakis et al. (2015), it does not preclude a certain class of

justified envies, and hence it is weaker than the standard fairness. In Proposition 2, we

1We employ the most natural definition of stability proposed by Ehlers et al. (2014) in our model.
2In the literature, the domain of schools’ priority rankings is studied to understand the relationship

among several properties such as efficiency, stability and strategy-proofness for school choice mechanisms

(Ergin, 2002; Kesten, 2006; Haeringer and Klijn, 2009; Kumano, 2013).
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show that DAPL is also fair for problems with B-common priority. The outcome of DAPL

is not Pareto dominated by a feasible, fair and non-wasteful assignment for problems with

only one type (Proposition 3), but it is not the case when there are more than one types

(Observation 1). In general, we can show that unless we give up strategy-proofness, no

mechanism can Pareto improve DAPL whenever DAPL is Pareto dominated by a feasible,

fair and non-wasteful assignment (Proposition 4).

In the literature of matching theory, a growing number of papers study complex con-

straints and affirmative action in matching markets.3 But to the best of our knowledge, we

are the first one to provide conditions for the existence of fair and non-wasteful assignments

under type-specific minimum quotas. Moreover, our existence result cannot be proved by

other existing mechanisms.

Among others, the following papers are most relevant to our work. Ehlers et al. (2014)

weakened both the fairness and the non-wastefulness conditions, and showed that there exists

an assignment that is fair for same types and constrained non-wasteful.4 They also proposed

the soft-bound interpretation of constraints, and showed that the student-proposing DA

mechanism finds an assignment that minimizes violations of controlled choice constraints

among fair assignments. Fragiadakis and Troyan (2017) introduced a new dynamic quo-

tas mechanism, called DQDA, which improves upon the benchmark DA mechanism while

satisfying fairness for same types and strategy-proofness. But depending on the choice

of the reduction sequence, DQDA may be wasteful under the common priority condition.

Goto et al. (2017) propose a mechanism called ADA, which satisfies strategy-proofness, non-

wastefulness and a weaker fairness property under general distributional constraints. They

also show that ADA can be applied to our problem, but ADA may not be fair across differ-

ent types even under common priority. Kawagoe and Matsubae (2017) report a real-world

application of this problem in Future University Hakodate. We will carefully examine their

student-supervisor matching problem in Section 4.

Minimum quotas are introduced to matching problems in many other ways. Fragiadakis

et al. (2015), Goto et al. (2016) and Kurata et al. (2016) consider minimum quotas, but

3Recent works on affirmative action and diversity in matching problems include Biró et al. (2010), Erdil

and Kumano (2012), Kojima (2012), Hafalir et al. (2013), Westkamp (2013), Echenique and Yenmez (2015),

Aygün and Bó (2016), Aygün and Turhan (2016), Bó (2016), Doğan (2016), Kominers and Sönmez (2016),

Dur et al. (2017) and Dur et al. (forthcoming). For other forms of important distributional constraints in

matching markets, see Kamada and Kojima (2015, 2017, forthcoming) and Delacrétaz et al. (2016).
4An assignment is constrained non-wasteful if, when a student justifiably claims an empty slot at a

school, the resulting assignment in which the student is assigned to that school is not fair for same types.

See Section 2 for the definitions of non-wastefulness and fairness.
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their models do not allow schools to have a separate floor for each type of students. The

multistage DA mechanism (MSDA) proposed by Fragiadakis et al. (2015) has a similar idea

with our DAPL in the sense that the precedence lists determine which students are allowed

to propose to schools. But in problems with one type of students, MSDA does not necessarily

find a fair and non-wasteful assignment under the B-common priority condition. We provide

an example to illustrate this in subsection 3.4. Hafalir et al. (2017) consider a matching

problem where multiple school districts are involved, and analyze type-specific minimum

quotas imposed on each district, not on each school. When they consider these minimum

quotas, they focus on strategy-proofness and efficiency rather than stability.

The rest of the paper proceeds as follows. Section 2 introduces the model. Section 3

presents all the results. In subsection 3.1, we define the B-common priority condition, and

in subsection 3.2, we introduce DAPL and show the main properties of DAPL. Our existence

theorem is proved by using DAPL. We examine the efficiency of DAPL in subsection 3.3,

and compare DAPL and MSDA by Fragiadakis et al. (2015) in subsection 3.4. The maximal

domain theorem is in subsection 3.5. We discuss the student-supervisor matching problem

as an application in Section 4, and Section 5 concludes. All lemmas and proofs are in the

Appendix.

2 Model

We consider a school choice problem with type-specific maximum and minimum quotas.

This is also called the controlled school choice problem. Our model consists of the following

elements:

1. a finite set of students S = {s1, ..., sn};

2. a finite set of schools C = {c1, ..., cm} where m ≥ 2;

3. a capacity vector q = (qc1 , ..., qcm), where qc is the capacity of school c ∈ C or the

number of seats in c ∈ C such that n ≤
∑

c∈C qc;

4. a preference profile of students PS = (Ps1 , ..., Psn), where Ps is the strict preference

relation of student s ∈ S over C, i.e. cPsc
′ means that student s strictly prefers school

c to school c′;

5. a priority profile of schools ≻C= (≻c1 , ...,≻cm), where ≻c is the strict priority ranking

of school c ∈ C over S; s ≻c s
′ means that student s has higher priority than student

s′ to be enrolled at school c;
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6. a type space T = {t1, ..., tk};

7. a type function τ : S → T , where τ(s) is the type of student s;

8. for each school c, two vectors of type-specific constraints qT
c
= (qt1

c
, ..., qtk

c
) and qTc =

(qt1c , ..., q
tk
c ) such that qt

c
≤ qtc ≤ qc for all t ∈ T , and

∑
t∈T qt

c
≤ qc ≤

∑
t∈T qtc.

5

We call (S,C, (qc)c∈C , T, τ, (q
T
c
, qTc )c∈C) ≡ Z a primitive problem, and (Z,≻C) a problem.

Note that we assume all schools and students are acceptable to each other.6 qt
c
is the

minimal number of slots that school c must allocate to students of type t and qtc is the

maximal number of slots that school c is allowed to allocate to students of type t. We call

(qt
c
, qtc) the floor and the ceiling for type t at school c. For each type t ∈ T , let St be the set

of type-t students, i.e., St ≡ {s ∈ S|τ(s) = t}.
The first five elements consist of a standard school choice problem considered by Ab-

dulkadiroğlu and Sönmez (2003). They also introduced types of students as an extension

and considered type-specific maximum quotas. In a separate paper, Abdulkadiroğlu (2005)

considers the college admission model with type-specific quotas. The difference between our

model and theirs is that we have minimum quotas for each type of students in addition to

maximum quotas. As we see in the following sections, the discussions based on the standard

DA mechanism in Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu (2005) no longer

work when we have minimum quotas.

An assignment µ is a function from C ∪ S to C ∪ 2S such that

1. µ(s) ∈ C for every student s ∈ S;

2. |µ(c)| ≤ qc and µ(c) ⊆ S for every school c ∈ C;

3. µ(s) = c if and only if s ∈ µ(c).

µ(s) denotes the school that student s is assigned to, and µ(c) denotes the set of students

who are assigned to school c. Under an assignment, every student is assigned to a school, and

every school c can accept at most qc students. Let µ
t(c) ≡ µ(c)∩ St denote the set of type-t

students who are assigned to school c under µ. An assignment µ is feasible if qt
c
≤ |µt(c)| ≤ qtc

holds for every (t, c) ∈ T × C. Let F be the set of all feasible assignments.

5qc ≤
∑

t∈T qtc is without loss of generality because we cannot assign more students than
∑

t∈T qtc to

school c even if qc is strictly larger than that.
6In many matching problems without minimum quotas, schools may be unacceptable to students. But

if students prefer their outside options to some schools, we may not be able to fill minimum quotas without

violating individual rationality. Thus, here we assume that every school is acceptable to every student.
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A controlled school choice problem may not have a feasible solution because of the type-

specific constraints. For example, we cannot find any feasible assignment if the sum of all

floors (ceilings) for a certain type is greater (less) than the number of students of that type.

To avoid such cases, we only consider constraints such that a feasible assignment exists.

We also assume
∑

c∈C qt
c
< |St| <

∑
c∈C qtc for each type t ∈ T . This is because if one of

the two inequalities is equal, the number of feasible type-t slots at each school is uniquely

determined, and the standard DA mechanism could independently assign type-t students to

these slots in a fair manner.

As we show in subsection 3.1, this feasibility requirement leads to impossibility results:

there may not exist a feasible assignment that is fair and non-wasteful. Given these results,

Ehlers et al. (2014) propose type-specific constraints to be interpreted as soft bounds: schools

can admit fewer students than their floors or more students than their ceilings, but they

give highest priority to types who do not fill their floors, medium priority to types who

fill their floors but not ceilings, and lowest priorities to types who fill their ceilings. In

many applications, however, the goal of the designer is to achieve a desirable distribution

of students rather than just to give high priority to a certain type of students. Thus, in

this paper, we stick to the hard-bound interpretation and focus on the domain of schools’

priority rankings. Hereafter, when we just say an “assignment,” we implicitly mean that it

is a feasible assignment.

Next, let us introduce the definition of stability in this problem. We follow Ehlers et al.

(2014) and consider natural adaptations of non-wastefulness and fairness from the standard

two-sided matching literature (without type-specific constraints). More specifically, these

definitions take account of our feasibility requirements when justifying claims of empty slots

and envies.

The non-wastefulness condition considered by Balinski and Sönmez (1999) is defined in

our problem in the following way.

Definition 1. Student s justifiably claims an empty slot at school c under a feasible assign-

ment µ if

(nw1) cPsµ(s) and |µ(c)| < qc,

(nw2) q
τ(s)
µ(s) < |µτ(s)(µ(s))|, and

(nw3) |µτ(s)(c)| < qτ(s)c .

A feasible assignment µ is non-wasteful if there is no student who justifiably claims an empty

slot at any school.
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(nw1) means that student s prefers an empty slot at school c to her assigned school µ(s).

(nw2) means that the floor of student s’s type at school µ(s) is not binding, and (nw3)

means that the ceiling of student s’s type at school c is not binding either. In short, these

three conditions imply that the constraints will not be violated when s is assigned her more

preferable empty slot at c without changing other students’ assignments.

As in the case of non-wastefulness, envy is justified only when student s prefers some

school to her own assignment, there is another student s′ who has lower priority in the

school, and replacing s′ with s would not violate the constraints. Since the mathematical

representation depends on whether s and s′ are of the same type or not, we define envy for

same type students and for students of different types separately.

Definition 2 formally states the conditions for a student to justifiably envy students of

different types.

Definition 2. Student s justifiably envies student s′ of a different type at school c under an

assignment µ if there exists another feasible assignment µ′ such that

(f1) µ(s′) = c, cPsµ(s) and s ≻c s
′,

(f2) µ′(s) = c, µ′(s′) ̸= c and µ′(ŝ) = µ(ŝ) for all ŝ ∈ S \ {s, s′}, and

(f3) τ(s) ̸= τ(s′).

A feasible assignment µ is fair across different types if there is no student who justifiably

envies another student of a different type.

(f1) is the standard condition that student s prefers school c to her assigned school µ(s),

but there is a student s′ who is assigned to school c and has lower priority than s at school c.

(f2) means that assigning student s a slot at school c, student s′ a slot at some school other

than c, and keeping all the other assignments unchanged do not violate the constraints at

any school. (f3) says that s and s′ are of different types.

Between same type students, justified envy is defined in a simpler way. This is because

feasibility will not be violated when two students of the same type exchange their slots.

Definition 3. Student s justifiably envies student s′ of the same type at school c under an

assignment µ if

(f1*) µ(s′) = c, cPsµ(s), s ≻c s
′, and

(f2*) τ(s) = τ(s′).
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A feasible assignment µ is fair for same types if there is no student who justifiably envies

any other same type student.

(f1*) is the same condition as (f1). Since student s and s′ are of the same type by (f2*),

the assignment is still feasible when they exchange their slots. Namely, we can construct a

feasible assignment µ′ in the following way: µ′(s) = µ(s′), µ′(s′) = µ(s), and µ′(s′′) = µ(s′′)

for all s′′ ∈ S \ {s, s′}. We say that a feasible assignment µ is fair if it is both fair across

different types and fair for same types. We also use “stability” to mean both non-wastefulness

and fairness.

