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Abstract 

Artificial intelligence algorithms have been applied separately or integrally for prediction, classification or optimization of 
buildings energy consumption. However, there is a salient gap in the literature on the investigation of hybrid objective function 
development for energy optimization problems including qualitative and quantitative datasets in their constructs. To tackle with 
this challenge, this paper presents a hybrid objective function of machine learning algorithms in optimizing energy consumption 
of residential buildings through considering both continuous and discrete parameters of energy simultaneously. To do this, a 
comprehensive dataset including significant parameters of building envelop, building design layout and HVAC was established, 
Artificial Neural Network as a prediction and Decision Tree as a classification algorithm were employed via cross-training 
ensemble equation to create the hybrid function and the model was finally validated via the weighted average of the error 
decomposed for the performance. The developed model could effectively enhance the accuracy of the objective functions used in 
the building energy prediction and optimization problems. Furthermore, the results of this novel approach resolved the inclusion 
issue of both continuous and discrete parameters of energy in a unified objective function without threatening the integrity and 
consistency of the building energy datasets. 
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1. Introduction 

The potential to save energy by systematic building management and optimisation is known to be significant and 
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it could be estimated from 5% to 50% [1]. With this respect, numerous machine learning methods have been applied 
in the recent decade for predicting, classifying and optimising the energy consumption of buildings focusing on the 
different important parameters but each optimisation algorithm requires specific objective function as its fundamental 
unit to model the parameters and minimise the values. In the energy optimisation context, developing the most 
appropriate objective function is a critical task as much as the reliable energy dataset generation particularly where 
both types of qualitative and quantitative data are involved with the optimisation solver. It can be inferred from 
literature that two types of machine learning algorithms; namely prediction [2] and classification [3] are run for 
continuous and discrete parameters of building energy consumption, respectively. However, there is a salient gap on 
the investigation of hybrid objective function development for energy optimization problems including qualitative and 
quantitative datasets in their constructs. Although in some cases, transformation techniques can be utilized for 
converting the continuous and discrete variables into each other [4] but some shortcomings such as losing integrity or 
randomness may be arisen [5]. Therefore, this study is to introduce a hybrid energy objective function covering both 
categorical and continuous data in the unified approach in which two well-known algorithms of Artificial Neural 
Network (ANN) and Decision Tree (DT) were developed integrally in order to find the best solution for energy 
optimisation functions and enhance the accuracy of data-driven energy modelling and prediction.            

1.1. ANN & DT 

ANN is a mathematical or computational model that tries to simulate the structure or functional aspects of 
biological neural networks. One of the applications of ANN in engineering field is to predict the outcome of non-
linear statistical problems which is usually utilized to model complex relationships between inputs and outputs or to 
find patterns in datasets [6]. The thermal equations used to analyses and calculate energy loads are complex, making 
ANN a good platform to be used for this purpose. In this form, the network is presented with datasets obtained from 
simulations and the values of inputs are fed into each neuron or nod. The weights are then adjusted through learning 
algorithms iteratively until a suitable output is produced. A suitable output, in this case, suitable predicted annual 
energy load is the one which is as close as to the simulation results. 

DT is also considered as the most applied type of machine learning algorithms in classification problems thanks 
to its wide use in practice [7]. The reputation of this algorithm is largely hinged to its interpretability and accuracy in 
delivering predictive models with understandable structure which generates useful information on the corresponding 
domain. In addition, DT is capable of processing both numerical and categorical parameters. However, this method is 
more appropriate and accurate in handling the categorical parameters rather than numerical data [3]. There are 
different types of DT algorithms including Simple Tree, Medium Tree, Complex Tree and Bagged Trees which follow 
the similar fundamental principles but different degrees of complexity in combining Trees. It applies a flowchart like 
tree structure to separate the dataset into different predetermined categories for presenting the interpretation, 
categorisation and generalisation on data [7]. With reference to the mentioned characteristics of ANN and DT, a 
comprehensive dataset should be collected for feeding the algorithms with inputs and outputs.    

