UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

Performance Analysis of Fractional Frequency Reuse in Random Cellular Networks

by

Sinh Cong Lam

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as a part of the requirements for other degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research and in the preparation of the thesis itself has been fully acknowledged. In addition, I certify that all information sources and literature used are quoted in the thesis.

Sydney, 30 April 2018

Production Note: Signature removed prior to publication.

Sinh Cong Lam

ABSTRACT

Performance Analysis of Fractional Frequency Reuse in Random Cellular Networks

by

Sinh Cong Lam

In a Long Term Evolution (LTE) cellular network, Fractional Frequency Reuse (FFR) is a promising technique that improves the performance of mobile users which experience low Signal-to-Interference-plus-Noise Ratios (SINRs). Recently, the random cellular network model, in which the Base Stations (BSs) are distributed according to a Poisson Point Process (PPP), is utilised widely to analyse the network performance. Therefore, this thesis aims to model and analyse performance of two well-known FFR schemes called Strict Frequency Reuse (FR) and Soft FR, in the random cellular network. Monte Carlo simulation is used throughout the thesis to verify the analytical results.

The first part of this thesis follows 3rd Generation Partnership Project (3GPP) recommendations to model the Strict FR and Soft FR in downlink and uplink singletier random cellular networks. The two-phase operation model is presented for both Cell-Center User (CCU) and Cell-Edge User (CEU). Furthermore, the thesis follows the resource allocation technique and properties of PPP to evaluate Intercell Interference (ICI) of the user. The closed-form expressions of the performance metrics in terms of classification probability and average coverage probability of the CCU and CEU are derived.

Thereafter, the performance of FFR is analysed in multi-tier cellular networks which are comprised of different types of cells such as macrocells, picocells and femtocells. The focus of this part is to examine the effects of the number of users and number of Resource Blocks (RBs) on the network performance. A new network model, in which the SINR on data channels are used for user classification purpose, is proposed. The analytical results indicate that the proposed model can reduce the power consumption of the BS while improving the network data rate. This chapter introduces an approach to analyse the optimal value of SINR threshold and bias factor. The analytical results indicate that the proposed model can increase the network data rate by 16.08% and 18.63% in the case of Strict FR and Soft FR respectively while reducing power consumption of the BS on the data channel.

Finally, the thesis develops an FFR random cellular network model with an FR factor of 1 using either Joint Scheduling or Joint Transmission with Selection Combining. The performance metrics in terms of average coverage probability are derived for Rayleigh fading environment.

Generally, this thesis makes contributions to uplink and downlink of LTE networks in terms of performance analysis.

Acknowledgements

I would like to express my special gratitude to my principal supervisor, A/Prof. Dr. Kumbesan Sandrasegaran, for the patience, generous support and immense knowledge he afforded me throughout this study.

I am grateful to Prof. Dr. Ha Nguyen (University of Saskatchewan, Saskatoon, SK, Canada), A/Prof. Dr. Quoc-Tuan Nguyen (Vietnam National University - Hanoi, University of Engineering and Technology) for their time and advise in my work.

A special thanks to my mother, father, mother-in law and father-in-law. They were always supporting and encouraging me with their best wishes. I would like to express appreciation to my beloved wife and daughter who were my support in all times.

I would also like to thank to Vietnam International Education Development -Ministry of Education and Training (VIED -MoET) and University of Technology (UTS) for giving me financial support in form of a VIED-UTS scholarship.

> Sinh Cong Lam Sydney, Australia, 2018.

List of Publications

The contents of this dissertation are based on the following papers that have been published, accepted, or submitted to peer-reviewed journals and conferences.