Amechanism γ is a function from the set of all problems and student preferences to the set

of all assignments of these problems. We write the assignment of s ∈ S under γ(Z,≻C , PS)

by γs(Z,≻C , PS). We say that a mechanism γ satisfies property X if γ(Z,≻C , PS) satisfies

property X for any (Z,≻C , PS). We also say that a mechanism γ satisfies property X

for problem (Z,≻C) if γ(Z,≻C , PS) satisfies property X for any PS. A mechanism γ is

strategy-proof if it is a dominant strategy for each student to truthfully report her preference

in any problem, i.e., for any problem (Z,≻C) and profile of student preferences PS, there

is no student s ∈ S and her preference P ′
s such that γs(Z,≻C , P

′
s, P−s)Psγs(Z,≻C , PS).

A mechanism γ is group strategy-proof if for any problem (Z,≻C) and profile of student

preferences PS, there is no group of students I ⊆ S and their preference profile P ′
I such that

γs(Z,≻C , P
′
I , PS\I)Psγs(Z,≻C , PS) for all s ∈ I.

An assignment µ weakly Pareto dominates µ′ if µ(s)Psµ
′(s) or µ(s) = µ′(s) for any s ∈ S.

An assignment µ Pareto dominates µ′ if µ weakly Pareto dominates µ′, and µ(s)Psµ
′(s) for

some s ∈ S. An assignment µ is Pareto efficient if µ is not Pareto dominated by any other

feasible assignment. A mechanism γ weakly Pareto dominates γ′ if γ(Z,≻C , PS) weakly

Pareto dominates γ′(Z,≻C , PS) for any (Z,≻C , PS). A mechanism γ Pareto dominates γ′ if

γ weakly Pareto dominates γ′, and γ(Z,≻C , PS) Pareto dominates γ′(Z,≻C , PS) for some

(Z,≻C , PS).

3 Results

3.1 Common Priority among the Bottom Students

First, we present the non-existence theorem of stable assignments. That is, there is a problem

in which a feasible, fair and non-wasteful assignment does not exist for some preferences.

Ehlers et al. (2014) show this result by proving the following two stronger statements:7

7Ehlers (2010) originally shows (ii) of Theorem 1 using the same example.
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Theorem 1. (Ehlers et al., 2014)

(i) The set of feasible assignments that are fair may be empty.

(ii) The set of feasible assignments that are both fair for same types and non-wasteful may

be empty.

The proof is by means of an example. Example 1 is a counterexample for the first

statement, and the second statement is shown by dropping s3 from this problem.

Example 1. (Ehlers et al., 2014) Consider the following problem: C = {c1, c2, c3}, S =

{s1, s2, s3} and T = {t1, t2}. Students s1 and s2 are of the same type and student s3’s type

is different, i.e., τ(s1) = τ(s2) = t1, and τ(s3) = t2. Priorities, preferences, capacities and

type-specific constraints are summarized in the table below. Note that s3’s preferences are

arbitrary.

≻c1 ≻c2 ≻c3 Ps1 Ps2 Ps3

s2 s2 s1 c2 c3
...

s1 s1 s2 c3 c2

s3 s3 s3 c1 c1

capacity (ceiling for any type) 1 1 1

floor for type t1 1 0 0

floor for type t2 0 0 0

As one of the type-t1 students must be assigned to c1, there are only four feasible assignments:

µ1 =

(
c1 c2 c3

s1 s2 s3

)
, µ2 =

(
c1 c2 c3

s1 s3 s2

)
,

µ3 =

(
c1 c2 c3

s2 s3 s1

)
, µ4 =

(
c1 c2 c3

s2 s1 s3

)
.

It is easy to see that none of them is fair:

1. µ1 is not fair as s2 justifiably envies s3 at c3,

2. µ2 is not fair as s1 justifiably envies s2 at c3,

3. µ3 is not fair as s1 justifiably envies s3 at c2, and

4. µ4 is not fair as s2 justifiably envies s1 at c2.
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Thus, there is no feasible and fair assignment.

Intuitively, only one of type-t1 students can be assigned to c2 or c3 because of c1’s mini-

mum quota. When a type-t1 student is assigned to her second choice, she justifiably envies

s3 at her first-choice school. (When s3 is not in the problem, this student justifiably claims

an empty slot.) But when a type-t1 student is assigned to her first choice, she is justifiably

envied by the other type-t1 student because the other type-t1 student has a higher priority.

In this way, there is a cycle of justified envy (and a claim for an empty slot for the second

statement), and we cannot find a fair and non-wasteful assignment.

Given this impossibility theorem, several papers in the literature have proposed mech-

anisms that satisfy weaker requirements than fairness and non-wastefulness (Ehlers et al.,

2014; Fragiadakis and Troyan, 2017; Goto et al., 2017). In their approach, they regard the

constraints and priorities as given and try to find a solution for any given problem. But

in many applications, the priority of schools could be designed as part of the designer’s

problem. On the other hand, students’ preferences are not easily controlled by the designer.

Therefore, in this paper, we seek a domain of schools’ priority profiles that accommodate fair

and non-wasteful assignments for any preferences of students given any primitive problem.8

The key feature of the priority structure in this example is that between s1 and s2, who

are of the same type, s1 has higher priority than s2 at c3 while s2 has higher priority than s1 at

c2. Combined with the minimum quota of c1 and students’ preferences, this causes a cycle of

justified envy. Since type-specific constraints are given as part of the primitive problem and

we consider the whole domain of students’ preferences, we need to design schools’ priority

so that c2 and c3 both give higher priority to the same student, either s1 or s2.

Motivated by this observation, we first propose a strong property of schools’ priority

rankings: common priority.

Definition 4. A pair of priority rankings (≻c,≻c′) of two schools c and c′ has a common

priority order for type t ∈ T if

s ≻c s
′ ⇔ s ≻c′ s

′

for any s, s′ ∈ St.

The common priority condition says that the priority rankings among the same type

students are exactly the same between given two schools. Notice that the ranking between

8It is also possible to consider the domain of type-specific constraints that ensures the existence of fair

and non-wasteful assignments for any preferences of students given the schools’ priority structure. Since

our theorems disclose the relationship between priority and constraints, this problem might be solved by

exploiting our results.
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different types of students can differ between these schools in an arbitrary way. It is easy to

see that in Example 1, we would find a fair and non-wasteful assignment if c2 and c3 had a

common priority order for type t1.

Although common priority is easy to understand, this condition may not be necessary

for the existence of stable assignments depending on the number of minimum quotas. In

particular, when the minimum quota is low enough, the ranking among some top students

does not matter. We can see this in the following example.

Example 2. Consider the following problem: C = {c1, c2, c3}, S = {s1, s2, s3} and T = {t1}.
All students are of the same type. Priorities, capacities and type-specific constraints are

summarized in the table below.

≻c1 ≻c2 ≻c3

s2 s2 s1

s1 s1 s2

s3 s3 s3

capacity (ceiling for type t1) 1 2 2

floor for type t1 1 0 0

We can see that c3 and other schools do not have a common priority order for type t1. How-

ever, we can always find a fair and non-wasteful assignment for these capacity constraints.

First, s1 and s2 can be assigned to schools so that none of them justifiably envies the other

or claims an empty slot of any other school. Next, s3 is assigned to c1 if c1’s minimum quota

is not filled by s1 or s2, and otherwise, s3 can choose the best available slot.

In this example, a stable assignment exists for any preferences because s3 fills c1’s mini-

mum quota if it is not filled by other students. The key feature is that there is only one slot

in the minimum quota of c1, and all schools agree on the bottom one student s3. This gives

the idea of B-common priority, which requires the consistency of priority rankings “only

among certain bottom students.”

For the definition of B-common priority, let us define F (C̃, t) for any C̃ ⊆ C with |C̃| ≤
m− 2 and t ∈ T . F (C̃, t) is the set of feasible assignments under which the type-t minimum

quotas of all schools in C̃ ⊆ C are binding. More formally,

F (C̃, t) ≡ {µ ∈ F ||µt(c)| = qt
c
for all c ∈ C̃}.

Also, for each ≻c and K ∈ {0, 1, 2, ..., |St|}, let Bt(≻c, K) ≡ {s ∈ St||{s′ ∈ St|s ≻c s
′}| < K}

be the bottom K students of type t according to ≻c. In the same way, for each strict ranking

12



rt : St → {1, 2, ..., |St|} over type-t students and K ∈ {0, 1, 2, ..., |St|}, let Bt(r
t, K) ≡ {s ∈

St||{s′ ∈ St|rt(s) < rt(s′)}| < K} be the bottom K students of type t in the ranking rt.9

Note that Bt(≻c, 0) = Bt(r
t, 0) = ∅ for any t ∈ T , ≻c and rt.

Definition 5. A priority profile of schools ≻C has common priority among the bottom

students (B-common priority) if for each type t ∈ T , there exists a strict ranking rt :

St → {1, 2, ..., |St|} over type-t students such that for any school c ∈ C,

Bt(≻c, K) = Bt(r
t, K)

holds for any K ∈ {0, ..., Qt(c)}, where

Qt(c) ≡ max
c′∈C\{c}

Qt(c, c
′), and

Qt(c, c
′) ≡ max

C̃∈{C′⊆C\{c,c′}|F (C′,t)̸=∅}

∑
c′′∈C̃

qt
c′′
.

Under the B-common priority condition, each school c’s priority ranking is consistent

with a single ranking rt for all the bottom Qt(c) students. The threshold Qt(c) varies across

schools, and it is computed by the capacities and type-specific constraints of all schools. We

define Qt(c) by taking the maximum of Qt(c, c
′) over all other schools in C \{c}. This means

that for each pair of schools (c, c′), priority rankings of the bottom Qt(c, c
′) type-t students

are exactly the same between two schools c and c′. Notice that the top |St| −Qt(c, c
′) type-t

students may be ranked in a different way between c and c′. Therefore, for each pair of

schools, this requirement is a weaker than common priority in Definition 4.

Then, what does Qt(c, c
′) mean? Qt(c, c

′) is the maximum of the sum of all binding

type-t minimum quotas in C \ {c, c′} among feasible assignments. In Example 2, Qt1(c2, c3)

is computed as one. Although (≻c2 ,≻c3) does not have a common priority order for type

t1, c2 and c3 agree on the bottom one student, who is s3 in this case. Since Qt1(c1, c2) =

Qt1(c1, c3) = 0, there is no restriction on ≻c1 and we say that the problem in Example 2

has B-common priority. Intuitively, common priority among the bottom Qt(c, c
′) students is

needed in the worst-case scenario where all type-t students prefer c or c′ and we need to fill

Qt(c, c
′) minimum quotas in C \ {c, c′}.

Qt(c, c
′) can be easily computed as Qt(c, c

′) =
∑

c′′∈C\{c,c′} q
t
c′′

when there is a feasible

assignment in which all type-t minimum quotas are binding. As we see in Section 4, this is

often the case in applications. For other cases, we also give an algorithm to compute Qt(c, c
′)

for each pair of schools (c, c′) and each type t in Appendix C.
9The interpretation of rt(s) is the “ranking” of student s. If student s is ranked higher in rt, then s has

a smaller number rt(s). We also write rt : s, s′, · · · to mean that rt(s) = 1, rt(s′) = 2 and so on.
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The B-common priority condition is considered as a variant of the acyclicity conditions

(Ergin, 2002; Kesten, 2006; Haeringer and Klijn, 2009; Kumano, 2013). Our condition,

however, is not equivalent to them. For example, Ergin (2002) showed that his acyclicity

condition is equivalent to requiring that the ranks of certain bottom students differ at most

by one between two schools (Theorem 2, Ergin, 2002). On the other hand, the B-common

priority condition requires that if a student is ranked below a certain threshold, she must

have the same rank across schools among the same type students. In addition, the threshold

is computed by the capacity and type-specific constraints of all schools in our definition.

Before showing the main results, let us discuss the following question: How likely is the

(B-)common priority condition satisfied in real-world applications? In college admissions and

student-supervisor matching problems, it is often the case that there is a natural ranking

of students that all schools can use. For example, in several countries such as Australia

and China, all students are ranked by a single score in the centralized college admission

system. When assigning students to supervisors in universities, GPA is often used as a

natural priority ranking. Moreover, B-common priority would give schools a freedom to

rank some top students as they like; depending on the number of minimum quotas, they can

reflect their heterogeneous preferences over good students to their rankings.

