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 

Abstract—Electric vehicle (EV) can be applied to discharge 

power back to the grid, which is called vehicle-to-grid (V2G) 

technology. There is a constant debate on whether V2G is an 

economically viable option due to the high battery degradation 

cost. In this work, the cost benefit of EV customers participating 

in V2G has been studied using different feed-in tariffs (FITs). A 

model is developed for minimisation of energy cost for residential 

users, which includes an EV, a separate energy storage system 

(ESS) and renewable energy supply. Key factors such as the EV 

driving usage, the degradation cost of EV and ESS batteries are 

considered. The EV driving usage is established through a 

designed survey, from which the probability of vehicle parking 

and plug in at home, the probabilities of EV under driving and 

parking outside can be calculated. Comprehensive case studies 

have been undertaken to investigate the optimisation strategies 

under various scenarios. Two types of electricity tariffs, time-of-

use (TOU) and fixed tariffs, are considered. It is revealed that 

certain threshold levels of FITs are expected to allow users benefit 

from V2G technology. Compared with non-optimised operation, 

the cost saving with the optimised strategy is evident in the case 

studies. 

 
Index Terms—Electric vehicle (EV), vehicle to grid (V2G), 

energy storage system (ESS), battery degradation, driving usage, 

photovoltaic (PV), energy cost optimisation 

I. INTRODUCTION 

A. Background 

lectric vehicles (EVs) have become popular in the past 

decade, one benefit of which is to reduce greenhouse gas 

emission in transportation systems. The charging load of 

EV supplied from renewable energy resources can further 

reduce transportation emission [1]. A reduction in greenhouse 

gas emissions of 47% ~ 78% is reported through the 

photovoltaic (PV) powered EV technology [2], where the PV 

power feed-in rate and the interest rate can be used in policy 

making tools to develop low carbon transportation systems. In 

recent research development, minimisation of EV charging cost 

including vehicle-to-grid (V2G) has been widely investigated. 

It can help to alleviate the peak demands of power and minimise 

the energy cost of users. With V2G, an EV can be used as an 

energy storage device that is able to inject the stored electric 

power back to the grid. This can be applied as a new type of 

energy source and utilised together with energy storage system 
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(ESS) to achieve optimal operation of power systems [3]. In 

addition, renewable energy, such as wind and solar energy, can 

be scheduled with EV charging so as to compensate for the 

uncertainty of renewable generation and reduce the cost [4-7]. 

When considering V2G control in optimal charging 

strategies of EV, several benefits can be achieved according to 

recent studies. It can provide frequency regulation and 

simultaneous scheduling of the EV charging, which can 

suppress frequency fluctuation and reduce the additional ESS 

capacity requirement. The grid load profiles can be smoothed, 

the operation efficiency and the security of the grid can be 

improved [8-11]. It is reported in [12-14] that V2G can support 

the grid to shave the peak demand and reduce grid operational 

costs under proper energy policy strategies, and can also help 

to compensate for the uncertain wind and PV power generation.  

V2G techniques provide wider options for control and 

optimisation of EV systems, however, V2G operation increases 

cost of battery degradation, which needs to be considered in its 

applications [15]. Another issue to consider is whether the EV 

owners would be willing to participate in a V2G program. The 

economic viability of V2G is unclear to EV owners. This is 

often related to factors such as battery degradation, expensive 

battery pack and low feed-in tariff (FIT). It is discussed in [16] 

that a V2G service may lead to a reduced life-cycle of an EV. 

The power aggregators should operate either on pay-as-you-go 

basis or provide consumers with advanced cash payment in 

order to attract more EV owners participating in V2G. The 

guaranteed rate of return for V2G may not be sufficient to 

induce widespread V2G participation due to the cost in grid 

connection, purchase of electricity and battery degradation [17]. 

The EV’s battery pack will need to be replaced more frequently 

with V2G operation [18]. The battery aging cost induced by 

V2G may exceed the benefit brought from V2G, and substantial 

subsidies are required to trigger V2G service [19]. It is 

important for residential home EV users to consider whether 

V2G is economically beneficial in reducing their overall energy 

costs. 

Some recent studies for minimising the cost of residential 

energy systems have included V2G. Cao et al. present an 

optimal scheduling of EV charging and V2G at household level, 

which takes into account the cost of battery degradation and 

price uncertainty [3]. Although the significance of the battery 

degradation has been revealed, quantitative explanations of the 
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charging cost reduction and probability of vehicle usage are 

lacking. Another cost minimisation model proposed in [20] 