Journal Papers

- Lam, S.C. & Sandrasegaran, K, Ha. N, Tuan. N "Performance Analysis of Fractional Frequency Reuse in Multi-Tier Random Cellular Networks", submitted Springer Wireless Networks (IF 2016 = 1.584).
- Lam, S.C., Sandrasegaran, K. & Ghosal, P. "A Model based Poisson Point Process for Downlink Cellular Networks using Joint Scheduling", submitted Springer Wireless Personal Communication (Aug 2017) (IF 2016 = 0.95).
- Lam, S.C. & Sandrasegaran, K "Performance Analysis of Fractional Frequency Reuse in Uplink Random Cellular Networks", Elsevier Physical Communication (Sept 2017) (IF 2016 = 1.58) doi: https://doi.org/10.1016/j.phycom.2017.09.008.
- Lam, S.C., Sandrasegaran, K. & Ghosal, P. "Performance Analysis of Frequency Reuse for PPP Networks in Composite RayleighLognormal Fading Channel", Wireless Personal Communication (2017) (IF 2016 = 0.95). doi:10.1007/s11277-017-4215-2
- Lam, S.C. & Sandrasegaran, K 2016, "Analytical Coverage Probability of a Typical User In Heterogeneous Cellular Networks", Journal of Networks (ERA 2010=A), Vol 11, No 2 (2016), 56-61, Feb 2016, doi:10.4304/jnw.11.2.56-61.

Conference Papers

- S. C. Lam, K. Sandrasegaran, "Performance Analysis of Joint Scheduling in Random Cellular Networks," 2017 17th International Symposium on Communications and Information Technologies (ISCIT), Cairns, 2017
- S. C. Lam, K. Sandrasegaran, "Optimal Strict Frequency Reuse in Cellular Networks-based Stochastic Geometry Model," 2017 17th International Symposium on Communications and Information Technologies (ISCIT), Cairns, 2017
- S. C. Lam, K. Sandrasegaran and T. N. Quoc, "Strict frequency reuse algorithm in random cellular networks," 2016 International Conference on Advanced Technologies for Communications (ATC), Hanoi, 2016, pp. 447-452. DOI: 10.1109/ATC.2016.7764824
- S. C. Lam, K. Sandrasegaran and T. N. Quoc, "Performance of soft frequency reuse in random cellular networks in Rayleigh-Lognormal fading channels," 2016 22nd Asia-Pacific Conference on Communications (APCC), Yogyakarta, 2016, pp. 481-487. DOI: 10.1109/APCC.2016.7581454
- Lam, S.C., Heidary, R., and Sandrasegaran, K., "A closed-form expression for coverage probability of random cellular network in composite Rayleigh-Lognormal fading channels. 2015 International Telecommunication Networks and Applications Conference (ITNAC), Sydney, Australia. DOI: 10.1109/ATNAC.2015.7366806
- Lam, S.C., Subramanian, R., Ghosal, P., Barua, S., and Sandrasegaran, K. "Performance of well-known frequency reuse algorithms in LTE downlink 3GPP LTE systems. 9th International Conference on Signal Processing and Communication Systems (ICSPCS), Cairns, Australia 2015. DOI: 10.1109/IC-SPCS.2015.7391766

Contents

1

Certificate		iii
Abstract		V
Acknowled	gments	vii
List of Pul	olications	ix
List of Fig	ures	xvii
Abbreviati	on	xxi
List of Syn	nbols	xxiii
Introdu	ction to FFR and Cellular Network Models	1
1.1 Introd	uction to LTE Networks	. 1
1.1.1	LTE Requirements and Architecture	. 1
1.1.2	Physical LTE channel	. 2
1.2 Introd	uction to Fractional Frequency Reuse	. 3
1.2.1	Intercell Interference Coordination General Classification	. 3
1.2.2	Fractional Frequency Reuse and Related Definitions	. 4
1.3 Cellula	ar Network Models	. 11

1.3.1	Hexagonal and Wyner Network Models	11
1.3.2	Poisson Point Process	12

		1.3.4	Heterogeneous network PPP model	16
		1.3.5	Simulation of Mobile Networks based PPP	17
			1.3.5.1 Simulation Setup \ldots \ldots \ldots \ldots \ldots \ldots \ldots	17
			1.3.5.2 Simulation Algorithm	18
	1.4	Literat	ure Review on FFR in Random Cellular Networks	20
	1.5	Researc	ch Problem and Thesis Organization	21
		1.5.1	Research Problem	21
		1.5.2	Thesis Organization and Contributions	23
2	Pe	rform	ance of FFR in Downlink Random Cellular Net-	
	wo	orks		27
	2.1	Networ	k model	27
		2.1.1	Channel model	28
		2.1.2	Fractional Frequency Reuse	29
		2.1.3	User Classification Probability	31
	2.2	Averag	e Coverage Probability	32
		2.2.1	Average Coverage Probability Definition	32
		2.2.2	Average Coverage Probability of CCU and CEU	33
		2.2.3	Average Coverage Probability of the typical user	35
	2.3	Simula	tion and Discussion	38
		2.3.1	Validate of the proposed analytical approach	38
		2.3.2	Effects of SNR on the network performance	41
		2.3.3	Effects of Transmit Power Ratio on the network performance .	44
	2.4	Conclu	sion	45