On the other hand, in (elementary, middle and high) school choice programs, common

priority for same type students may be unlikely to be met for a typical choice of types and

priority structures. Consider school districts which require gender-specific constraints and

introduce walk-zone priority. Walk-zone priority is used in Boston Public Schools, New York

City High School Match and many other programs. In such cases, it is hard to guarantee

common priority for same type students even among the bottom students because two female

(male) students can live in different walk-zones, and hence the priority order of these students

may be reversed between different schools.

These observations suggest that our existence theorem may or may not be applied de-

pending on the background of the problem. As we will see, however, our results have an

implication to problems without B-common priority as well. First, as Theorem 3 shows the

necessity of the pairwise version of B-common priority (in a maximal domain sense), we

know that we have to give up stability for some preferences of students in such cases. Next,

since our DAPL has good properties for all problems (Propositions 1, 3 and 4), DAPL may

improve the current mechanism for the relevant application.
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3.2 DA with Precedence Lists

In this subsection, we show that we can always find a fair and non-wasteful assignment for

problems with B-common priority. To do so, we propose a new mechanism called Deferred

Acceptance Mechanism with Precedence Lists (DAPL).

To define DAPL, we specify “precedence lists” for each type in each problem.10 A prece-

dence list for type t is a strict ranking rt : St → {1, 2, ..., |St|} over type-t students. For any

problem with B-common priority, we set each rt to satisfy

Bt(≻c, K) = Bt(r
t, K)

for any c ∈ C and any K ∈ {0, ..., Qt(c)}. For any other problem, the precedence lists are

defined arbitrarily.

The basic idea of DAPL is to transform a problem into a corresponding problem with only

maximum quotas. We consider a null division for each type which students must propose

to in Step 1. The priority order of the type-t null division is defined by the reverse order

of the precedence list rt. If they are rejected by null divisions, they can propose to (the

divisions of) schools. If they remain in the null division after the DA stage, they must fill

the minimum quotas that are not filled yet. To implement this idea, we define the divisions

of schools, and also introduce artificial students to identify who are allowed to propose to

schools and who must fill the minimum quotas.

Let Qt be the maximum of Qt(c) over all schools, i.e., Qt ≡ maxc∈C Qt(c).

Deferred Acceptance Mechanism with Precedence Lists

Start: For each type t ∈ T , add Qt (identical) artificial students. The set of such students

is denoted by At. Let A ≡ ∪t∈TAt. Instead of schools, we consider the following three

types of divisions: the type-t division ct of school c for each (t, c) ∈ T × C; the open

division co of school c for each c ∈ C; and the type-t null division ϕt for each t ∈ T .

Each of these divisions has the following number of slots and an extended priority order

over real and artificial students in S ∪ A.

• The type-t division ct of school c has qt
c
slots. The extended priority order ≻ct

must satisfy (i) s ≻ct a ≻ct x for any s ∈ St, a ∈ At and x ∈ (S ∪ A) \ (St ∪ At),

and (ii) s ≻ct s
′ for any s, s′ ∈ St such that s ≻c s

′.

10We borrowed the name “precedence list” from the multi-stage deferred acceptance mechanism (MSDA)

proposed by Fragiadakis et al. (2015). See subsection 3.4 for the comparison between MSDA and DAPL. In

Appendix D, we also examine the properties of the serial dictatorship mechanism in this problem.
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• The open division co of school c has qc −
∑

t∈T qt
c
slots. The extended priority

order ≻co must satisfy s ≻co s
′ for any s, s′ ∈ S such that s ≻c s

′.

• The type-t null division ϕt has Qt slots. The extended priority order ≻ϕt must

satisfy (i) a ≻ϕt s ≻ϕt x for any a ∈ At, s ∈ St and x ∈ (S ∪ A) \ (St ∪ At), and

(ii) s′ ≻ϕt s for any s, s′ ∈ St such that rt(s) < rt(s′).

We also define the extended preferences P̃S∪A of all students in S ∪ A over these

divisions.

• For any real student s ∈ St, transform her submitted preference Ps over schools

into an extended preference P̃s over divisions in the following way: (i) ϕtP̃sc
tP̃sc

oP̃sϕ
t̃P̃sc

t̃

for any c ∈ C and t̃ ̸= t, and (ii) ciP̃sc̃
j for any i, j ∈ {t, o} and c, c̃ ∈ C such that

cPsc̃.

• For any artificial student a ∈ At, assume that ct1P̃a...P̃ac
t
mP̃aϕ

tP̃ad for any other

division d.

DA stage: Run the following version of the student-proposing Deferred Acceptance mecha-

nism with type-specific maximum quotas between all (real and artificial) students and

divisions using extended preferences and priority orders.

Step p: Each student who is not tentatively accepted by any division proposes to her

next most preferred division. Each division considers students who are tentatively

accepted to it and the new applicants in this step.

• Each ct tentatively accepts students among them up to qt
c
according to its

extended priority order ≻ct .

• Each co examines them one by one according to ≻co . If a student is of type

t, it tentatively accepts her if qc −
∑

t∈T qt
c
seats are not filled and min{qtc −

qt
c
, |St| −

∑
c′∈C qt

c′
} seats are not filled by type-t students.

• Each ϕt tentatively accepts students among them up to Qt according to its

extended priority order ≻ϕt .

Each division rejects all other applicants.

If some student is rejected in step p, proceed to step p+1. When no student is rejected,

proceed to the additional rejection step.11

11We need these steps to show the fairness of DAPL in Proposition 2. More details are discussed following

Proposition 2.
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Additional Rejection Step: Out of all type-t divisions {ct}c∈C , if only one ctl is fully

filled by real students, then reject one type-t artificial student a ∈ At from ctm if

l ̸= m or from ctm−1 if l = m.12 Do the same procedure for each type t. Then, go

back to a normal step of the DA stage again.

The DA stage terminates when no student is rejected and there is no additional rejec-

tion step. The slots of all school divisions for real students are finalized.

Minimum Quota stage: For each type t ∈ T , if there are some slots of type-t divisions

currently held by artificial students, we assign these slots to the real students who

have slots of the null division ϕt using the serial dictatorship. That is, each of these

students picks her most preferred school sequentially according to the precedence list

rt (a student with smaller number rt(·) picks a school earlier.) And she is assigned a

slot of the school if an artificial student currently holds it in its type-t division.13

We illustrate how DAPL works using a simple example of a problem without B-common

priority.

Example 3. Consider the following problem: C = {c1, c2, c3}, S = {s1, s2, s3} and T =

{t1}. All students are of the same type. Priorities, preferences, capacities and type-specific

constraints are summarized in the table below.

≻c1 ≻c2 ≻c3 Ps1 Ps2 Ps3

s1 s1 s1 c1 c2 c3

s2 s3 s2
... c3 c2

s3 s2 s3 c1 c1

capacity (ceiling for type t1) 3 1 1

floor for type t1 2 0 0

Note that ≻C does not have B-common priority because we have Qt1(c2, c3) = 2 and the

bottom student is different between ≻c2 and ≻c3 . Consider the following precedence list

rt1 : s1, s2, s3. At the beginning of DAPL, we create the divisions. As the only minimum

quota is imposed on c1, we only need to consider two divisions for c1 (ct11 and co1), one

12If a type division has zero quota, then we interpret this as being filled by real students. Also by the

definition of the capacities of open divisions, for any type t, there is always one school whose type-t division

is fully filled by real students.
13This stage is well-defined because the number of real students in the null division ϕt and the total

number of slots of type-t divisions occupied by artificial students must be the same. In addition, we show in

Proposition 1 that DAPL is always feasible, i.e., minimum quotas are always filled.
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division for each of the other two schools (co2 and co3), and the null division for t1 (ϕt1). By

Qt1 = Qt1(c2, c3) = 2, two artificial students a1, a2 ∈ At1 are added to the market. The

extended priority orders and preferences are as follows:

≻
c
t1
1

≻co1
≻co2

≻co3
≻ϕt1 P̃s1 P̃s2 P̃s3 P̃a1 P̃a2

s1 s1 s1 s1 a1 ϕt1 ϕt1 ϕt1 ct11 ct11

s2 s2 s3 s2 a2 ct11 co2 co3 ϕt1 ϕt1

s3 s3 s2 s3 s3 co1 co3 co2
...

...

a1 a1 a1 a1 s2
... ct11 ct11

a2 a2 a2 a2 s1 co1 co1

capacity (ceiling for type t1) 2 1 1 1 2

In the DA stage, we run the student-proposing DAmechanism between students {s1, s2, s3, a1, a2}
and divisions {ct11 , co1, co2, co3, ϕt1}.

• In Step 1, all real students propose to ϕt1 , and all artificial students propose to ct11 . ϕ
t1

temporarily accepts s2 and s3, and rejects s1. c
t1
1 temporarily accepts a1 and a2.

• In Step 2, s1 proposes to ct11 . c
t1
1 temporarily accepts s1 and a1, and rejects a2.

• In Step 3, a2 proposes to ϕt1 . ϕt1 temporarily accepts a2 and s3, and rejects s2.

• In Step 4, s2 proposes to co2 and is temporarily accepted.

Now as every student is assigned and more than one schools’ minimum quotas are filled by

real students (c2 and c3), the DA stage is done. In the Minimum Quota stage, since s3 is the

only student who was assigned to the null division, s3 is assigned a1’s slot at c
t1
1 . The final

assignment is

µ∗ =

(
c1 c2 c3

{s1, s3} s2 ∅

)
,

which is feasible. It is easy to see that this assignment is non-wasteful because s1 and s2 are

assigned to their top choices and s3 cannot justifiably claim an empty slot at c3. µ∗ is not

fair for same types because s3 justifiably envies s2 at c3. But s3 is the only student who has

justified envy.

The key of this algorithm is as follows. In Example 3, by making all type-t1 students

propose to ϕt1 first, we can ensure that there are enough students who finally fill the minimum

quota of school c1. However, when a type-t1 student (in this case, student s1) fills a slot of
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c1, which has a minimum quota for t1, we have to release another type-t1 student (in this

case, s2) from ϕt1 to ensure non-wastefulness. To do so, we let every student propose to the

type division of each school before proposing to its open division. In other words, if s1 were

assigned a slot of co1, then both s2 and s3 would be assigned to ct11 in the MQ stage, and

this would generate justified claims of empty slots by s2 and s3. The artificial students help

us count the number of minimum quotas we need to fill and identify who need to fill them.

Once artificial students are rejected by the divisions of schools and go to null divisions, they

release real students from null divisions and allow them to propose to the school divisions.

In addition, the priority order of each null division is defined to be the reverse order of the

precedence list rt for each t. Because of this, higher a student is ranked under rt, earlier she

is rejected by the null division and proposes to other divisions.

µ∗ is not fair because s3 justifiably envies s2 who is of the same type.14 This happens

because although s3 has higher priority than s2 at c2, s3 is ranked lowest in the precedence

list rt and could not propose to any school divisions in the DA stage. This observation can

be generalized: in the outcome of DAPL, if some student justifiably envies another, then

this student must have been assigned to the null division in the DA stage.

Now we formalize this idea to introduce a weaker version of fairness that is satisfied by

DAPL. We call this new fairness strict PL-fairness. For problems with only one type, Fra-

giadakis et al. (2015) introduced PL-fairness, which is weaker than our strict PL-fairness.15

Definition 6. Student s PL-envies student s′ of the same type at school c under an assign-

ment µ if

(f1**) µ(s′) = c, cPsµ(s), and s ≻c s
′,

(f2**) τ(s) = τ(s′), and

(f3**) rτ(s)(s) < rτ(s)(s′), s /∈ Bτ(s)(r
τ(s), Qτ(s)), or |µτ(s)(µ(s))| > q

τ(s)
µ(s).

A feasible assignment µ is strictly PL-fair for same types if there is no student who

PL-envies any other student of the same type.