comprises both V2G integration and the demand response 

strategies, from which up to 58% cost reduction can be 

achieved. However, the battery degradation cost, a major factor 

affecting the charging scheduling, is not considered in [20]. The 

model built in [21] is used to minimise the total charging cost 

by considering the battery degradation cost with V2G. It shows 

that the reward value under the assumed FIT can cover the 

degradation cost, and could encourage EV owners to participate 

in V2G program. However, the minimum assumed FIT value in 

[21], USD 0.2/kWh, is still high compared with the practical 

value, and it is much larger than the electricity price used in the 

case studies. According to UK government’s report, the total 

FIT is around £0.08/kWh, and the electricity price is around 

£0.16/kWh. It is obvious that electricity price is much higher 

than the existing FIT. Whether V2G will benefit the EV owner 

is still questionable. In [22], an optimisation model is built up 

for residential household including V2G application, battery 

degradation, renewable generation and other loads, in order to 

minimise the daily energy cost. Daily cost savings obtained 

from the optimised case can be achieved up to 15.5%, and the 

remaining state of charge (SOC) of the EV can be guaranteed 

to stay not less than 49.5%. A method is presented in [23] to 

minimise the electricity expenditure by scheduling charging 

and discharging of EV’s battery. The total bill reduction is 

higher when more EVs are involved and batteries of larger 

capacities are used. It is argued in [24] that lead-acid and NiMH 

batteries are not cost effective in V2G while lithium-ion 

batteries are more acceptable in UK. The lithium-ion battery 

price used in [24], £128/kWh, is much lower than the 

replacement cost of EV battery. Therefore, the latest EV models 

need to be applied to reassess the benefits of V2G. One factor 

that has been largely ignored in most studies is the EV 

customers’ driving usage such as driving time, parking time, 

and daily driving distance, which would certainly influence the 

charging and discharging of EVs and the cost accordingly [25].  

B. Contributions 

In this work, we will focus on minimisation of residential 

household energy cost by considering EV with driving usage, 

EV and ESS battery degradation, and PV energy supply. The 

novel development will be made in the following aspects. 

1. Develop a model for minimisation of the energy cost of 

a residential household with an EV, an ESS, and other 

residential loads, where the EV’s usage patterns are 

described by probability levels. Optimisation results 

based on this model can be used to determine whether 

V2G is beneficial for the EV owners under the optimal 

charging and discharging strategy.  

2. Design a practical survey of EV daily usage including 

driving purposes and usage at different time periods. 

Information such as the driving distance, starting time 

and duration when the vehicle is away from home, time 

duration for parking outside, etc. will be collected and 

processed to calculate driving usage probabilities.  

3. Investigate the total cost saving through case studies for 

various scenarios under fixed and time of use (TOU) 

tariffs. 

The remaining part of the paper is organised as follows. The 

optimisation problem of the residential household EV user’s 

energy cost, including multiple factors, is formulated in Section 

II. Case studies and results under different scenarios using two 

typical FITs have been extensively discussed in Section III. 

Finally, conclusions and discussions are made in Section IV. 

II. END USER COST MODEL FOR OPTIMISATION 

A. Residential Household Energy System 

The residential household energy system under study is 

illustrated in Fig. 1, where the components include a PV power 

system, an EV, an ESS, other residential loads and the power 

grid. Here 𝑃1(𝑃1 > 0) is the output power of the PV system, 𝑃2 

is the EV charging or discharging power, and 𝑃3  is the 

input/output power of the ESS. Other loads of the residential 

home is represented by 𝑃4(𝑃4 < 0) . The home system is 

connected to the grid. The input and output power to and from 

the grid is represented by 𝑃5. 

In Fig.1, an arrow pointing towards a block is defined as the 

positive direction indicating that the power 𝑃𝑗  flows into the 

block. The total operational cost of the energy system is 

considered over a 24 hours’ time period with the uniform 

sampling period of 1 hour. In this case, there are 24 time periods 

or slots, each being denoted by index 𝑖(𝑖 = 1,2, ⋯ ,24). The 

initial time period is assumed to start from 8:00 am with 𝑖 = 1. 

The units for power flows are in kW. The following power 

balance holds for the system for all time slots. 
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It should be noted that 𝑃2(𝑖) and 𝑃3(𝑖) are the two variables 

that can be controlled through optimisation. 𝑃1(𝑖) and 𝑃4(𝑖) are 

given information, and 𝑃5(𝑖) can be calculated from (1) when 

all the other four powers are available.  
 
 

Fig. 1 Schematic of the grid connected residential household system 

 

The purpose of design is to minimise the total operational 

cost of the energy system over a 24 hours’ time period, so that 

the user’s profit is maximised. The cost function, 𝐶𝑡𝑜𝑡𝑎𝑙 , 

includes the following parts: the cost to purchase electricity 

from the grid (𝐶𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒), the degradation cost of the EV battery 
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(𝐶𝐸𝑉) due to charging/discharging at home, the degradation cost 

of EV battery due to driving outside (𝐶𝐸𝑉−𝑜𝑢𝑡𝑠𝑖𝑑𝑒), the cost of 

the ESS battery ( 𝐶𝐸𝑆𝑆 ), and also the income from selling 

electricity to the grid which is denoted by (𝐶𝑖𝑛𝑐𝑜𝑚𝑒 ) and is 

deducted from the total cost.   

   total purchase EV ESS EV outside incomeC C C C C C      (2) 

A flow diagram of the optimisation model has been shown in 

Fig. 2. 

 

 

 

 

 

 
 
 

Fig. 2 A flow diagram of the optimisation model 

 

The PV output power is sourced from [26], which is shown 

in (3). The EV charging/discharging power and the power 

corresponding to ESS on-off status can be described as follows. 

                 1( ) ( )i AP i S        (3) 
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( ) , if EV is charging 

0, otherwise
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
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  (5) 

Here 𝑆（𝑖）is the solar irradiance (
2kW/m ); (0 1)    is 

the solar irradiance to electricity conversion efficiency which is 

selected as 15% in this paper; 𝐴 is the solar panel area ( 2m )；
a (kW) is a positive real number used for both EV and ESS;

is the discharging efficiency accounting for the energy 

conversion loss, which is selected as 90% according to [27]. An 

intermediate term 
2P% is used in (4) to represent EV charging 

and discharging power when the vehicle is parking at home. 