3 Performance of FFR in Uplink Random Cellular Net-

	WO	orks		47
	3.1	Networ	k model	48
		3.1.1	Fractional Frequency Reuse	48
		3.1.2	User Classification Probability	50
	3.2	Averag	e Coverage Probability	51
		3.2.1	Average Coverage Probability of CCU and CEU	51
		3.2.2	Average Coverage Probability of a Typical User	53
		3.2.3	Average Data Rate	55
			3.2.3.1 Average User Data Rate	55
			3.2.3.2 Average Network Data Rate	56
	3.3	Simula	tion and Discussion	57
		3.3.1	Validation of the Analytical Results	58
		3.3.2	Effects of the Density of BSs	60
		3.3.3	Effects of the Power Control Exponent	63
		3.3.4	Average Network Data Rate Comparison	70
	3.4	Conclu	sion \ldots	73
4	Pe	rform	ance of FFR in Downlink Multi-Tier Random	1
			Networks	75
	4.1	Multi-7	Fier Network and Biased User Association	75
	4.2	Fractio	nal Frequency Reuse	77
		4.2.1	A proposed network model using FFR	78
		4.2.2	Scheduling Algorithm	79
		4.2.3	Signal-to-Interference-plus-Noise Ratio	80
		4.2.4	Number of new CCUs and CEUs	80

	4.3	Covera	ge Probability
		4.3.1	Coverage Probability Definition
		4.3.2	Coverage Probabilities of CCU and CEU
	4.4	Averag	e Cell data rate
		4.4.1	Average data rate of CCU and CEU
		4.4.2	Average Cell data rate
	4.5	Simula	tion Results and Discussion
		4.5.1	SINR Threshold
		4.5.2	Bias Association
		4.5.3	Comparison between the 3GPP model and the proposed model 103
	4.6	Conclu	sion
5	ЛЛ	adallir	ng CoMP in Random Cellular Networks 115
J	IVIC	Jueim	ig Colvir in Italiuolli Celiulai Networks 115
J			action to Coordinated Multi-Point
J			
J		Introdu	action to Coordinated Multi-Point
J		Introdu 5.1.1	action to Coordinated Multi-Point
J		Introdu 5.1.1 5.1.2	action to Coordinated Multi-Point
IJ		Introdu 5.1.1 5.1.2	action to Coordinated Multi-Point
J	5.1	Introdu 5.1.1 5.1.2 5.1.3	action to Coordinated Multi-Point
J	5.1	Introdu 5.1.1 5.1.2 5.1.3	action to Coordinated Multi-Point
U	5.1	Introdu 5.1.1 5.1.2 5.1.3	action to Coordinated Multi-Point
U	5.1	Introdu 5.1.1 5.1.2 5.1.3 Networ Joint S	action to Coordinated Multi-Point
U	5.1	Introdu 5.1.1 5.1.2 5.1.3 Networ Joint S 5.3.1	action to Coordinated Multi-Point