(f1**) and (f2**) are the same as standard envy for same type students. (f3**) is the

additional requirement for PL-envy. (f3**) implies that in order for student s to PL-envy

student s′ of the same type, at least one of the three following conditions must be satisfied:

14Indeed, this example has a similar structure as Example 1 and does not have any feasible assignment

that is fair and non-wasteful.
15For PL-fairness, (f3**) is strengthened to only rτ(s)(s) < rτ(s)(s′).
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(i) s is ranked higher than s′ according to rτ(s); (ii) s is not one of the bottom Qτ(s) students

in the precedence list rτ(s); or (iii) the number of type-t students assigned to µ(s) under µ is

strictly greater than the minimum quota q
τ(s)
µ(s). We say that a feasible assignment µ is strictly

PL-fair if it is both fair across different types and strictly PL-fair for same types.

Strict PL-fairness is also described in the following way: The only justified envy that

cannot be eliminated by strict PL-fairness is such that (i) s justifiably envies s′ who is of

the same type and ranked higher than s according to rτ(s); (ii) s is one of the bottom Qτ(s)

students in the precedence list rτ(s); and (iii) the minimum quota of µ(s) for type-t students

is binding at µ.

The next proposition summarizes the properties of DAPL which hold for any problem.

Proposition 1. DAPL is

1. feasible;

2. non-wasteful;

3. fair across different types;

4. strictly PL-fair for same types; and

5. group strategy-proof.

For the feasibility of DAPL, we show that Qt artificial students are enough to fill all

minimum quotas of type-t divisions in the DA stage for any preferences. For non-wastefulness

and strict PL-fairness, first we can see that a student does not justifiably claim an empty slot

or envy another student if she is assigned a school’s slot in the DA stage. In addition, even

when a student is assigned a slot of a null division in the DA stage, she cannot justifiably

claim an empty slot. Thus, we only need to characterize possible envy of students who are

assigned to null divisions, and show the strict PL-fairness of DAPL.

For group strategy-proofness, we start from the observation that DAPL is constructed

from DA with type-specific maximum quotas (Abdulkadiroğlu, 2005) by (i) applying it to the

DA stage and introducing additional rejection steps, and (ii) adding the MQ stage after the

DA stage. Since DA with type-specific maximum quotas is group strategy-proof (Hatfield

and Kojima, 2009), we show that these two extensions do not harm the incentives of students.

Theorem 3 of Ehlers et al. (2014) states that there is no feasible mechanism that is strategy-

proof, fair for same types and constrained non-wasteful. Contrary to this negative result, we

show that strategy-proofness can be restored by weakening fairness for same types to strict
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PL-fairness for same types. In addition, DAPL satisfies non-wastefulness and fairness across

different types, which are weakened or dropped in Theorem 3 of Ehlers et al. (2014).

The next result provides a sufficient condition for DAPL to be fair as well.

Proposition 2. For problems with B-common priority, DAPL is fair.

Since DAPL is always strictly PL-fair, this proposition shows that under B-common

priority, no student justifiably envies another student of the same type even if she is assigned

a slot in the MQ stage. We consider two cases such that (i) c is fully filled by real students

in the DA stage and (ii) c is not fully filled by real students in the DA stage. In each case,

B-common priority ensures that no student justifiably envies another student of same type

who is admitted to c.

For the proof of Proposition 2, additional rejection steps are essential.16 If we removed

additional rejection steps from DAPL, it would fail to achieve fairness in problems with

B-common priority. Example 6 in Appendix D illustrates this point.

Our first existence theorem is immediately obtained from Propositions 1 and 2.

Theorem 2. For any problem with B-common priority, there exists a feasible, fair and

non-wasteful assignment.

3.3 Efficiency of DAPL

In this subsection, we examine the efficiency of DAPL. In special cases where constraints are

not type-specific, i.e., |T | = 1, we can show that there is no stable assignment that Pareto

dominates the outcome of DAPL.

Proposition 3. For any problem with |T | = 1, the outcome of DAPL is not Pareto domi-

nated by any feasible, fair and non-wasteful assignment.

First, we show that if the outcome of DAPL is Pareto dominated by a fair and non-

wasteful assignment, there must be a fair and non-wasteful assignment that strictly improves

the outcome of DAPL only for those who are assigned in the DA stage. But then by |T | = 1,

there is a corresponding stable assignment in the extended problem in the DA stage, and

this leads to a contradiction to the “student optimality” of the standard DA mechanism.

But Proposition 3 does not continue to hold for |T | ≥ 2 since some justified envy in the

extended problem is not justified in the original problem when there are multiple types.

16Additional rejection steps are needed to show Lemma 1 in Appendix A, which is used for the proof of

this proposition.
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Observation 1. There is a problem for which the outcome of DAPL is Pareto dominated

by a feasible, fair and non-wasteful assignment.

Example 4. Consider the following problem: C = {c1, c2, c3, c4}, S = {s1, s2, s3, s4}, T =

{t1, t2}, τ(s1) = τ(s2) = t1, and τ(s3) = τ(s4) = t2. Priorities, preferences, capacities and

type-specific constraints are summarized in the table below.

≻c1 ≻c2 ≻c3 ≻c4 Ps1 Ps2 Ps3 Ps4

s2 s1 s3 s3 c1 c2 c1 c4

s3 s3 s4 s4 c2 c1 c2 c3

s4 s4
...

... c4 c4 c3
...

s1 s2 c3 c3 c4

capacity (ceiling for any type) 1 1 1 1

floor for type t1 0 0 0 0

floor for type t2 0 0 1 0

Note that ≻C has B-common priority in this problem. In DAPL, the precedence list for type

t2 must be rt2 : s3, s4 because Qt2 = 1.

DAPL achieves the following assignment:

µDAPL =

(
c1 c2 c3 c4

s2 s1 s3 s4

)
.

However, this is Pareto dominated by the following assignment:

µ =

(
c1 c2 c3 c4

s1 s2 s3 s4

)
.

It is clear that µ is non-wasteful. Since s3 cannot justifiably envy s1 or s2 because of the

floor of c3 for type t2, µ is fair.

Since s3 is not the bottom Qt2 = 1 student in rt2 , she proposes to co1 in the DA stage. But

this generates a rejection chain and both s1 and s2 are assigned to their second choices. s3 is

finally assigned to c3, but since s1 and s2 are of different types and s3 just fills the minimum

quota of c3 for type t2, s3’s envy to s1 or s2 is not justified according to Definition 2. The

logic is similar to the idea that the student-optimal stable assignment may not be Pareto

efficient for problems with no minimum quotas, but a stark difference is that µ is also fair

in our problem.

To see if DAPL can be Pareto improved without harming fairness or non-wastefulness, we

consider the following concept: Pareto dominance whenever stable improvement is possible.
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Definition 7. A mechanism γ Pareto dominates another mechanism φ whenever stable

improvement is possible if

1. γ weakly Pareto dominates φ; and

2. γ(Z,≻C , PS) Pareto dominates φ(Z,≻C , PS) for any (Z,≻C , PS) such that φ(Z,≻C

, PS) is Pareto dominated by another feasible, fair and non-wasteful assignment.

Besides γ weakly Pareto dominating φ, the only requirement of this concept is that

the outcome of γ Pareto dominates that of φ whenever φ exhibits inefficiency concerned in

Observation 1. And this does not require that γ should be Pareto efficient.

Our next result shows that it is impossible to improve DAPL according to this concept

unless we give up strategy-proofness.

Proposition 4. There exists no strategy-proof mechanism that Pareto dominates DAPL

whenever stable improvement is possible.

Proof uses Example 4 to show that no mechanism can be strategy-proof if it selects µ

and weakly Pareto dominates DAPL. The idea is similar to Proposition 1 of Kesten (2010),

but we make a careful adjustment to our definitions of fairness. Finally, the following corol-

lary is derived from the fact that if a mechanism is Pareto dominated by a Pareto-efficient

mechanism, it is also Pareto dominated by that mechanism whenever stable improvement is

possible.

Corollary 1. There exists no strategy-proof and Pareto-efficient mechanism that Pareto

dominates DAPL.

3.4 Comparison with MSDA by Fragiadakis et al. (2015)

Among others, DAPL most resembles the multistage DA mechanism (MSDA) by Fragiadakis

et al. (2015). The common feature is that both mechanisms use precedence lists to control

the set of students who propose to schools. Since MSDA is defined for problems without the

types of students, let us focus on problems with T = {t1} in this subsection.

Multi-stage DA

Fix an arbitrary precedence list r over all students. Start by setting R0 = S, q1
c
= qt1

c
,

q1c = qt1c for all c ∈ C. Let n1 =
∑

c∈C q1
c
.

In stage l ≥ 1:
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1. Set Rl = {s ∈ S||{s′ ∈ S|r(s) < r(s′)}| < nl}, i.e., Rl is the set of nl students with the

lowest rankings according to r.

(a) If Rl−1 \ Rl ̸= ∅, run the standard DA mechanism for the students in Rl−1 \ Rl

with maximum quotas (qlc)c∈C for schools.

(b) If Rl−1 \ Rl = ∅, run the standard DA mechanism for the students in Rl−1 with

maximum quotas (ql
c
)c∈C for schools.

2. Let µl be the assignment (for a subset of students) determined in step 1 of stage l.

Remove all students who are assigned under µl from the market. If all students are

assigned a school, end the algorithm. If not, proceed to step 3.

3. Define new quotas for each school c ∈ C:

(a) ql+1
c = qlc − |µl(c)|.

(b) ql+1
c

= max{0, ql
c
− |µl(c)|}.

(c) nl+1 =
∑

c∈C ql+1
c

.

4. Move to stage l + 1.

Once the algorithm is completed (say after stage L), the final output of MSDA is the

assignment in which the set of students assigned to school c is ∪L
l=1µ

l(c).

Despite the similarity between these two mechanisms, it turns out that MSDA does not

achieve two of our main goals. That is, (i) MSDA is not strictly PL-fair, and (ii) MSDA may

not be fair for a problem with B-common priority. And indeed, these negative observations

are true for any choice of precedence lists to define MSDA.

Observation 2. MSDA (with any precedence lists) is not strictly PL-fair.

Observation 3. There is a problem with B-common priority for which MSDA (with any

precedence lists) is not fair.

The following single example explains both of these two observations.

Example 5. Consider the following problem: C = {c1, c2, c3}, S = {s1, s2, s3} and T = {t1}.
Priorities, capacities and type-specific constraints are summarized in the table below.
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≻c1 ≻c2 ≻c3

s1 s1 s2

s2 s2 s1

s3 s3 s3

capacity (ceiling for type t1) 2 1 1

floor for type t1 0 1 1

Note that ≻C has B-common priority because Qt1 = 1 and s3 has the lowest priority for all

schools. Since |St1 | = 3, there are six precedence lists to define MSDA.

First, consider a precedence list with r1 : s1, s2, s3. And consider preferences PS such that

c3Psc2Psc1 for s ∈ {s1, s2}. In the first stage of MSDA with r1, only s1 can be in the DA

mechanism because the sum of all floors is two. s1 is assigned a slot of c3, which is finalized,

and the outcome is

µ =

(
c1 c2 c3

s3 s2 s1

)
.

But this is not strictly PL-fair because s2, who is not the bottom Qt1 student, PL-envies s1

at c3.

Next, consider a precedence list with r2 : s2, s1, s3. The logic is the same as above:

consider preferences P ′
S such that c2P

′
sc3P

′
sc1 for s ∈ {s1, s2}. Then the outcome of MSDA

with r2 is µ, but this is not strictly PL-fair because s1 PL-envies s2 at c2.

Finally, consider other four precedence lists (ri)
6
i=3 such that ri(s3) ∈ {1, 2}. Consider

preferences P ′′
S such that c3P

′′
s c2P

′′
s c1 for all s ∈ S. In the outcome of MSDA with any ri

(i = 3, ..., 6), s3 is assigned to either c2 or c3. But either s1 or s2 must be assigned to c1,

and the one who is assigned to c1 PL-envies s3. Thus, the outcome of MSDA is not strictly

PL-fair.

In MSDA, bottom nl students according to r cannot participate in DA in stage l unless

l is the final stage, and the assignment is finalized in every stage. In addition, nl can be

larger than Qt1 (n1 = 2 > 1 = Qt1) by definition. Therefore, when student s2, who is

not the bottom student under r1, proposes to schools in MSDA, s1’s assignment is already

finalized and this causes a justified envy. On the other hand, in DAPL, the assignment is not

finalized until the DA stage terminates and this eliminates justified envy among all students

who propose to school divisions.