Equations (4) and (5) describe the EV and ESS charging/ 

discharging status, which are the variables to be optimized. 

B. EV Driving Usage Probabilities and Daily Power Use 

In order to characterise the uncertain nature of car usage, a 

practical survey of EV daily usage is designed. The survey 

includes different driving purposes and usage time periods. 

Information such as the driving distance, starting time and 

duration when the vehicle is away from home, time duration for 

parking outside, has been collected. Those power variations due 

to the change of driving behaviours, such as acceleration, 

deceleration, and speed control, are not considered in this work. 

Then the raw data is processed and used to calculate the 

following probabilities.  

 1kp i : the probability of EV parking and plugging in at home 

within time slot i ; 

 2kp i : the probability that the EV is under driving within 

time slot i ; and 

 3kp i : the probability that the EV is parking outside within 

time slot i . 

The sum of these probabilities should be equal to 1 since they 

represent all the possible scenarios, i.e. 

      1 2 3 1k k ki ip p + p i+ =   (6) 

When an EV is parking outside, it is assumed to be 

disconnected from the grid; therefore, no charging or 

discharging activities take place, and the term  3kp i  can be 

ignored for this situation. The power flow from EV to the 

control block depends on whether the battery is under charging 

or discharging status. Considering the above EV driving usage 

probabilities, the average EV power, i.e. the mathematical 

expectation of the EV power, can be calculated as follows: 

        
 

2 1 22

1

dN

EV

k k

l

l total

d l
i P i

pQ
P p p

T d
i i



    %   (7) 

where 𝑑𝑡𝑜𝑡𝑎𝑙 is the total distance (km) the EV can drive with a 

fully charged battery; 𝑄𝐸𝑉  is the EV battery capacity (kWh). 

The total number of driving periods is represented by 𝑁𝑑; 𝑑(𝑙) 

is the l-th possible driving distance; 𝑝𝑙  is the probability 

corresponding to 𝑑(𝑙) (𝑙 = 1, ⋯ , 𝑁𝑑 ); T is the period length, 

which is 1 hour in this work.  

As can be seen from (7), the term of mathematical 

expectation of driving power consumption is included. The 

daily use of a vehicle contains many uncertainties for various 

reasons. When the EV’s owner plugs out the vehicle from the 

charging slot leaving home, the remaining SOC of the EV will 

be different from that when it is plugged back to the slot after 

the driving. The application of V2G technology will be 

influenced when considering these variations. In this study, 

these variations have been analysed from a real questionnaire 

(see Appendix A), in which the data has been transformed to 

the corresponding probabilities (see Appendix B). Then, the 

mathematical expectation of the driving power consumption 

within each time slot is calculated.  

C. Battery Degradation Cost for EV and ESS 

According to [28], battery degradation cost consists of three 

parts: temperature related degradation, SOC related 

degradation, and the depth of discharge (DOD) related 

degradation. The temperature related degradation is caused by 

the fluctuations in charging power or discharging power. It is 

negligible for the EV parking at home and for the ESS since 

their charging/discharging current and voltage are usually 

stable, thus the charging power are close to their minimum 

levels. Only the SOC related degradation and the DOD related 

degradation are considered.  

The hourly cost of SOC related degradation can be represented 

as follows [28]: 
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  
 

0 ,
15 365 24

SOC

max

SOC i
C

CF
i C

  
 

  
  (8) 

where 0C  is the battery purchase price,  SOC i  is the value of 

SOC within the i-th period. The parameters,   and  , are 

determined by linear regression from the measured data, which 

are calculated to be 51.59 10  and 66.41 10 , respectively [29]; 

maxCF  is the maximum capacity fade constant which is assumed 

to be 20%. In this paper, the battery life time is assumed to be 

15 years as sourced from [29]. 

The relationship between the charging/discharging power, 

P , and the SOC can be determined as 
INSOC SOC P Q   

[30], where 
INSOC  is the initial value for the SOC, Q is the 

battery capacity. Since the driving probabilities will be 

considered, the EV’s SOC can be derived from [30] as: 

    21

1EV i

EV IN

EV

SOC SOC P
Q

i





     (9) 

From (8) and (9), the SOC related degradation daily cost of the 

EV parking at home within the i -th time period is represented 

as follows:   

 

 0 21

1

15 365 24

iEVEV
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EVEV

SOC

max
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Q

C
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 



 
   
 


 

 
  







 (10) 

The DOD related degradation cost per discharging cycle 

(£/cycle) can be expressed by  0  DOD totalC L N  where 

∆𝐿𝐷𝑂𝐷 is the DOD of a particular discharging cycle that can be 

obtained from Discharge EVP Q , where DischargeP  is the discharging 

power. 𝑁𝑡𝑜𝑡𝑎𝑙  is the total number of discharging cycles 

corresponding to ∆𝐿𝐷𝑂𝐷 [28, 31]. In this study, the polynomial 

function between 𝑁𝑡𝑜𝑡𝑎𝑙  and ∆𝐿𝐷𝑂𝐷  is obtained through curve 

fitting using data from [31]: 
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  (11) 

Hence, the DOD degradation cost per discharging cycle can be 

written as   0 DOD DODC L f L  . Assume that there are 1n  

discharging cycles during the day, with each of them 

corresponding to a DOD degradation cost, then the DOD 

related degradation daily cost is represented as follows: 
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Following (12), the DOD related degradation cost of EV 

parking at home within time period i , denoted by  EV

DODC i , 

can be written as  

  
 

 
1

,

0 1

1 ,

n
DOD mEV

DOD k

m DOD m

EV
L

L
iC C p i
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





   (13) 

Similarly for ESS, the SOC related degradation cost and the 

DOD related degradation cost within the i-th time period, 

denoted by  ESS

SOCC i  and  ESS

DODC i , respectively, are written as 

follows:  
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  (14) 
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f L
i







   (15) 

where 
ESSQ  is the ESS battery capacity.  