	5.4	Joint Transmission with Selection Combining	. 126
		5.4.1 Coverage Probability Definition	. 126
		5.4.2 Average Coverage Probability Evaluation	. 127
		5.4.3 Special case	. 128
	5.5	Simulation and Discussion	. 130
	5.6	Conclusion	. 132
6	Co	onclusions and Future works	133
	6.1	Summary of Thesis Contributions	. 133
	6.2	Future Work Directions	. 136
\mathbf{A}	Ap	opendices of Chapter 2	137
	A.1	Lemma 2.1.3.1 - CCU classification probability	. 137
	A.2	Theorem 2.2.2.2 - CCU under Strict FR	. 139
	A.3	Theorem 2.2.2.1 - CEU under Strict FR	. 141
	A.4	Theorem 2.2.2.3 - CCU under Soft FR	. 143
В	Ap	opendices of Chapter 3	145
	B.1	Lemma 3.1.2.2 - CCU classification probability	. 145
	B.2	Theorem 3.2.1.1 - CCU under Strict FR	. 148
	B.3	Theorem 3.2.1.2 - CEU under Strict	. 150
	B.4	Theorem 3.2.1.3 - CCU under Soft FR	. 151
	B.5	Theorem 3.2.1.4 - CEU under Strict FR	. 153
\mathbf{C}	Ap	opendices of Chapter 4	155
	C.1	Theorem 4.2.4.2 - CCU classification probability	. 155
	C.2	Theorem 4.3.2.1 - CCU under Strict FR	. 157

Bil	bliography	16	63
C.4	Theorem 4.3.2.3 - CCU under Soft FR	. 1	60
C.3	Theorem 4.3.2.2 - CEU under Strict FR	. 1	158

List of Figures

1.1	An example of Strict FR	9
1.2	An example of Soft FR	10
1.3	An example of hexagonal network model	11
1.4	An example of PPP network model with $\lambda = 0.25$	15
1.5	An example of PPP network model with $\lambda = 0.3$	15
1.6	Heterogeneous network with macro cells as large dots ($\lambda = 0.1$) and	
	pico cells as stars ($\lambda = 0.2$)	16
1.7	a PPP simulation model	17
2.1	Comparison of the analytical results and Monte Carlo simulation	
2.1	Comparison of the analytical results and Monte Carlo simulation $(SNR = 10 \text{ dB}, T = 0 \text{ dB}) \dots \dots$	39
2.1 2.2		39 41
	$(SNR = 10 \text{ dB}, T = 0 \text{ dB}) \dots \dots$	
2.2	$(SNR = 10 \text{ dB}, T = 0 \text{ dB}) \dots$ User Classification Probability with two values of SINR Threshold T	41
2.2	$(SNR = 10 \text{ dB}, T = 0 \text{ dB}) \dots$ User Classification Probability with two values of SINR Threshold T User Average Coverage Probability with $T = -5$ dB and $\hat{T} = -15$	41
2.2 2.3	$(SNR = 10 \text{ dB}, T = 0 \text{ dB}) \dots \dots$	41 42
2.2 2.3	$(SNR = 10 \text{ dB}, T = 0 \text{ dB}) \dots \dots$	41 42

3.1	Comparison of the analytical results and Monte Carlo simulation	59
3.2	Effects of BS Density on the User Classification Probability	61
3.3	Effects of BS Density on the Average User Transmit Power	62
3.4	Effects of BS Density on the Average Coverage Probability	62
3.5	Average User Transmit Power	64
3.6	(<i>Strict FR</i>): Effects of the Power Control Exponent on the Network Performance	65
3.7	(<i>Soft FR</i>): Effects of the Power Control Exponent on the Network Performance	67
3.8	Effects of the SINR Threshold on the Network Performance $\ . \ . \ .$.	72
4.1	Comparison between theoretical and simulation results of the average coverage probabilities of the CCU and CEU	87
4.2	(<i>Strict FR</i>): Performance of Tier-1 vs. SINR threshold T_1	90
4.3	(<i>Strict FR</i>) Performance of Tier-2 vs. SINR threshold T_2	91
4.4	(Soft FR): Performance of Tier-1 vs. SINR threshold $T_1 \ldots \ldots \ldots$	92
4.5	(Soft FR): Performance of Tier-2 vs. SINR threshold T_2	93
4.6	$(Strict \ FR, \ Tier-1)$, Average Cell Area Data Rate vs. SINR Threshold T_1	96
4.7	(<i>Strict FR, Tier-2</i>), Average Cell Area Data Rate vs. SINR threshold T_2	96
4.8	$(Soft \ FR, \ Tier-1)$, Average Cell Area Data Rate vs. SINR Threshold T_1	
4.9	(Soft FR, Tier-2), Average Cell Area Data Rate vs. SINR Threshold T_2	