Fragiadakis et al. (2015) show that MSDA is feasible, PL-fair, non-wasteful and group

strategy-proof. Thus, DAPL improves MSDA with respect to fairness (without sacrificing
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other good properties), and it also accommodates separate floors and ceilings for different

types.

3.5 Maximal Domain Theorem

We showed that the existence of fair and non-wasteful assignments is guaranteed for problems

with B-common priority. But some real-life problems are unlikely to satisfy this condition,

and we still need to know what will happen on these occasions. That is, can we still find

stable assignments without B-common priority?

For this question, we take the following approach: given a primitive problem Z, consider

the maximal domain of a pair of two schools’ strict rankings (rtc, r
t
c′) over type-t students

for the existence of fair and non-wasteful assignments. To do so, we consider a pairwise and

type-specific version of the B-common priority condition. We say that ≻c is consistent with

rt if s ≻c s
′ ⇔ rt(s) < rt(s′) for any s, s′ ∈ St.

Definition 8. A pair of strict rankings (rtc, r
t
c′) of two schools c and c′ over type-t students

has pairwise common priority among the bottom students (pairwise B-common priority) for

t ∈ T if

Bt(r
t
c, K) = Bt(r

t
c′ , K)

for any K ∈ {0, ..., Qt(c, c
′)}.

We use the same threshold Qt(c, c
′) as B-common priority to define the set of type-t

bottom students between schools c and c′. Therefore, if ≻C has B-common priority, for

any pair of priority rankings (≻c,≻c′) and any type t, the pair of strict rankings (rtc, r
t
c′)

over type-t students which is consistent with (≻c,≻c′) should also have pairwise B-common

priority.17

Our next theorem shows that the maximal domain of (rtc, r
t
c′) is characterized by this

pairwise B-common priority condition. More precisely, we show that for any (rtc, r
t
c′) which

does not have pairwise B-common priority, there always exist PS and ≻C such that (≻c,≻c′)

is consistent with (rtc, r
t
c′) and no fair and non-wasteful assignment exists. In particular, we

can find ≻C such that common priority is only violated for t and (c, c′).

For this result, we only consider primitive problems Z with the following condition.

17But the other direction is not straightforward because B-common priority requires the priority ranking

of every school to be consistent with a single ranking rt for bottom students. It is still an open question

whether we can always find a single ranking rt in the definition of B-common priority from the collection of

pairwise B-common priority conditions for all pairs of schools and all types.
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Assumption 1. (Flexibility of primitive problems) Consider any nonempty C̃ ⊆ C with

|C̃| ≤ m − 2 and t ∈ T such that F (C̃, t) ̸= ∅. For any {c, c′} ⊆ C \ C̃, there exist

µ, µ′ ∈ F (C̃, t) which satisfy the following conditions:

1. there exists s ∈ St such that µ(s) = c and µ′(s) = c′;

2. there is at most one student s′ ∈ S \ St such that µ(s′) = c′ and µ′(s′) = c; and

3. for any s′′ ∈ S \ {s, s′}, µ(s′′) = µ′(s′′).

The flexibility condition ensures that whenever F (C̃, t) is nonempty and there are two

schools c and c′ in C \ C̃, one type-t student s can be assigned to either c or c′ under feasible

assignments in F (C̃, t).18 Moreover, when s moves between the two slots at c and c′ under µ

and µ′, there is at most one student s′ who is affected by s’s move and other students’ slots

are kept unchanged. This condition is trivially satisfied when the capacities and maximum

quotas of schools are large enough.

For flexible primitive problems, we establish the following maximal domain result.

Theorem 3. Consider any primitive problem Z that satisfies Assumption 1. For any pair

of two schools’ strict rankings (rtc, r
t
c′) over type-t students which does not have pairwise

B-common priority, there exist

1. a preference profile of students PS, and

2. a priority profile of schools ≻C such that

(a) (≻c,≻c′) is consistent with (rtc, r
t
c′);

(b) for any c′′ ∈ C \ {c, c′}, (≻c,≻c′′) has a common priority order for type t; and

(c) for any (c̃, ĉ) ∈ C2 with c̃ ̸= ĉ, (≻c̃,≻ĉ) has a common priority order for any other

type t′ ∈ T \ {t}

for which there exists no feasible, fair and non-wasteful assignment.

This theorem implies that if pairwise B-common priority is violated for just one type

t and one pair (c, c′) of schools, we can find a priority profile of schools which does not

accommodate stable assignments for some student preferences. In our counterexample, the

violation of stability can be due to the violation of non-wastefulness, fairness for same types

18This requires qtc > qt
c
and qtc′ > qt

c′
.
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or fairness across different types.19 We also require any pair of rankings to have a common

priority order except for t and (c, c′) (conditions 2(b) and 2(c)). This is because otherwise the

non-existence problem can be easily caused by other parts of ≻C , which makes our theorem

trivial. This theorem complements the argument of our sufficiency theorem in the sense that

the maximal domain of (rtc, r
t
c′) is characterized by a component of the sufficient condition,

B-common priority.

One limitation of this theorem is that it does not identify the maximal domain of schools’

entire priority rankings. Indeed, depending on how different types of students are ranked,

there are priorities over all students for which the B-common priority condition is violated

but a stable assignment still always exists. See Example 8 in Appendix D for details. It

would be interesting to consider the maximal domain of schools’ priority rankings over all

students in future research.

4 Application: Student-supervisor Matching

As we mentioned in the Introduction, one of the interesting applications of our model is

the student-supervisor matching problem in universities. In this section, we will explicate

this problem further and examine the implication of B-common priority in the case study of

Kawagoe and Matsubae (2017).

In Future University Hakodate in Japan, third-year students need to choose their super-

visors to write their senior theses, and the university runs a centralized mechanism to assign

students to supervisors. In addition to the maximum capacity, minimum quotas are set for

supervisors because they need manpower for their laboratories and the university wants to

achieve an equal share of supervision. In 2016, there were 254 students and 67 supervisors,

which means that each supervisor was assigned roughly four students on average.

In this application, constraints have a special structure: supervisors have minimum quo-

tas only for students who belong to the same course as they do. Here, a “course” is defined by

a field of study. There are four courses for students (Complex Systems, Intelligent Systems,

Information Systems and Information Design) and each student belongs to one of them.

Each supervisor belongs to one of these four courses or Communication Media Laboratory

(CML). Supervisors in the above-mentioned four courses have “same-course” minimum quo-

tas, but there is no minimum quota for students in other courses.20 We denote the set

19This means that Theorem 3 cannot be easily strengthened to the non-existence of assignments with

only one or two of these three properties.
20This means that supervisors in CML do not have any minimum quotas.
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of type-t supervisors by Ct. In 2016, the total capacity for each supervisor was 6 if he is

in Complex Systems or Intelligent Systems, and 4 otherwise. The minimum quota for the

same-course students was 2 for supervisors in Complex Systems, Intelligent Systems or In-

formation Systems, and 3 for those in Information Design. These numbers are summarized

in Table 1.

course (t)
Complex
Systems

Intelligent
Systems

Information
Systems

Information
Design CML

# of students (|St|) 62 62 86 44 0

# of supervisors (|Ct|) 13 12 19 13 10

capacity (qc for c ∈ Ct) 6 6 4 4 4

minimum quota (qt
c
for c ∈ Ct) 2 2 2 3 0

Qt(c) for c ∈ C \ Ct 26 24 38 39 0

Qt(c)/St 0.42 0.39 0.44 0.89 0

Table 1: Case of Future University Hakodate in 2016 (Kawagoe and Matsubae, 2017)

Now, let us discuss the applicability and implication of our B-common priority in this

problem. First, it is possible for the university to adopt a common ranking of students

(such as GPAs) in this context because supervisors do not have veto power on this decision.

Second, by requiring only B-common priority (rather than common priority), we could give

supervisors freedom to rank many good students as they like. According to the data from

2016, we can easily compute Qt(c) for each course t and each supervisor c.21 Table 1 shows

Qt(c) for each course t and supervisors c ∈ C \ Ct as this is the maximal number of type-t

students who should be ranked in the same way by some two supervisors under B-common

priority. For example, Qt(c) for Complex Systems (t) and some supervisor who is not in

Complex Systems (c ∈ C \Ct) is simply the sum of the minimum quotas for type-t students,

that is, 2×13 = 26. The percentageQt(c)/St of the bottom students in course t is around 40%

for Complex Systems, Intelligent Systems and Information Systems, and 89% for Information

Design. This means that for students in each of the first three courses, we can ask supervisors

to rank around 40% of them according to their GPAs, and let them rank the rest of 60% as

they like. But there is much less freedom to rank students in Information Design because of

the high minimum quotas for this course.

21This is because the capacities are large enough to find an assignment in which all minimum quotas are

binding.
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5 Concluding Remarks

This paper identified the restrictions on the schools’ priority structure to guarantee the

existence of stable assignments when there are type-specific minimum quotas. First, we

showed that for any problem with B-common priority, DAPL always finds a fair and non-

wasteful assignment. DAPL has good properties in general: feasibility, non-wastefulness,

strict PL-fairness, and group strategy-proofness. DAPL is also shown to satisfy good ef-

ficiency properties as well. Next, we showed a weak form of necessity theorem: pairwise

B-common priority characterizes the maximal domain of two schools’ priority rankings for

the existence of stable assignments for any flexible primitive problem.

Our maximal domain theorem is derived for the domain of two schools’ priority rankings

over each type of students, not over all students. Therefore we leave the maximal domain

theorem of schools’ entire priority rankings for future research.

Throughout the paper, we discussed several important applications of our model. Our

existence result is relevant to problems such as the student-supervisor matching in which

B-common priority may be adopted. But DAPL might serve as a new solution for other

problems without B-common priority. Thus, it will be interesting to study more real-world

matching markets with type-specific minimum quotas and further examine the implication

of our results.
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Appendix A Lemmas

Lemma 1 and Lemma 2 are used in the first part (feasibility) of Proposition 1 and Proposition

2.

Lemma 1. Consider DAPL for any (Z,≻C , PS). For each type t ∈ T , there are at least two

schools whose type-t divisions are filled only by real students in the DA stage. (If the quota

of a school’s type-t division is zero, we say that this quota is filled by real students.)

Proof: First, since we have |St| >
∑

c∈C qt
c
, in steps of DAPL where no type-t division

is filled only by real students, at least one artificial student is rejected. And this artificial

student proposes to the type-t null division in the next step. Repeating this, at least one

school’s type-t division must be filled by real students.

Second, by additional rejection steps of DAPL, if there is only one school whose type-t

division is filled by real students, one type-t artificial student is rejected from ctm or ctm−1

and she proposes to the type-t null division. And in the next step, one real type-t student

proposes to some school division. Since each open division co can accept at most min{qtc −
qt
c
, |St| −

∑
c′∈C qt

c′
} type-t students, when the DA stage terminates, at least two schools’

type-t divisions are filled by real students.

Lemma 2. Consider DAPL for any (Z,≻C , PS). Suppose that there are two schools c1 and c2

whose type-t divisions are filled only by real students in the DA stage. Let Cb ⊆ C \{c1, c2} be

the set of schools c such that |µ∗t(c)| ≤ qt
c
where µ∗ is the outcome of DAPL for (Z,≻C , PS).

Then we have
∑

c∈Cb
qt
c
≤ Qt(c1, c2).

Proof: Suppose by contradiction that
∑

c∈Cb
qt
c
> Qt(c1, c2). If there is any school c ∈

Cb such that |µ∗t(c)| < qt
c
, we can move type-t students from C \ Cb to Cb so that the

unfilled minimum quotas of such schools in Cb are exactly filled. This is possible without

violating any other constraints. Since we can do this for every type, there is a feasible

assignment under which the type-t minimum quota qt
c
of any school c ∈ Cb is binding.22

Then
∑

c∈Cb
qt
c
> Qt(c1, c2) is a contradiction to the definition of Qt(c1, c2), and we must

have
∑

c∈Cb
qt
c
≤ Qt(c1, c2).

Lemma 3 is used in the fifth part (group strategy-proofness) of Proposition 1. Consider

a variant of DAPL in which additional rejection steps are removed. We call this version

of DAPL as DAPL without Additional Rejection Steps. As functions, we denote DAPL by

γDAPL and DAPL without Additional Rejection Steps by γDAPLwARS.