The overall battery degradation cost of EV and ESS over 24 

hours is the sum of the degradation costs from SOC and DOD 

for both EV and ESS at each hour, thus  

        
24

1

EV EV ESS ESS

EV ESS SOC DOD SOC DOD

i

i i iC C C C iC C


       (16) 

D. Purchasing Cost and Selling Income  

The total electricity purchasing cost, 
purchaseC , is determined 

by  5P i  only, where 
4

5 1 jj
P P


  , therefore 

       
24

5 5

1

sgnpurchase

i

C P Pi i i


    (17) 

where    i  is the unit electricity price, and the sign function 

 sgn   is defined as follows. 

  
1,

0

0

.
gn

,

 ;
s

otherwise

if x
x


 


  (18) 

Here only the positive values of  5P i  are considered in the 

purchasing cost.  

According to [32], the FIT value, consists of two parts, the 

generation tariff,  generation i , and the export tariff,  export i . 

The generation tariff is a fixed payment from the electricity 

supplier for every kWh the renewable system generates, such 

as PV in this work. The export tariff is the unit payment for 

every kWh the system exports the electricity power back to the 

electricity supplier. Therefore, the income, 𝐶𝑖𝑛𝑐𝑜𝑚𝑒 , from 

selling electricity to the grid is determined by the negative 

values of  5P i  and the total electricity generation from PV 

system, and it can be written as follows: 

 

       

   

24

5 5 export

1

24

1 generation

1

sgn 1

           +

income

i

i

C P i P i i

P i i
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
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




  (19) 

E. Overall Energy Cost Function for Optimisation 

Substituting (16), (17) and (19) into (2) will give the total 

cost over the control period. 

       
24

1

          

EV EV ESS ESS

total SOC DOD SOC DOD

i

purchase EV outside income

C C C C C

C C C

i i i i




 

 
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


  (20) 

In order to calculate the degradation costs due to EV driving 

outside home, we assume that the average daily battery 

degradation cost, 
EV averageC 

, is the total daily degradation cost, 

which can be calculated by the following equation (see [28]).  
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15 365

max

EV average

CF
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
  (21) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 
5 

According to probability analysis, 𝐶𝐸𝑉−𝑜𝑢𝑡𝑠𝑖𝑑𝑒  can be 

calculated as follows 

   
24

1

21 1EV outside EV average k

i

C C ip 



 
    

 
   (22) 

where   
24

1

21 1 k

i

ip


 
  
 
  is the probability of using vehicle 

outside home during the day.  

The cost within each time period is a function of 𝑃2 and 𝑃3. 

The displayed SOC in an EV’s panel is from 0% to 100%, 

which corresponds to the allowed driving distance ranging from 

0 to the maximum. In this study, the following two constraints 

are necessary to restrict the displayed SOC for EV and ESS 

within allowed ranges. 

  min max

EV EV

EV display iSOC SOC SOC    (23) 

   maxmin

ESS ESS

ESS display iSOC SOC SOC    (24) 

In addition, when the EV is plugged in for charging at home, 

the SOC value at the end of the control period, i.e., at 24i  , 

needs to be larger than the required SOC for the next driving. 

This constraint is termed as the minimal terminal SOC 

constraint and is given as follows:     

  2 1004
exp EV

EV dispaly LB

total

d
SOC SOC

d
      (25) 

where 
expd  is the expected driving distance over the next 

driving period. The ratio of 
exp totald d  represents the required 

SOC for the next driving period, which is defined as the lower 

bound of the terminal SOC, denoted as EV

LBSOC . The displayed 

SOC is considered to be the same as the EV’s SOC. 

Taking all the above constraints into account, the following 

optimisation problem is formulated to minimise the 

mathematical expectation of the total operating cost of the 

energy system. 
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  (26) 

This is a non-convex optimisation that requires a global 

solution. Genetic Algorithm (GA) is a type of evolutionary 

algorithm that is inspired by the process of evolution in human 

and animal life. The GA for an optimisation problem is based 

on binary coded genetics, which means an optimisation 

function will be encoded as arrays of bit strings to represent 

chromosomes, and the fitness selection, mutation and crossover 

procedures can be applied to find the optimal solution. There 

are many advantages of using GA over traditional optimisation 

algorithms. For example, it is conceptually simple, and no 

gradient information is required. In addition, it can be used to 

adapt solutions to changing circumstances, therefore robust to 

dynamic changes in the environment. Furthermore, GA has the 

ability to deal with various optimisation problems including 

stationary or non-stationary, linear or non-linear, continuous or 

discontinuous objective functions [33-37]. GA is one of the 

earliest intelligent optimisation algorithms, and its convergence 

in the sense of probabilities has been widely used in practice. 

Matlab has a built-in function for GA, which is applicable to 

mixed integer nonlinear programming problems. In this work, 

the optimisation problem is to minimise the end user’s energy 

cost, where the decision variables are the charging/discharging 

status of EV and ESS. Therefore, the problem can be expressed 

as a binary integer programming problem, and GA has been 

selected to find the solution. 