2. Dataset development 

For data collection purposes, a four-story building consisting of four units on each floor was selected for simulation 
representing the conventional type of low-rise residential apartments. Each level area is 400 m2 summing up to the 
total area of 1600 m2. The building was modelled in Rhino 5, parameterised in Grasshopper software and simulated 
by EnergyPlus for annual energy estimation. For energy simulation, building calculation program was set to low-rise 
apartment and kitchen, bedroom, bathroom and dining room in each unit were defined as a zone which each zone had 
its own thermal properties. This approach enables the thermal engine to precisely quantify adjacencies and inter-zonal 
connections [8]. The thermostat was set between 18-26 oC to provide thermal comfort for occupants and activate 
HVAC devices below or above this range. Four cities of Sydney, Moscow, Kuala Lumpur and Phoenix were chosen 
as representatives of Temperate, Cold, Tropical and Hot-arid Climates, respectively. The procedures taken for the data 
collection were resulted in generating 4435 of datasets including 13 inputs (the variables) leading to the output (annual 
energy consumption) [9] consisting of 1053, 1138, 1114 and 1130 data for the cities of Sydney, Phoenix, Kuala 
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Lumpur and Moscow, respectively. To obtain an overview about the generated dataset, descriptive statistics were 
performed using SPSS on the measures of central tendency and dispersion. Different statistical measurements of 
minimum, maximum, range, mean, median and standard deviation were computed to specify the probability 
distribution and the dispersion of the data. Table 1 indicates that considering both continuous and categorical data, the 
generated output covers a wide range of distribution which is of advantage as to enabling an accurate energy objective 
function development. 

  Table 1. Descriptive statistics of the developed dataset (*categorical parameters) 

Parameters Range Minimum Maximum Mean Std. Deviation Median 
Wall* 
Insulation* 
Roofing material* 
Windows glazing* 
Floor ground system* 
Type of main space heating* 
Type of main space cooling* 
Building orientation  
Window to wall ratio 
Ceiling height (m) 
Meter square of rooms heated 
Meter square of rooms cooled 
Lighting (Lux) 
Energy load 

5 
6 
1 
1 
1 
2 
1 
315 
 0.2 
1 
5 
5 
40 
10535.58 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
0 
0.2 
3 
10 
10 
0 
309.88 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
315 
0.4 
4 
15 
15 
40 
10845.45 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
102.98 
0.25 
3.14 
11.77 
12.39 
2.39 
2725.16 

1.513 
1.860 
0.468 
0.480 
0.464 
0.62 
0.495 
87.023 
0.088 
0.225 
2.391 
2.498 
2.581 
2015.30 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
90.00 
0.20 
3.00 
10.00 
10.00 
2.00 
2208.66 

3. Hybrid objective function development 

The procedure of hybrid objective function development was started with running DT and ANN on the discrete 
and continuous inputs along with the energy consumption output and then followed with averaging the output of these 
two separately trained models in a hybrid function [10]. 

 

xxf fw kk k
                                                                                                                                                    (1) 

 
Where k is the index for each algorithm and w denotes the weight of f (x) for each objective function. Based on the 

weighted average output of the hybrid function (Equation 1), the final result of each function should be homogenous. 
On one hand, results from DT algorithm which leads to the classified level of energy consumption of buildings such 
as low, medium, high and excessive could not be arithmetically averaged with the numerical and continuous results 
of ANN model. On the other hand, using transformation techniques may lead to the randomness or losing integrity. 
Additionally, with respect to the energy optimization purposes, optimisation algorithms generally work better with 
numerical outputs and it is of high priority to obtain the actual-numerical level of energy consumption from the hybrid 
objective function. Therefore, C4.5 algorithm, according to the concept of entropy, was used to construct the Bagged 
DT including the seven discrete variables of wall, roof and insulation materials, floor ground system, glazing type and 
the types of main space heating and cooling systems as the inputs and annual energy consumption as the output. 
Taking advantage of the flexibility of C4.5 in handling numerical outputs, it was intended to apply standard deviation 
reduction instead of Information-Gain in calculating the homogeneity of the splits of DT [11]. This approach allows 
for obtaining the outputs applicable for being averaged with the arithmetic results of ANN in the hybrid function, in 
the meanwhile of maintaining the original form of DT algorithm. In this method, standard deviation is zero if the splits 
of DTs are completely homogenous. In fact, the decrease in standard deviation, after a dataset is split on an attribute, 
shapes the process of DT construction (Equation 2).   

 

XD DSDAXSP )()(                                                                                                                                            (2) 

 
Where SP (X) indicates the split of data based on the attribute (A) of standard deviation of D. Likewise, the attribute 



374   Saeed Banihashemi et al.  /  Energy Procedia   110  ( 2017 )  371 – 376 

with the largest standard deviation reduction is selected as the split attribute for each tree node. Considering the default 
configuration of DTs [11], the algorithm was set to train 100 complex trees and the test errors and cross-validation 
errors were computed. It was observed that the Bagged Tree performs well in the cross-validation state as compared 
to the testing condition. However, the lowest error was recorded at 1.6 from the tenth complex tree, without a 
significant fluctuation toward the end of the training trees. Applying the standard deviation in the structure of the 
Bagged Tree opens a new window of opportunity in using ensemble regularization technique which is a process of 
removing weak learners from the DT structure and improves the performance in a way that fewer number of trees are 
required to train the algorithm. Therefore, this feature, as a significant achievement in the hybrid function, was run to 
decrease the time of the training and increase the speed of objective function. The regularization procedure specifies 
a well-trained learner weights that could minimize the errors in the below Equation: 
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Where αt is the optimal set of learner weights, λ ≥ 0 is the lasso parameter, ht is a weak learner in the ensemble 