22We can also find such a feasible assignment when there is no school c ∈ Cb such that |µ∗t(c)| < qt
c
.
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Lemma 3. Consider DAPL for any (Z,≻C , PS). Let T ∗ be the set of types for which at

least one artificial student is rejected in an additional rejection step. Also for each t ∈ T ∗,

let c∗(t) be the unique school whose type-t division was filled only by real students in the

additional rejection step. Then the following two statements hold.

1. For any s ∈ S with τ(s) ∈ T \ T ∗, γDAPL
s (Z,≻C , PS) = γDAPLwARS

s (Z,≻C , PS).

2. For any s ∈ S with τ(s) ∈ T ∗ who was assigned to a school division in the DA stage

of DAPL, if there is c ∈ C such that cPsγ
DAPL
s (Z,≻C , PS), then c = c∗(t).

Proof: 1. Consider any type t ∈ T ∗. After any additional rejection step in which a ∈ At is

rejected, a proposes to ϕt and one type-t real student s is rejected by ϕt. If s proposes to the

type-t division of c ̸= c∗(t) in the next step, s is assigned to ct and type-t artificial students

fill the remaining slots of all type-t divisions. If s proposes to the open division of c∗(t) in

the next step and s is tentatively accepted, another type-t student s′ should be rejected from

it because the open division of c∗(t) already accepts |St| −
∑

c′∈C qt
c′
type-t students. And in

the next step, s′ will be accepted by a type-t division of some school c′ ̸= c∗(t).

In either sequence of steps, no student of any other type is rejected following the additional

rejection step for type t. Therefore, for any for any s̃ ∈ S with τ(s̃) ∈ T \ T ∗, γDAPL
s̃ (Z,≻C

, PS) = γDAPLwARS
s̃ (Z,≻C , PS) should hold.

2. Consider an additional rejection step in which a type-t artificial student is rejected. In this

step, c∗(t) is the only school whose type-t division is fully filled by real students. This means

that any student s ∈ St can be assigned to the type-t division of any school in C \ {c∗(t)}
if she proposes to it in the DA stage. And this school becomes the final assignment of s

in DAPL. Therefore, if s proposed to school divisions in the DA stage and prefers another

school to her own assignment, then it must be c∗(t).

Appendix B Proofs of the Main Results

As in Appendix A, we denote DAPL by γDAPL and DAPL without Additional Rejection

Steps by γDAPLwARS.

B.1 Proof of Proposition 1

Take any problem (Z,≻C) and any profile of students’ preferences PS. Let µ
∗ be the assign-

ment produced by DAPL for (Z,≻C , PS).
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1. Feasibility

First, it is easy to show that every student is assigned to some school under µ∗. Students

are either assigned to the school divisions or the null divisions after the DA stage. Those

who are in the school divisions are finalized to these slots, and those who are assigned to

the null divisions are assigned the slots of minimum quotas in the MQ stage. Thus, every

student is assigned a slot.

Next, we need to show that all capacity and type-specific constraints are satisfied under

µ∗. By the definition of DAPL, no total and type-specific maximum quota is violated under

µ∗. Then it suffices to show that for any (t, c) ∈ T ×C, the type-t minimum quota of school

c is satisfied under µ∗, i.e., |µ∗t(c)| ≥ qt
c
. Consider an arbitrary type t ∈ T . Since at least

two schools’ type-t divisions are filled by real students in the DA stage by Lemma 1, let c1

and c2 be such schools. Let Cb ⊆ C \ {c1, c2} be the set of schools c such that |µ∗t(c)| ≤ qt
c
.

By Lemma 2, we have
∑

c∈Cb
qt
c
≤ Qt(c1, c2). Note that for any school c ∈ C \ Cb, c

t is fully

filled by real students in the DA stage because we have |µ∗t(c)| > qt
c
or c ∈ {c1, c2}. And

since there are Qt (≥ Qt(c1, c2) ≥
∑

c∈Cb
qt
c
) type-t artificial students,

∑
c∈Cb

qt
c
minimum

quotas of Cb must be filled by artificial students in the DA stage if they are not filled by real

students. Thus, |µ∗t(c)| = qt
c
for any c ∈ Cb, which means that all minimum quotas are filled

under µ∗.

2-4. Non-wastefulness and strict PL-fairness

Take any student s ∈ S and let t ≡ τ(s). Consider any school c ∈ C such that cPsµ
∗(s)

(if there is any). It suffices to consider the following two cases.

[1] When s is assigned a slot of the null division ϕt in the DA stage.

As the serial dictatorship is used to assign s in the MQ stage, any type-t student who is

assigned to c at µ∗ should be ranked higher than s in the precedence list rt. In addition, s

is one of the bottom Qt students in the precedence list rt because she is assigned to ϕt. It is

obvious that the minimum quota of µ∗(s) for type-t students is binding at µ∗. Therefore, s

does not PL-envy same type students. Moreover, as the minimum quota of µ∗(s) for type-t

students is binding at µ∗, s does not justifiably envy students of other types. This also

implies that s cannot justifiably claim an empty slot of c even if some of c’s slots are not

filled.

[2] When s is assigned a slot of the type-t division or the open division of µ∗(s) in the DA

stage.

s must have proposed to both divisions ct and co, and must have been rejected by both of

them. This means that s neither justifiably envies a student in µ∗(c) nor justifiably claims
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an empty slot of c.

5. Group strategy-proofness

Suppose by contradiction that for some (Z,≻C , PS), there are I ⊆ S and P ′
I such that

γDAPL
s (Z,≻C , P

′
I , PS\I)Psγ

DAPL
s (Z,≻C , PS) for every s ∈ I.

Let T ∗ be the set of types for which at least one artificial student is rejected in an

additional rejection step of DAPL for (Z,≻C , PS). Also for each t ∈ T ∗, let c∗(t) be the

unique school whose type-t division was filled only by real students in the additional rejection

steps.

[1] I ∩ {s ∈ S|τ(s) ∈ T ∗} = ∅.
By Lemma 3, the assignment of DAPL is the same as that of DAPL without Additional

Rejection Steps for any students in I. That is, we have

γDAPLwARS
s (Z,≻C , P

′
I , PS\I)Psγ

DAPLwARS
s (Z,≻C , PS)

for every s ∈ I.

Now let D ⊆ S be the set of students who are assigned to school divisions in the DA

stage of DAPL without Additional Rejection Steps under PS. We must have I ∩ D ̸= ∅
because students cannot get strictly better off by manipulating preferences only in the MQ

stage.

Then, consider DAPL without Additional Rejection Steps with only students inD. In this

problem, the assignment of each student s ∈ D when PD is submitted is γDAPLwARS
s (Z,≻C

, PS) by the definition of D. As there are less students in the market and school preferences

are responsive, students in I ∩D can still get strictly better off by submitting some P ′′
I∩D in

this problem. Let us focus on the extended problem in the DA stage of this DAPL without

Additional Rejection Steps under (P ′′
I∩D, PD\I). If a student in I ∩D is assigned to a school

division, then this is a strict improvement in her extended preference. Even if a student in

I∩D is assigned to a null division, this is also a strict improvement in her extended preference

as the null division is assumed to be the first choice for any real student. Therefore, I ∩D

can get strictly better off by manipulating their preferences in the extended problem of the

DA stage as well. However, since this DA stage is equivalent to the DA mechanism with

type-specific maximum quotas by Abdulkadiroğlu (2005), this is a contradiction to its group

strategy-proofness, which is shown by Hatfield and Kojima (2009).

[2] I ∩ {s ∈ S|τ(s) ∈ T ∗} ̸= ∅.
By Lemma 3, for any t ∈ T ∗ and s ∈ St, if s is assigned to c∗(t) in DAPL under PS, c

∗(t)

is the first choice for s. Thus, for any student s ∈ I ∩{s ∈ S|τ(s) ∈ T ∗}, one of the following
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two must be true: (i) s is assigned to ct with c ̸= c∗(t) in the DA stage of DAPL under PS;

or (ii) s is assigned to ϕt in the DA stage of DAPL under PS.

First, let I1 ⊆ I be the set of students of case (i). Note that any s ∈ I1 must be assigned to

c∗(t) in DAPL under (P ′
I , PS\I) because c

∗(t) is the only school which can strictly improve s’s

assignment by Lemma 3. Suppose that for each s ∈ I1, P
′
s is such that c′P ′

sγ
DAPL
s (Z,≻C , PS)

⇒ c′ = c∗(t). Then, we would have γDAPL
s (Z,≻C , P

′
I , PS\I) = γDAPL

s (Z,≻C , PS) for any

s ∈ I1 since the DA stage gives the same assignment under either preferences, and this

is a contradiction. Thus, there must be some s̃ ∈ I1 for whom there is c′ ̸= c∗(t) with

c′P ′
s̃γ

DAPL
s̃ (Z,≻C , PS). But then, since any type-t division of a school in C \ {c∗(t)} should

have an artificial student or a vacant slot when students in I1 propose to it in DAPL under

PS, some ŝ ∈ I1 must be assigned to the type-t division of ĉ ̸= c∗(t) in DAPL under (P ′
I , PS\I).

But this is a contradiction and we have I1 = ∅.
Then, any student in I must be of case (ii). But since the DA stage of DAPL under PS

and that of DAPL under (P ′
I , PS\I) are exactly the same, students in I cannot get strictly

better off by manipulating preferences in the MQ stage. Thus, this is also a contradiction.

B.2 Proof of Proposition 2

Consider any (Z,≻C , PS) with B-common priority, and any (t, c) ∈ T ×C. By the definition

of the precedence list rt, Bt(≻c, K) = Bt(r
t, K) holds for any K ∈ {0, ..., Qt(c)}.

To show that the outcome of DAPL is fair, it suffices to show that no student justifiably

envies another student of the same type at c when she is assigned to the type-t null division

ϕt at the end of the DA stage.

[1] When ct is fully filled by real students in the DA stage.

By Lemma 1, there exists another school c′ ̸= c whose type-t division is filled only by

real students in the DA stage. Then, there are at most Qt(c, c
′) type-t minimum quotas in

C \ {c, c′} that are binding at a feasible assignment. This implies that there are at most

Qt(c, c
′) real students who are finally assigned to ϕt in the DA stage. Since these real students

are in Bt(≻c, Qt(c)), they cannot justifiably envy type-t students assigned to c.

[2] When ct is not fully filled by real students in the DA stage.

Let C̃ ⊆ C be the set of schools such that |C̃| ≤ m − 2 and
∑

c′′∈C̃ qt
c′′

= Qt. If c /∈ C̃,

there is another school c′ /∈ C̃ and we have Qt = Qt(c, c
′). If c ∈ C̃, take a school c′ /∈ C̃

and Qt − qt
c
≤ Qt(c, c

′) holds. Therefore, we have Qt − qt
c
≤ Qt(c) in either case, and thus,

Qt −Qt(c) ≤ qt
c
.
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Let S1
t ≡ Bt(r

t, Qt(c)) be the bottom Qt(c) students in the ranking rt, and let S2
t ≡

Bt(r
t, Qt) \Bt(r

t, Qt(c)) be the next bottom Qt −Qt(c) students in the ranking rt.

First, it is clear that no student in S1
t justifiably envies another type-t student who is

assigned to c because ≻c is consistent with rt for students in S1
t .

Next, consider S2
t . Since common priority is only applied to the bottom Qt(c) students,

students in S2
t may have high priority in ≻c. And students in S2

t may be assigned to ϕt in the

DA stage. Now we show that even if a student in S2
t is assigned to ϕt, she can be assigned to

c in the MQ stage if she prefers it, and therefore she does not envy type-t students assigned

to c.

Since ct is not filled by real students in the DA stage, we can take two schools c1 and

c2 from C \ {c} whose type-t divisions are filled only by real students in the DA stage by

Lemma 1. And by Lemma 2, we have
∑

c∈Cb
qt
c
≤ Qt(c1, c2) ≤ Qt where Cb ⊆ C \ {c1, c2}

is the set of schools whose type-t divisions were not filled by real students in the DA stage.

We have c ∈ Cb by definition. Now let nc
t be the number of type-t real students who are

assigned to ct in the DA stage, and let nt be the number of type-t artificial students who

are assigned to ϕt in the DA stage. At the end of the DA stage, since there are at most∑
c∈Cb

qt
c
−nc

t type-t artificial students who are assigned to school divisions, there are at least

Qt − (
∑

c∈Cb
qt
c
− nc

t) type-t artificial students who are assigned to ϕt in the DA stage. This

implies nt ≥ Qt − (
∑

c∈Cb
qt
c
− nc

t) ≥ nc
t .