III. CASE STUDIES UNDER DIFFERENT SCENARIOS 

In this section, the optimisation problem in (26) is studied 

under different scenarios using two typical FITs. 

A. System Specifications 

Two tariffs are considered and used for comparison in the 

case studies; namely, the fixed flat tariff and the TOU tariff. 

The fixed tariff is £0.152/kWh, sourced from the First Utility 

Company. The 2014 TOU tariff is taken from Scottish and 

Southern Energy Public Limited Company. The peak time 

period is from 17:00 to 20:00, and the corresponding tariff is 

£0.234/kWh. The night time period is from 01:00 to 07:00, and 

the corresponding tariff is £0.061/kWh. The rest of the day is 

regarded as the off-peak time period and the tariff is 

£0.117/kWh. [38]. 

The Solar PV rating is less than 10kW, and the solar panel 

area for PV generation is selected to be 16 2m . Usually, the 

export tariff is regulated by the government, which is 5.03 

pence/kWh in UK [32]. In addition, if the PV system is less than 

10 kW, the generation tariff is 3.93 pence/kWh up to now [32]. 

Each EV’s battery price in Table I is estimated through the data 

in [39], which equals approximately to 30% of the total 

projected price. The TESLA Powerwall is selected for the ESS 

battery storage. It has the capacity of 6.4kWh and the cost of 

$3,000 (approximately £2,300) per pack. Also, the ESS 

capacity can be expanded through connection to multiple 

TESLA Powerwalls. The grid voltage supply to the considered 

residential house is 240V, and the charging/discharging current 

for EV and ESS are all 10A. 

The data for other residential loads, excluding EV and ESS, 

on a typical working day are also investigated in this case study, 

where there are two periods of higher demand at 6:00 am ~ 

10:00 am and 18:00 pm ~ 22:00 pm sourced from the UK 

government report [40]. The Solar irradiance data are taken 

from [41], in which the selected month is January in the area of 

Glasgow, UK.  

TABLE I PRICE OF EV BATTERY PACKS 

Brand  TESLA TESLA BMW I3 SMART LEAF 

Capacity 
(kWh) 

75 100 33 17.6 40 

Projected 

EV Price 
(£) 

64700 86200 34070 21465 21990 

Battery 

Price (£) 
19410 25860 10221 6440 6597 
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B. Numerical Studies under Different Minimum Terminal 

SOC Constraints and Initial SOC of EV 

In this case study, the initial displayed values of SOC in the 

ESS is fixed as 0%. The selected EV model is BMW I3, for 

which the battery pack’s price is approximately £10,221.  

The operational cost minimisation problem in (26) is solved 

for different values of 
EV

LBSOC  and initial SOC. Both of fixed 

tariff and TOU tariff are applied, and the minimal operation 

costs under different levels of 
EV

LBSOC  are shown in Fig. 3 and 

Fig. 4, respectively. It can be seen that user’s cost increases with 

the increase of 
EV

LBSOC  provided that I

EEV

LB N

VSOC SOC  if 

N

EV

ISOC  is not changing. This is because the EV needs to be 

charged in order to ensure a higher remaining SOC at the end 

of the control period. If I

EEV

LB N

VSOC SOC , then the user’s 

minimal operational cost stays at the same minimum value. The 

optimised results on 𝑃2(𝑖)  and 𝑃3(𝑖)  show that there is no 

discharging either from EV or from ESS when 

I

EEV

LB N

VSOC SOC , which means that there is no power sold 

back to the grid under this circumstances. This is because the 

value of the export tariff is too low, and the degradation cost of 

battery discharging cannot be compensated under such a low 

tariff. In addition, it can be observed that the operational cost 

under this particular TOU tariff is lower than that of the fixed 

tariff.  

Furthermore, the results also suggest that the operational cost 

to charge the same amount of energy to the battery will increase 

when the initial SOC increases. For example, according to the 

results of the fixed tariff in Appendix Table D3, the optimal 

operational cost is £4.91 to charge the EV from 0IN

EVSOC   to 

50%EVSOC  ; however, it can be seen from Table D1 in 

Appendix that a slightly higher cost of £4.96 is needed to charge 

the EV from 50%E

IN

VSOC   to 100%EVSOC  , although in 

both cases, charging of the battery requires the same amount of 

energy. The underlying reason can be understood from (8), 

where it shows that a lower initial SOC will lead to a lower 

battery degradation cost. For the TOU tariff, the results give a 

similar conclusion that the operational cost decreases with the 

increase of the initial SOC.  

C. Impact of Different 
export  of Feed-in Tariffs 

The 
export  value of FIT will affect end users whether to 

participate in V2G market or not. In the following simulation, 

the initial SOC values are set to be 100% for both EV and ESS 

(fully charged). The lower bound of terminal SOC is selected 

as 0% so as to check the maximum possible amount of energy 

discharged and obtain the minimum value of 
export  which 

makes V2G profitable. After comparing different EV 

charging/discharging results from the optimisation, it is found 

that EV will start to discharge power only if the export tariff is 

larger than the threshold value of £0.25/kWh for the fixed tariff, 

and £0.15/kWh for the TOU tariff. The simulation result shows 

that the export tariff has to be at least £0.96/kWh in order to 

achieve a positive net income under a fixed tariff, and 

£0.60/kWh under a TOU tariff. These results are shown in Fig. 