4.10	(Strict FR): Average number of users and Data Rate vs. the bias factor for Tier-2, B_2
4.11	$(Strict \ FR)$: Cell Area and Network Data Rate vs. the bias factor
	for Tier-2, B_2
4.12	$(Soft \ FR)$: Average Number of Users and Data Rate vs. the bias
	factor for Tier-2, B_2
4.13	$(Soft \ FR)$: Cell Area and Network Data Rate vs. the Bias Factor for
	Tier-2, B_2
4.14	(Strict FR): Comparison between number of CCUs and CEUs \ldots 104
4.15	(Soft FR): Comparison between number of CCUs and CEUs $\ldots \ldots 105$
4.16	$(Strict\ FR,\ Tier\mathchar`1),$ Comparison between Average User Data Rates $% M^{2}$. 107
4.17	$(\mathit{Soft FR}, \mathit{Tier-1}),$ Comparison between Average User Data Rates 108
4.19	(Strict FR), Comparison between Performance of Cell Areas $\ldots \ldots 110$
4.20	(<i>Strict FR</i>), Average Network Data Rate Comparison
4.21	(Soft FR), Comparison between Performance of Cell Areas 111
4.22	(Soft FR), Average Network Data Rate Comparison
5.1	An example of Joint Scheduling with 2 coordinated BSs
5.2	An example of Joint Transmission with Selection Scheduling 117
5.3	(Joint Scheduling) Average Coverage Probability with different
	values of α and coverage threshold ($\lambda = 0.5$ and $K = 2$)
5.4	(Joint Transmission with Selection Combining) A comparison
	between analytical and Monte Carlo simulation results

Abbreviation

3GPP	3rd Generation Partnership Project
BS	Base Station
CC	Cell Center
CCU	Cell-Center User
CDF	Cumulative Density Function
CE	Cell Edge
CEU	Cell-Edge User
CoMP	Coordinated Multi-Point
e-UTRA	Evolved Universal Terrestrial Radio Access
\mathbf{FFR}	Fractional Frequency Reuse
\mathbf{FR}	Frequency Reuse
ICI	Intercell Interference
ICIC	Intercell Interference Coordination
LTE	Long Term Evolution
MRC	Maximum Ratio Combining
MIMO	Multiple-Input and Multiple-Output
PDF	Probability Density Function
PGF	Probability Generating Function
PPP	Poisson Point Process
RB	Resource Block
RV	Random Variable
SNR	Signal-to-Noise Ratio

SINR	Signal-to-Interference-p	olus-Noise Ratio

UE User Equipment

List of Symbols

α	Path Loss Exponent
α_j	Path Loss Exponent of Tier- j
Δ	Frequency Reuse Factor
Δ_j	Frequency Reuse Factor of Tier- j
ϵ	Power Control Exponent
$\epsilon_k^{(c)}$	Allocation ratio in CC Area of Tier- $\!k$
$\epsilon_k^{(e)}$	Allocation ratio in CE Area of Tier- k
$\epsilon_k^{(z)}$	Allocation ratio in z Area of Tier- k
\hat{T}	Coverage Threshold
\hat{T}_j	Coverage Threshold of Tier- j
λ	Density of BSs
$\lambda^{(c)}$	Density of BSs transmitting at CC power
$\lambda_j^{(c)}$	Density of BSs transmitting at a CC power in Tier- $\!j$
$\lambda^{(e)}$	Density of BSs transmitting at a CE power
$\lambda_j^{(e)}$	Density of BSs transmitting at a CC power in Tier- $\!j$
$\lambda^{(u)}$	Density of users
λ_j	Density of BSs of Tier- j
$\mathcal{P}_{c}^{(c)}$	Average coverage probability of a CCU
$\mathcal{P}_{FR}^{(c)}$	Average coverage probability of a CCU under FFR
$\mathcal{P}^{(c)}_{Soft}$	Average coverage probability of a CCU under Soft FR
$\mathcal{P}_{Str}^{(c)}$	Average coverage probability of a CCU under Strict FR