trained on N observations with predictors of xn, responses of yn, and weights of wn and g (f,y) = (f – y)2 is the squared 
error. The minimised αt could be achieved with minimising Mean Squared Error (MSE) of the above equation. 
Usually, an optimal range could be found in which the accuracy of the regularized ensemble is better or comparable 
to that of the full ensemble without regularization. In this process, if a learner weight; αt is calculated to be 0, this 
learner is excluded from the regularized ensemble. In the end, an ensemble with improved accuracy and fewer learners 
is obtained. As a result of this procedure, the reduced Bagged Tree contained 15 complex trees in its structure along 
with generating approximately 0.8  of cross-validated MSE (Figure 1). This reduced ensemble gives low loss while 
using many fewer trees. 

    
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1. Regularized vs. un-regularized ensemble in the hybrid model  

Similar to DT model development for qualitative data (categorical parameters), the ANN model was also developed 
upon quantitative data; six continuous parameters of building orientation, window to wall ratio, ceiling height, meter 
square of rooms heated and cooled and lighting based on the optimum configurations of ANN, identified from the 
trial and error process. This ANN was tested with different combinations of the number of neurons in the input, hidden 
and output layers, as recommended by Shahidepour et al. [12] and the model with 6, 7 and 1 neurons in the input, 
hidden and output layers and comprising of 70%, 15% and 15% of data for training, testing and validating, was 
respectively structured. Hyperbolic tangent function was the activation function chosen for the input layer, sigmoid 
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transfer function was applied between the hidden layer and the output layer and the Levenberg-Marquardt Back 
propagation algorithm was set as the learning algorithm. The model was fixed to 1,000 iterations and the best 
validation performance was recorded at the 109th iteration with MSE of 0.40974 (Figure 2). As a result, this ANN 
model was trained up to 142 epochs and stopped on the rule of 6 consecutive runs without any decrease in the 
performance error. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2. Validation performance of ANN in the hybrid model 

Ultimately, referring to the Equation (1), the hybrid model was composed from the ensemble of the Bagged DT 
and ANN model covering both continuous and discrete parameters in one objective function (Figure 3). Since 
throughout algorithms generation, MSE was considered as the main accuracy driver, this criterion was employed in 
demonstrating the improved accuracy of the hybrid model too. The MSE of the hybrid model was computed 
approximately at 0.6 which is very low in the error rate. In order for validating the improved performance of the hybrid 
model against single objective models, first, the normalized values of the predictions of single ANN were figured out 
upon the whole dataset. Second, the performance error of single DT on the whole dataset was plotted and finally, the 
associated results along with the performance of hybrid models were illustrated vis-à-vis the normalized actual outputs 
of energy consumption indicating the comparative performance of each model. As shown in Figure 4, the approximate 
linear trend-line of the normalized values predicted by the hybrid model is more match with the equality state in 
comparison with that of single ANN and DT models. This observation confirms the superior performance of the hybrid 
model in generating the predictive data as close as to the baseline data and provides more robust objective function. 

 

 

 

 

 

 

 

Fig. 3. The hybrid model structure 
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Fig. 4. Normalized predictive performance of single ANN, DT and hybrid model vs. normalized actual energy data 

4. Conclusion 

Driven by the gap in the body of the knowledge with regard to including discrete and continuous parameters in a 
homogenous objective function model, this study contributes to the field in different ways. It targets the hybrid 
objective function development for generating the predictive energy consumption data with the least error and the 
highest accuracy which paves the way of presenting a powerful engine for building energy optimisation. The outcome 
is an integrated platform containing both qualitative and quantitative variables of building energy consumption 
without affecting data consistency or requiring any data transformation procedures. The study also goes beyond the 
existing literature by revealing how a DT algorithm could be modified by replacing the information-gain concept with 
the standard deviation reduction in its structure and made ensemble with ANN algorithm. This achievement develops 
more error-free bagged DT by enabling the regularisation technique through removing weak learners and increasing 
the speed of hybrid objective function. However, the study findings should be considered with caution due to a number 
of limitations in conducting the present study. That is, the findings may not be directly applicable to other types of 
machine learning algorithms in prediction and classification as the different hybrid model may bring different 
attributes to attention. Moreover, the data collection was conducted considering 13 parameters as the input and four 
climates of temperate, tropical, cold and hot-arid. This calls for further investigation by validating the model in other 
contexts and using larger samples covering various building energy parameters and climates. 
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