5 for the fixed and the TOU tariffs, where a negative value of 

operational cost implies there is a positive net income. Fig. 6 

shows the results of EV and ESS charging/discharging status 

for the TOU tariff, where ‘+1’ means discharging, ‘-1’ means 

charging, and ‘0’ means no charging or discharging takes place. 

It can be found from Fig. 6 that the EV discharging time is 

within the electricity consumption peak time period. This can 

help to shave the peak load for the end user, so it can be 

concluded that charging/discharging profiles of EV and ESS are 

influenced by the electricity tariff. In addition, the 

charging/discharging profiles of EV is also influenced by the 

probability of EV parking at home. According to the survey 

data, the probability of EV parking at home during night time 

 

Fig. 3. Impact of different SOC constraints and initial SOC of EV under fixed 

tariff 

 

Fig. 4. Impact of different SOC constraints and initial SOC of EV under TOU 

tariff 

 

Fig. 5. Impact of 
export  of FIT to daily mini 

mal operational cost 
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is much higher than during the day time; therefore, the EV 

charging/discharging can be operated more often during the 

night time.  

Compared with EV, such a parking-at-home probability 

factor is not applicable to ESS, so the electricity tariff is the only 

factor that influences the profile of ESS charging/discharging. 

When the electricity tariff is fixed, there are in general many 

random solutions for ESS satisfying all the constraints, 

including the SOC constraints. Therefore it is of less interest to 

discuss the fixed tariff situation. As can be seen from Fig. 6, 

ESS is charged during the off-peak time when the tariff is the 

lowest, and discharged during the peak-time when the tariff is 

the highest. This verifies that the results calculated through our 

model are reasonable for practical applications, and the 

optimisation solution is more efficient under the TOU tariff 

than that under the fixed tariff.  

D. Impacts of Different Probabilities of EV Plugging in at 

Home and Different PV Generation 

In this case, the initial SOC value is setting as 50% and the 

lower bound of the terminal SOC is 60%. Therefore, no matter 

how the other factors are varied, such as load change 

characteristics, PV generation characteristics and so on, the EV 

must be charged at least 10% (60% − 50%) in order to satisfy 

the constraint. To investigate the impacts of different 

probabilities of EV parking at home, three different values are 

applied, which are 50%, 80%, and the probability value 

calculated from the survey. The electricity tariff is selected as 

TOU, which is shown in Fig. 7.  

Results of EV charging status and daily costs for different 

probabilities are shown in Fig. 8 and Table II, respectively. It 

can be seen from these results that EV is always charged during 

night time period with the TOU tariff regardless of the parking 

probabilities. This is because the night time tariff is the lowest 

during the 24 hours period. In addition, the results show that 

lower parking probabilities at home require more times of 

charging for the same amount of power to be charged, and this 

will lead to higher cost for the end user. 

During the whole year, the solar radiation variations between 

each month will result in different outcomes of the 

optimisation. Results in Table III show the daily costs of PV 

power generation across the 12 months. It can be seen that the 

daily costs are decreased in the month with higher solar 

radiation. The end user can make profits between March and 

September when the optimisation strategy is applied. 

E. With and Without Considering Battery Degradation Cost 

Now consider the scenario when the battery degradation cost 

is ignored in the operational cost minimisation, and compare it 

with the previous cases where the battery degradation cost is 

included. This comparison is made with a focus on the impact 

of different EV capacities under the TOU tariff. All the initial 

values are set to be the same as those in previous cases. The 

results are shown in Fig. 9, which can be observed that the daily 

cost of users is much lower when the battery degradation is 

ignored. However, this is not realistic because battery 

degradation always exists during charging and discharging 

processes. According to the results in subsection II D., the 

existing 
export  value cannot compensate the battery 

degradation cost for V2G service; therefore, the optimisation 

 

 

Fig. 6. EV and ESS charging/discharging profiles for TOU tariff 

 

 

Fig. 8. EV charging/discharging profile for different plugging-in probabilities  

TABLE II PRICE OF DIFFERENT PLUGGING-IN PROBABILITIES 

Probability of plugging-in EV charging times Total cost (£) 

50% 4 1.92 

80% 3 1.84 

Survey result 2 1.78 

 

 

Fig. 7. TOU electricity tariff 
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without considering battery degradation cost is not feasible for 

the benefit of the end user.  

F. Comparison with Non-optimised Strategy 

In this section, the residential household user’s daily cost 

under existing non-optimised operational schedule is compared 

with the optimised cost. ESS is not considered here as it is not 

popular in most of the non-optimised residential uses. The EV 

charging cost, 
EV drivingC 

, depends on how much electricity 

power is charged to the battery, while the charging amount can 

be represented by the amount of SOC charged. In addition, the 

expected charging amount of SOCs for different EVs in order 

to fulfil the tentative daily driving distance can be represented 

as  
1

dN

total ll
d l p d

 ; therefore, the daily driving costs can be 

expressed as: 

 
 

1

=  
dN

EV driving

l o al

l

t t

d l p
C

d




   (27) 

Furthermore, the battery degradation cost needs to be added 

into the total cost. The average daily battery degradation cost, 

EV averageC 
, is calculated by (21). The overall non-optimised 

daily cost is calculated by (28), which is also the baseline for 

cost reduction analysis.  

 

            

   
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
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    

















 

 (28) 

The total daily cost without optimisation is much higher than 

the optimised cost calculated through our model, as compared 

in Table IV. The results show that the cost saving after 

optimisation is dependent on the EV models, and the highest 

cost saving is found to be 15% in this study for TESLA Model 

S 100D.  