Since we have |S2
t | ≤ qt

c
from the discussion above,

max{0, |S2
t | − nt} ≤ qt

c
− nc

t

holds. This means that the number of type-t minimum quota of c which need to be filled in

the MQ stage (qt
c
−nc

t) is weakly greater than the number of students in S2
t who are assigned

to ϕt (max{0, |S2
t | − nt}). Therefore, even if a student in S2

t is assigned to ϕt, she could

always be assigned to c in the MQ stage if she prefers it. This implies that no student in S2
t

justifiably envies a student of type t who is assigned to c in DAPL.

B.3 Proof of Proposition 3

Suppose by contradiction that there is (Z,≻C , PS) such that γDAPL(Z,≻C , PS) is Pareto

dominated by a feasible, fair and non-wasteful assignment µ. Then, let I ⊆ S be the set of

students whose assignments are strictly improved under µ, i.e., µ(s)Psγ
DAPL
s (Z,≻C , PS) for

all s ∈ I; and µ(s) = γDAPL
s (Z,≻C , PS) for all s ∈ S \ I. Let D ⊆ S be the set of students

who are assigned to school divisions in the DA stage of DAPL. There are three possibilities:

[1] I ⊆ S \D, [2] I ⊆ D, and [3] I ∩ (S \D) ̸= ∅ and I ∩D ̸= ∅,
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[1] I ⊆ S \D.

The assignments of students in S \ D are determined by the serial dictatorship in the

MQ stage. Since γDAPL(Z,≻C , PS) is non-wasteful, if all students in I are strictly better off

under µ, some students in S \ I must be worse off under µ. But this is a contradiction.

[2] I ⊆ D.

Consider the extended problem in the DA stage. By |T | = 1, any justified envy among

students inD in this extended problem corresponds to a justified envy in the original problem.

Since γDAPL(Z,≻C , PS) is Pareto dominated by µ, which is feasible, fair and non-wasteful,

there must be a corresponding feasible, fair and non-wasteful assignment in the extended

problem which Pareto improves the assignment of DAPL in the DA stage. But this contra-

dicts to the fact that the standard DA mechanism is student-optimal among all feasible, fair

and non-wasteful assignments.

[3] I ∩ (S \D) ̸= ∅ and I ∩D ̸= ∅.
Since γDAPL(Z,≻C , PS) is non-wasteful, µ must be achieved by students in I exchanging

their slots under γDAPL(Z,≻C , PS). And since [1] and [2] do not hold, there must be a

student s ∈ I ∩ D and s′ ∈ I ∩ (S \ D) such that µ(s) = γDAPL
s′ (Z,≻C , PS). But this is

a contradiction because s should have proposed to γDAPL
s′ (Z,≻C , PS) in the DA stage and

should have been assigned to it.

B.4 Proof of Proposition 4

Consider the same problem (Z,≻C) as in Example 4. C = {c1, c2, c3, c4}, S = {s1, s2, s3, s4},
T = {t1, t2}, τ(s1) = τ(s2) = t1, and τ(s3) = τ(s4) = t2. Priorities, preferences of interest,

capacities and type-specific constraints are summarized in the table below.

≻c1 ≻c2 ≻c3 ≻c4 Ps1 P ′
s1

Ps2 Ps3 Ps4

s2 s1 s3 s3 c1 c1 c2 c1 c4

s3 s3 s4 s4 c2 c4 c1 c2 c3

s4 s4
...

... c4
... c4 c3

...

s1 s2 c3 c3 c4

capacities (ceiling for any type) 1 1 1 1

floor for type t1 0 0 0 0

floor for type t2 0 0 1 0

The precedence list for type t2 in DAPL is rt2 : s3, s4.
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Consider any mechanism γ which Pareto dominates DAPL whenever stable improvement

is possible. As demonstrated by Example 4, the outcome of DAPL for PS is

γDAPL(Z,≻C , PS) =

(
c1 c2 c3 c4

s2 s1 s3 s4

)
,

and this is Pareto dominated by µ in Example 4, which is fair and non-wasteful. Since µ is

the only assignment that Pareto dominates γDAPL(Z,≻C , PS), γ must choose µ for PS:

γ(Z,≻C , PS) = µ =

(
c1 c2 c3 c4

s1 s2 s3 s4

)
.

Next, the outcome of DAPL for (P ′
s1
, P−s1) is computed by

γDAPL(Z,≻C , P
′
s1
, P−s1) =

(
c1 c2 c3 c4

s3 s2 s4 s1

)
.

And since this is Pareto efficient, we must have γ(Z,≻C , P
′
s1
, P−s1) = γDAPL(Z,≻C , P

′
s1
, P−s1).

But now γs1(Z,≻C , PS)P
′
s1
γs1(Z,≻C , P

′
s1
, P−s1) implies that γ is not strategy-proof.

B.5 Proof of Theorem 3

Take any pair of schools (c, c′) ∈ C2 with c ̸= c′ and any type t ∈ T . Consider any pair of

strict rankings (rtc, r
t
c′) over type-t students which does not have pairwise B-common priority.

By definition, the set and/or the order of the bottom Qt(c, c
′) students are different between

rtc and rtc′ . To be more precise, let St(r
t) ≡ Bt(r

t, Qt(c, c
′)) be the set of Qt(c, c

′) bottom

students in a ranking rt. Then, at least one of the following two statements must be true:

[1] St(r
t
c) = St(r

t
c′) but there are s, s′ ∈ St(r

t
c) such that rtc(s) < rtc(s

′) and rtc′(s) > rtc′(s
′),

or [2] St(r
t
c) ̸= St(r

t
c′).

Since Qt(c, c
′) > 0, there exists a nonempty Cb ⊆ C \ {c, c′} such that Qt(c, c

′) =∑
c′′∈Cb

qt
c′′
. Let Cn ≡ C \ Cb. As F (Cb, t) ̸= ∅ holds, by Assumption 1, we can find µ∗

1, µ
∗
2 ∈

F (Cb, t) such that (i) there exists s ∈ St such that µ∗
1(s) = c and µ∗

2(s) = c′; (ii) there

is at most one student s′ ∈ S \ St such that µ∗
1(s

′) = c′ and µ∗
2(s

′) = c; and (iii) for any

s′′ ∈ S \ {s, s′}, µ∗
1(s

′′) = µ∗
2(s

′′).

[1] St(r
t
c) = St(r

t
c′) but there are s, s′ ∈ St(r

t
c) such that rtc(s) < rtc(s

′) and rtc′(s) > rtc′(s
′).

Let St = St \ St(r
t
c). First, we divide St(r

t
c) into three subsets: S1

t , S
2
t and S3

t . S1
t is

the set of students in St(r
t
c) whose rank is higher under rtc than under rtc′ . S2

t is the set of

students in St(r
t
c) whose rank is lower under rtc than under rtc′ . S3

t is the set of students
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in St(r
t
c) whose rank is the same between under rtc and under rtc′ . More formally, they are

defined as

S1
t ≡

{
s̃ ∈ St(r

t
c)
∣∣∣|{ŝ ∈ St|rtc(s̃) < rtc(ŝ)}| > |{ŝ ∈ St|rtc(s̃) < rtc(ŝ)}|

}
,

S2
t ≡

{
s̃ ∈ St(r

t
c)
∣∣∣|{ŝ ∈ St|rtc(s̃) < rtc(ŝ)}| < |{ŝ ∈ St|rtc(s̃) < rtc(ŝ)}|

}
,

S3
t ≡

{
s̃ ∈ St(r

t
c)
∣∣∣|{ŝ ∈ St|rtc(s̃) < rtc(ŝ)}| = |{ŝ ∈ St|rtc(s̃) < rtc(ŝ)}|

}
.

Note that we have S1
t ̸= ∅ and S2

t ̸= ∅.
Now consider the following preferences of students. Let every student in S1

t prefer c′

most, c next, schools in Cn \ {c, c′} next. Let every student in S2
t prefer c most, c′ next,

and schools in Cn \ {c, c′} next. Let every student in S3
t prefer schools in Cb most, c and

c′ next, and schools in Cn \ {c, c′} next. Let s′′ be the student such that rtc(s
′′) < rtc(s̃) for

any s̃ ∈ St \ {s′′}. Note that s′′ ∈ St.
23 Let s′′ prefer some school in Cb most. Because

|St(r
t
c)| = Qt(c, c

′) and S1
t , S

2
t ̸= ∅, we can pick preferences of students in S3

t ∪ {s′′} so that

by assigning every student in S3
t ∪ {s′′} to her first choice in Cb, we can still achieve the

distribution of each type of students under µ∗
1 and µ∗

2. Finally, let all other students in

St \ {s′′} prefer schools in Cn. Since µ∗
1, µ

∗
2 ∈ F (Cb, t), we can pick preferences of students

in St \ {s′′} so that every student in St \ {s′′} is assigned to her first choice and we can still

achieve the distribution of each type of students under µ∗
1 and µ∗

2.

The following table summarizes the preferences of students. (Information about the exact

order of schools is omitted.)

PS1
t

PS2
t

PS3
t

Ps′′ PSt\{s′′}

c′ c Cb Cb Cn

c c′ {c, c′} ...
...

Cn \ {c, c′} Cn \ {c, c′} Cn \ {c, c′}
...

...

Let us construct ≻C which satisfies the following conditions: (i) it is consistent with

(rtc, r
t
c′), (ii) (≻c,≻c′′) has a common priority order for type t for any c′′ ∈ C \ {c, c′} and

(iii) (≻c̃,≻ĉ) has a common priority order for any other type t′ ∈ T \ {t} and for any pair

of schools (c̃, ĉ) ∈ C2. We can find such ≻C by prioritizing any student in S \ {St} below

type-t students by some common order across schools. The next table summarizes this idea:

23This is because if s′′ ∈ St(r
t
c), this means that St(r

t
c) = St and hence

∑
c∈C qt

c
= |St|, which is precluded

in our model.
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≻Cn\{c,c′} ≻c ≻c′ ≻Cb

St St St St

...
...

...
...

s s s′ s
...

...
...

...

s′ s′ s s′

...
...

...
...

S \ St S \ St S \ St S \ St

floor for type t Qt(c, c
′)

Now consider feasible assignments that are fair an non-wasteful. First, it is easy to see

that in any fair an non-wasteful assignment, s′′ must be assigned to her first choice in Cb

because s′′ has the highest priority in that school. All students in St \{s′′} must be assigned

to their first choices because students in St have higher priority than those in St(r
t
c) at any

school.

Next, consider students in St(r
t
c). If some student in St(r

t
c) is assigned to schools in Cn,

the number of such students is at most one because there are Qt(c, c
′)− 1 unfilled minimum

quotas of schools in Cb. Now, all students in S3
t must be assigned to their first choices in Cb.

This is because if a student s̃ ∈ S3
t is assigned to some school in Cn, then one of the following

three scenarios must be true: (i) s̃ would justifiably claim an empty slot or justifiably envy

a student of a different type at c or c′ if s̃ is assigned to Cn \ {c, c′}, (ii) s̃ would justifiably

envy another student in St(r
t
c) assigned to a school in Cb, or (iii) some student in St(r

t
c)

would justifiably envy s̃ if s̃ is assigned to c or c′. Thus, one student who can be assigned to

a school in Cn under a fair and non-wasteful assignment should be in S1
t ∪ S2

t . Note that by

assigning students in St \ {s′′} to their first choices, the distribution of each type of students

under µ∗
1 and µ∗

2 can be achieved. Since µ∗
1 and µ∗

2 are both feasible, one student in S1
t ∪ S2

t

can be assigned to either c or c′.

Then let us consider the available slots of c and c′ (one for each) and the Qt(c, c
′) − 1

unfilled minimum quotas of schools in Cb. Let s1 be any student in S1
t and s2 be any student

in S2
t . Since the minimum quotas must be satisfied, there are four possibilities:

µ1 =

(
c c′ Cb

s1 St(r
t
c) \ {s1}

)
, µ2 =

(
c c′ Cb

s1 St(r
t
c) \ {s1}

)
,

µ3 =

(
c c′ Cb

s2 St(r
t
c) \ {s2}

)
, µ4 =

(
c c′ Cb

s2 St(r
t
c) \ {s2}

)
.
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Now this has the same structure as the counterexample of Theorem 1.