$\mathcal{P}_{c}^{(e)}$	Average coverage probability of a CEU
$\mathcal{P}_{FR}^{(e)}$	Average coverage probability of a CEU under FFR
$\mathcal{P}^{(e)}_{Soft}$	Average coverage probability of a CEU under Soft FR
$\mathcal{P}^{(e)}_{Str}$	Average coverage probability of a CEU under Strict FR
$\mathcal{P}_{c}^{(z)}$	Average coverage probability of user z
\mathcal{P}_{c}	Average coverage probability of a typical user
\mathcal{P}_{FR}	Average coverage probability of a typical user under FFR
\mathcal{P}_{Soft}	Average coverage probability of a typical user under Soft FR
\mathcal{P}_{Str}	Average coverage probability of a typical user under Strict FR
ϕ	Ratio between Transmit Power on a CEU and CCU
ϕ_j	Ratio between Transmit Power on a CEU and CCU of Tier- $\!j$
σ	Gaussian noise
heta	Set of BSs in the networks (Chapter 5)
$ heta^{(c)}$	Set of interfering BSs (Chapter 5)
$ heta_{Sof}^{(c)}$	Set of users (chapter 2), BSs (other chapters) transmitting at a CC power under Soft FR
$ heta_{Str}^{(c)}$	Set of users (chapter 2), BSs (other chapters) transmitting at a CC power under Strict FR
$ heta_{Sof}^{(e)}$	Set of users (chapter 2), BSs (other chapters) transmitting at a CE power under Soft FR
$ heta_{Str}^{(e)}$	Set of users (chapter 2), BSs (other chapters) transmitting at a CE power under Strict FR
$A^{(c)}$	CCU classification probability
$A_{Soft}^{(c)}$	CCU classification probability under Soft FR
$A_{Str}^{(c)}$	CCU classification probability under Strict FR
$A^{(e)}$	CEU classification probability
$A_{Soft}^{(e)}$	CEU classification probability under Soft FR
$A_{Strict}^{(e)}$	CEU classification probability under Strict FR
$C_{FR,k}^{(c)}$	Average CCU data rate in Tier- k

$C_{FR,k}^{(e)}$	Average CEU data rate in Tier- k
d_{jz}	Distance between a user j and serving BS of user z
g	Channel Power Gain from user to it's serving BS
g_{jz}	Channel Power Gain from user z to BS j
$I_{Sof}^{(z)}$	InterCell Interference of user z at under Soft FR
$I_{Str}^{(z)}$	InterCell Interference of user z at under Strict FR
K	Number of Tiers (chapter 4), coordinated BS (chapter 5)
$M_k^{(c)}$	Number of CCUs during communication phase in CE Area of Tier- k
$M_k^{(e)}$	Number of CEUs during communication phase in CE Area of Tier- k
$M_k^{(nc)}$	Number of new CCUs during communication phase in CC Area of Tier- k
$M_k^{(ne)}$	Number of new CEUs during communication phase in CE Area of Tier- k
$M_k^{(nz)}$	Number of new z users during communication phase in z Area of Tier- k
$M_k^{(oc)}$	Number of CCUs during establishment phase in CC Area of Tier- $\!k$
$M_k^{(oe)}$	Number of CEUs during establishment phase in CE Area of Tier- k
$M_k^{(oz)}$	Number of z users during establishment phase in z Area of Tier- $\!k$
$M_k^{(z)}$	Number of z users during communication phase in CE Area of Tier- k s
N_{GL}	Degree of a Laguerre polynomial
N_G	Degree of a Legendre polynomial
Р	Transmit Power of a user (chapter 2), a BS (other chapters)
$P^{(z)}$	Transmit Power of user z
P_j	Transmit Power of BS in Tier- j
r	Distance between a user and BS
R_k	Average cell data rate in Tier- k
r_{jz}	Distance between a user z and BS j
SINR	SINR during a communication phase
$SINR^{(o)}$	SINR during a establishment phase
Т	SINR Threshold

T_j SINR Threshold of Tier-j

 t_n and w_n *n*-th node and weight of Gauss - Laguerre quadrature

- x_n and c_n *n*-th abscissas and weight of Gauss-Legendre quadrature
- z CC or CE