Under the TOU electricity tariff, the EV charging cost,

EV drivingC 
, depends also on different charging periods. Table V 

shows the total daily cost comparison for different EV models 

under TOU tariff. The total daily cost saving is calculated to be 

42% ~ 48% if the non-optimised charging time includes peak 

hours, and it is 18% ~ 19% if the non-optimised charging 

happens during night only. The obtained cost reduction is 

higher than the case studies in [22], where the cost savings is up 

to 15.5%. In addition, the total energy cost in (26) under the 

fixed tariff is higher than that under TOU tariff. It can be 

concluded that the EV owner is likely to have more benefit 

under the TOU tariff than that under the fixed tariff. The 

comparison on charging/discharging/ degradation cost impacts 

before and after optimisation are shown in Table VI. 

TABLE V 

TOTAL DAILY COST COMPARISON (TOU TARIFF) 

EV models After optim. (£) Non-optim. 

Peak time 

charging (£) 

Cost reduct. Non-optim. Off-

peak time 

charging (£) 

Cost reduct. Non-optim. 

night time 

charging (£) 

Cost reduct. 

SMART 1.58 2.88 45% 2.23 29% 1.93 18% 

BMW I3 1.65 2.87 42% 2.28 27% 2.01 18% 

LEAF 1.61 3.10 48% 2.34 31% 1.99 19% 

TESLA(75) 2.02 3.60 44% 2.84 29% 2.50 19% 

TESLA(100) 2.10 3.75 44% 2.95 29% 2.59 19% 

 

TABLE IV 

TOTAL DAILY COST COMPARISON (FIXED TARIFF) 

EV Models Total cost 
without 

optimisation 

(£) 

Total cost 
after 

optimisation 

(£) 

Cost reduction (%) 

SMART 2.42 2.17 10% 

BMW I3 2.46 2.23 9% 

LEAF 2.56 2.21 14% 

TESLA(75) 3.07 2.63 14% 

TESLA(100) 3.19 2.71 15% 

 

TABLE III DAILY COSTS OF DIFFERENT MONTH 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

After 

optim. 
(£) 

1.65 0.63 -0.38 -1.21 -1.49 -1.34 -1.22 -0.95 -0.56 1.03 1.60 1.59 

Before 

optim. 
(£) 

1.85 1.52 1.08 0.46 0.11 0.21 0.37 0.73 1.04 1.50 1.69 1.97 

 

 

Fig. 9. Impact of battery degradation to daily minimal operational cost 
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G. Home Energy System Model involving Solar Water Heater 

To explore further of the proposed cost optimisation problem 

with added complexity, an additional controllable load, which 

is a solar water heater, has been added. Let 
eP  be the power of 

the electric back-up element of the solar water heater that can 

be expressed as: 

 
, if water needs to be heated

( )
0, otherwise

eP i


 


  (29) 

In order to satisfy the hot water demand throughout the day, 

the hot water temperature in the storage tank should be 

maintained to certain range. The constraint of the hot water 

temperature in the storage tank can be written as:  

    s expectedT T Zi i    (30) 

where Z is the acceptable fluctuation range of the temperature 

within time period i ;  expectedT i is the expected hot water’s 

temperature and  sT i  is the actual hot water temperature of 

the tank. Taking all the above factors into account, an 

optimisation problem is formulated to minimise the expectation 

of the total operating cost of the residential home energy 

system, where f is a dynamic function calculating the 

contribution of electric power to water temperature [42]. 
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  (31) 

The comparison of the results between the optimised and the 

non-optimised solutions has been investigated. The selected EV 

is the Tesla Model S 100D, the electricity tariff is fixed, and the 

hot water consumption has been included in the load curve [40]. 

The comparison between the optimised and non-optimised total 

household energy costs under different storage volumes of solar 

water heaters is shown in Table VII, from which it can be seen 

that the cost of user can be effectively reduced at least 16% even 

though the selected month is January, arguably the most cold 

time during the year. In addition, if a larger volume of the solar 

heater storage is applied, a larger amount of energy will be 

stored for load shifting purpose, and the daily cost can be further 

reduced.  

H. Payback Period (PB) Analysis for Different Scenarios   

Three different types of household are compared, which are 

traditional household, smart household with PV, and smart 

household without PV. In addition, impacts of different 

capacities of ESS are obtained. Discussions and analysis of 

these different scenarios are presented from the perspective of 

return on investment.  

A traditional household usually has no self-power supply 

equipment, such as PV and small wind turbine, and its 

electricity power is usually provided by external power grid. In 

addition, the end users of traditional household may also use 

electricity for cooking or heating, and the vehicles they selected 

are usually combustion vehicles; therefore, the energy 

consumption for the end user could be divided into two parts 

for a traditional household: electricity consumption and 

petrol/diesel consumption due to car driving. The total energy 

cost for a traditional household is calculated from 

 + =traditional driving electricity totalC C C
  (32) 

The end user’s daily cost of the electricity consumption can be 

calculated as follows: 

    
24

1

electricity load

i

C iiP 


    (33) 

TABLE VII COST COMPARISON WITH DIFFERENT VOLUMES OF STORAGE TANK 

Storage 

Volume 
(L) 

Total cost 

without 
optimisation 

(£) 

Total cost 

after 
optimisation 

(£) 

Cost reduction (%) 

80 3.19 2.67 16% 

120 3.19 2.61 18% 

160 3.19 2.55 20% 

200 3.19 2.43 24% 

240 3.19 2.36 26% 

 

TABLE VI COMPARISON OF CHARGING/DISCHARGING/DEGRADATION COST IMPACTS BEFORE AND AFTER OPTIMISATION 

Cost impacts After optimisation Before optimisation 

EV 

charging/discharging 

 For fixed tariff, EV is charged when the parking probability is high, which will 

lead to lower cost.  