1. µ1 is not fair or is wasteful as s1 justifiably envies a student of a different type or

justifiably claims an empty slot at c′,

2. µ2 is not fair as there must be a student in S2
t who justifiably envies s1 at c′,

3. µ3 is not fair or is wasteful as s2 justifiably envies a student of a different type or

justifiably claims an empty slot at c, and

4. µ4 is not fair as there must be a student in S1
t who justifiably envies s2 at c.

Therefore, there exists no feasible assignment that is fair and wasteful.

[2] St(r
t
c) ̸= St(r

t
c′).

First, we divide St into four subsets: S1
t , S

2
t , S

3
t and S4

t , which are defined as follows:

S1
t ≡ St(r

t
c′) \ St(r

t
c),

S2
t ≡ St(r

t
c) \ St(r

t
c′),

S3
t ≡ St(r

t
c) ∩ St(r

t
c′),

S4
t ≡ St \ (St(r

t
c) ∪ St(r

t
c′)).

Note that we have S1
t ̸= ∅, S2

t ̸= ∅ and |S3
t | < Qt(c, c

′).

Now consider the following preferences of students. Let every student in S1
t prefer c′

most, c next, schools in Cn \ {c, c′} next. Let every student in S2
t prefer c most, c′ next, and

schools in Cn \ {c, c′} next. Let every student in S3
t prefer schools in Cb most, c and c′ next,

and schools in Cn\{c, c′} next. Because |St(r
t
c)| = |St(r

t
c′)| = Qt(c, c

′) and S1
t , S

2
t ̸= ∅, we can

pick preferences of students in S3
t so that by assigning every student in S3

t to her first choice

in Cb, we can achieve the distributions of each type of students that are the same as either of

µ∗
1 and µ∗

2. Finally, let all other students in S4
t prefer schools in Cn. Since µ∗

1, µ
∗
2 ∈ F (Cb, t),

we can pick preferences of students in S4
t so that every student in S4

t is assigned to her first

choice and we can still achieve the distribution of each type of students under µ∗
1 and µ∗

2.

The following table summarizes the preferences of students. (Information about the exact

order of schools is omitted.)

PS1
t

PS2
t

PS3
t

PS4
t

c′ c Cb Cn

c c′ {c, c′} ...

Cn \ {c, c′} Cn \ {c, c′}
...

...
...
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As in the first case, we can find an appropriate ≻C by prioritizing any student in S \{St}
below type-t students by some common order across schools. The next table summarizes

this idea:

≻Cn\{c,c′} ≻c ≻c′ ≻Cb

S4
t ∪ S1

t S4
t ∪ S1

t S4
t ∪ S2

t S4
t ∪ S1

t

S3
t ∪ S2

t S3
t ∪ S2

t S3
t ∪ S1

t S3
t ∪ S2

t

S \ St S \ St S \ St S \ St

floor for type t Qt(c, c
′)

Now consider feasible assignments that are fair an non-wasteful. First, all students in

S4
t must be assigned to their first choices because otherwise students in S4

t would justifiably

envy some student assigned to a school in Cn. Next, students in S3
t must be all assigned to

their first choices in Cb. This is because if a student s̃ ∈ S3
t is assigned to some school in Cn,

then one of the following three scenarios must be true: (i) s̃ would justifiably claim an empty

slot or justifiably envy a student of a different type at c or c′ if s̃ is assigned to Cn \ {c, c′},
(ii) s̃ would justifiably envy another student in St(r

t
c) assigned to a school in Cb, or (iii) some

student in St(r
t
c) would justifiably envy s̃ if s̃ is assigned to c or c′. Thus, under any feasible,

fair and non-wasteful assignment, Qt(c, c
′)− |S3

t | students in S1
t ∪ S2

t must fill the minimum

quotas of schools in Cb, and other students in S1
t ∪ S2

t can be assigned to schools in Cn.

There are three possibilities.

1. When the Qt(c, c
′) − |S3

t | minimum quotas of schools in Cb are all filled by students

in S1
t , all students in S2

t are assigned to c or c′. Because the distributions of both µ∗
1

and µ∗
2 can be achieved, at least one student s2 ∈ S2

t must be assigned to c because

otherwise s2 would justifiably claim an empty slot or envy another student of a different

type at c. But then, some student in S1
t justifiably envies s2.

2. When the Qt(c, c
′) − |S3

t | minimum quotas of schools in Cb are all filled by students

in S2
t , all students in S1

t are assigned to c or c′. Because the distributions of both µ∗
1

and µ∗
2 can be achieved, at least one student s1 ∈ S1

t must be assigned to c′ because

otherwise s1 would justifiably claim an empty slot or envy another student of a different

type at c′. But then, some student in S2
t justifiably envies s1.

3. When the Qt(c, c
′) − |S3

t | minimum quotas of schools in Cb are filled by students in

both S1
t and S2

t , the rest of students in S1
t and S2

t are assigned to c or c′. Because the

distributions of both µ∗
1 and µ∗

2 can be achieved, at least one student s1 ∈ S1
t must be

assigned to c′ or one student s2 ∈ S2
t must be assigned to c because otherwise there
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is at least one student in S1
t ∪ S2

t who would justifiably claim an empty slot or envy

another student of a different type. But then, some student in S2
t who is assigned to

a school in Cb justifiably envies s1, or some student in S1
t who is assigned to a school

in Cb justifiably envies s2.

Therefore, there exists no feasible assignment that is fair and wasteful.

Appendix C Algorithm for Computing Qt(c, c
′)

Take any pair of schools (c, c′) ∈ C2 with c ̸= c′ and any type t ∈ T . Label the sets in

2C\{c,c′} as C̃1, C̃2, ... to satisfy
∑

c′′∈C̃l
qt
c′′

≥
∑

c′′∈C̃l+1
qt
c′′

for each l ∈ {1, ..., 2m−2 − 1}.
In the algorithm, we examine these sets in the order of C̃1, C̃2, ... until we find C̃l with

F (C̃l, t) ̸= ∅.24 The input is a primitive problem Z. Each step l runs as follows:

1. For each c′′ ∈ C̃l, reduce its type-t maximum quota to its type-t minimum quota, i.e.,

define a new type-t maximum quota q̂
t

c′′ ≡ qt
c′′
.

2. Consider a new primitive problem Ẑ where the type-t maximum quota for each c′′ ∈ C̃l

is q̂
t

c′′ and other parameters are the same as Z. As discussed in Appendix A of Ehlers

et al. (2014), since the constraints correspond to the transportation problem in the

operations research literature, we can detect whether there is a feasible assignment in

Ẑ in a polynomial time.

3. If there is a feasible assignment in Ẑ, then this means F (C̃l, t) ̸= ∅ and Qt(c, c
′) =∑

c′′∈C̃l
qt
c′′
. The algorithm terminates in this case. If not, proceed to step l + 1.

Appendix D Omitted Examples

Appendix D.1 DAPL without Additional Rejection Steps

The following example illustrates that DAPL without Additional Rejection Steps may not

be fair for problems with B-common priority.

24This means that the maximum number of steps is 2m−2 − 1. However, we can significantly reduce the

number of steps if multiple schools have exactly the same constraints. Moreover, if the maximum quotas are

not so tight, it is likely that the algorithm stops in early steps.
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Example 6. Consider the following problem: C = {c1, c2, c3}, S = {s1, s2, s3, s4, s5} and

T = {t1}. All students are of the same type. Priorities, preferences, capacities and type-

specific constraints are summarized in the table below.

≻c1 ≻c2 ≻c3 Ps1 Ps2 Ps2 Ps4 Ps5

s4 s1 s1 c1 c1 c1 c1
...

s1 s2 s2 c2 c2 c2 c2

s2 s3 s3
...

...
...

...

s3 s4 s4

s5 s5 s5

capacity (ceiling for type t1) 5 5 5

floor for type t1 2 1 1

≻C has B-common priority because Qt1(c2, c3) = 2 and Qt1(c1, c2) = Qt1(c1, c3) = 1.

The precedence list rt1 of DAPL must satisfy rt1(s4) = 4 and rt1(s5) = 5 because Qt1 =

Qt1(c2, c3) = 2.

First, DAPL without Additional Rejection Steps achieves the following assignment:

µDAPLwARS =

(
c1 c2 c3

{s1, s2, s3} s4 s5

)
.

This is because when s1, s2, and s3 are accepted to c1, two artificial students fill the minimum

quotas of c2 and c3, and the DA stage terminates. However, s4 justifiably envies s1, s2, and

s3 at c1 and µDAPLwARS is not fair.

On the other hand, under DAPL, there is an additional rejection step because when s1,

s2, and s3 are accepted to c1, c1 is the only school whose type-t division is filled by real

students. Then, one artificial student is rejected from ct13 , and in the next step, s4 proposes

to c1. c1 accepts s4 instead of s3, and s3 is finally assigned to c2. To summarize, the outcome

of DAPL is

µDAPL =

(
c1 c2 c3

{s1, s2, s4} s3 s5

)
,

and this is a fair assignment.

Appendix D.2 Serial Dictatorship

Here, we discuss the properties of the serial dictatorship (SD) mechanism suitably defined

for our problem.
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Serial Dictatorship

Fix an arbitrary precedence list r over all students.

In each step l ∈ {1, ..., |S|}, student s ∈ S with r(s) = l chooses her most preferred school

among schools c with the following condition: there is µ ∈ F in which (i) all students s′ ∈ S

with r(s′) ∈ {1, ..., l − 1} are assigned to their chosen schools in the previous steps, and (ii)

µ(s) = c.

By F ̸= ∅, each student can choose at least one school, and the SD terminates after step

|S|.

SD is clearly feasible, non-wasteful and group strategy-proof. However, it violates strict

PL-fairness in two ways: (i) SD is not strictly PL-fair for same types, and (ii) it is not fair

across different types. The following example demonstrates these two points.

Observation 4. SD (with any order of students) is not strictly PL-fair for same types.

Example 7. Consider the following problem: C = {c1, c2}, S = {s1, s2} and T = {t1}.
Priorities, capacities and type-specific constraints are summarized in the table below.

≻c1 ≻c2

s1 s2

s2 s1

capacity (ceiling for type t1) 1 1

floor for type t1 0 0

Note that Qt1 = 0 in this problem.

For SD with r : s1, s2, consider preferences PS such that c2Psc1 for all s ∈ S. Then the

outcome is

µ =

(
c1 c2

s2 s1

)
,

but s2 PL-envies s1 at c2. Thus, this is not strictly PL-fair.

For SD with r : s2, s1, consider preferences P
′
S such that c1P

′
sc2 for all s ∈ S. Then the

outcome is µ. But this is not strictly PL-fair because s1 PL-envies s2 at c1.

To see that SD is not fair across different types, we can slightly change Example 7 in the

following way: T = {t1, t2}, τ(s1) = t1, τ(s2) = t2, qc1 = qc2 = 1, and (qtc, q
t
c
) = (1, 0) for

each (t, c) ∈ T ×C. Then, the same logic as Example 7 applies and SD with either order of

students fails to be fair across different types.

Observation 5. SD (with any order of students) is not fair across different types.
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Appendix D.3 Stable Assignments without B-common Priority

The following example shows that there are priority rankings over all students for which the

B-common priority condition is violated but a stable assignment exists for any preferences.

Example 8. Consider the following problem: C = {c1, c2, c3}, S = {s1, s2, s3, s4}, T =

{t1, t2}, τ(s1) = τ(s2) = t1, and τ(s3) = τ(s4) = t2. Priorities, capacities and type-specific

constraints are summarized in the table below.

≻c1 ≻c2 ≻c3

s3 s4 s1

s4 s3 s2

s1 s2
...

s2 s1

capacities (ceiling for any type) 1 1 2

floor for type t1 0 0 1

floor for type t2 0 0 0

Here, B-common priority is violated because c1 and c2 rank s1 and s2 differently but we have

Qt1(c1) = Qt1(c2) = Qt1(c1, c2) = 1.

Consider the following feasible assignment:

µ =

(
c1 c2 c3

s3 s4 {s1, s2}

)
.

Since no student can justifiably envy another student or justifiably claim an empty slot, µ

is fair and non-wasteful for any preferences.
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