 For a TOU tariff, EV is charged when the tariff is lowest; and EV has higher 
probabilities of charging when the probabilities of parking at home is higher.  

 V2G could happen with high FIT  

 EV charging happens randomly 

throughout 24 hours no matter which 

tariffs are applied.  
 NO V2G function even when FIT is high 

enough to compensate the degradation 

cost.  

EV degradation  Depends on the optimisation solution. For example, if more discharging 

happens with higher FIT, the degradation cost will be higher. However, the 
total cost will be reduced. If FIT is unchanged, the degradation cost will be 

similar to the value before optimisation.  

 Mainly results from the amount of SOC 

charged/discharged and daily driving 
distance.  

ESS 

charging/discharging 

 For fixed tariff, ESS will be charged/discharged randomly.  

 For TOU tariff, ESS will be charged when the tariff is the lowest, and 
discharged when the tariff is high.  

 Power selling back to grid could happen with high FIT.  

 EV charging happens randomly 

throughout 24 hours no matter which 
tariffs are applied. 

 NO power selling back to grid  

ESS degradation  Similar to EV degradation  Mainly results from the amount of SOC 

charged/discharged and the discharging 

time periods throughout a day. 
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where  loadP i is hourly electricity consumption during the i -

th period;  i is the electricity tariff during time i  period; 

Following the data provided from Section III. A, the daily cost 

of electricity consumption can be obtained via (33), which is 

£1.99 tariff. The annual cost of electricity consumption, eC , is 

calculated through the daily costs multiplied by a factor of 365, 

which is £726.35 under the fixed tariff. 

The annual expected cost of 
traditional drivingC 

 is obtained from 

Appendix Table D5, which is £1,746. Therefore, the total 

energy cost for a household is £2,472 (£1,746 + £726.35). 

The daily costs of the electricity consumption under fixed 

tariff after optimisation can be calculated for both of PV 

included system and non-PV system, the annual cost savings 

compared to the traditional household can be obtained as shown 

in Table VIII. Then, the payback periods between these two 

systems are shown in Table IX.  

From Table IX, it can be seen that if the system does not 

include PV generation, the payback periods are much shorter, 

which means the end user will spend less time to get back the 

initial investment. The majority of manufactures offer the 25-

year standard solar panel warranty, the PV lifespan can be 

selected as 25 years. If the longer-term profits of the return on 

investment are considered, such as 10 years or 20 years, the 

profits will be much higher if PV system is included according 

to the cost savings from Table VIII. Therefore, PV generation 

system is recommended in our optimisation model. 

Furthermore, the daily costs will not be influenced by the 

number of PowerWalls after optimisation. This is mainly 

because the unit price of the PowerWall (£/kWh) is not 

changed. However, if the end user installs more PowerWalls, 

the initial investment will be much higher, which leads to longer 

payback period of the whole system. Therefore, multi-

Powerwalls are not recommended for the end user. 

IV. CONCLUSIONS 

In this paper, an operational cost minimisation model is 

developed for a residential energy system comprising of an EV, 

an ESS, a PV system and other residential loads. To address the 

challenges of uncertain customer driving patterns, the 

probabilities of different driving time periods are obtained 

through a set of survey data. The survey was developed to cover 

various factors including driving purposes, driving time periods 

and distance, and also EV parking time. The design objective is 

to minimise the expected overall cost of the residential energy 

system on daily basis under uncertain car usage.  

In the case studies, impacts of the initial and the terminal 

SOC values are tested, where the results show that the total 

operational cost remains at the same minimum value if the 

initial SOC value is larger than or equal to the lower bound of 

the terminal SOC. This is because the existing 
export  is not 

large enough to compensate for the degradation cost of battery’s 

discharging, and thus, there is no power return either from ESS 

to home supply or from EV through V2G. Also, the overall cost 

measure will increase when the initial SOC is smaller than the 

lower bound of the terminal SOC. The overall cost for the end 

user will be slightly smaller if charging the same amount of 

energy to EV from a lower initial SOC. Several EV models are 

considered, and the economical choice has been provided. In 

addition, different impacts of 
export  of FIT are discussed. The 

results show that the EV will only start to discharge when the 

export  is larger than or equal to £0.25/kWh for fixed tariff, and 

£0.15/kWh for TOU tariff in the case study.  

It can be concluded that V2G can only be profitable to end 

users when 
export  is larger than a certain threshold. This 

threshold could be decreased if the battery degradation cost is 

reduced in the future. Furthermore, a comparison is made with 

the non-optimised operation and other scenarios. It shows that 

the proposed optimisation can achieve cost savings from 9% to 

15% under the selected fixed tariff, and from 18% to 48% under 

the given TOU tariff. Finally, an additional controllable load, 

solar water heater, is added in the optimisation model for 

exploration of wider applications.  

The investigation in this work is based on survey data 

collected on daily basis, and the optimisation is therefore of 

static nature. One expansion of this study is to develop online 

operation control for similar systems. A practical 

implementation procedure of the optimised operational 

schedules will be developed, and a prediction of customer’s 

benefit of V2G with future battery price will also be 

investigated. 
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