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Abstract

In classical data-driven machine learning methods, massive amounts of labeled

data are required to build a high-performance prediction model. However, the

amount of labeled data in many real-world applications is insufficient, so estab-

lishing a prediction model is impossible. Transfer learning has recently emerged

as a way of exploiting previously acquired knowledge to solve new yet similar

problems much more efficiently and effectively. It exploits the knowledge ac-

cumulated in auxiliary domains to help construct prediction models in a target

domain with inadequate training data. Most existing methods on transfer learn-

ing address classification tasks, but studies on transfer learning in the case of

regression problems, which is an important category in prediction models, are

still scarce. In addition, the existing works ignore the inherent phenomenon of

uncertainty - a crucial factor during the knowledge transfer process.

To fill these gaps, this research develops algorithms and methods to deal with

transfer learning in homogeneous and heterogeneous spaces using fuzzy rule-

based models. Fuzzy rules are first generated from the source domain through

a learning process. These rules, as acquired knowledge, are then transferred to

the target domain. First, a novel fuzzy rule-based domain adaptation method is

proposed to transfer knowledge between domains in homogeneous spaces. It

utilizes the existing fuzzy rules of source domain and modifies the input space

with nonlinear mappings to adapt to the current regression tasks in the target

domain. Second, a granular fuzzy domain adaptation framework, comprising
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three methods, is developed to handle the knowledge transfer problems based on

the idea of granular computing. Thirdly, a fuzzy domain adaptation method is

developed to handle the case that the numbers of fuzzy rules in two domains do not

match. In addition, the proposed methods are also used to solve the classification

problems in transfer learning. Fourthly, an innovative method that combines an

infinite Gaussian mixture model with active learning is presented to discover the

structure of data and actively augment information in a target domain. Fifthly, a

fuzzy heterogeneous domain adaptation method is proposed to transfer knowledge

in heterogeneous spaces. The proposed algorithms and methods are validated

in each step of development using experiments performed on both synthetic and

real-world datasets. The results show that this study significantly improve the

performance of existing models when solving new tasks in the target domain in

both homogeneous and heterogeneous domain adaptation settings.
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Chapter 1

Introduction

1.1 Background

Traditional machine learning methods use learning models to extract knowledge

from massive amounts of labeled data. They work under a common assumption

that the training data (in the source domain) and the testing data (in the target

domain) have the same feature space and the same probability distributions.

However, if the feature space or the distribution of the target data changes, the

models built from the source data become unsuitable and a new model needs to

be rebuilt and trained from scratch. Additionally, if there is insufficient labeled

target data, a new prediction model for the target data will be impossible to

establish. This severely impedes the capacity of these methods to model in such

environments.

What makes the human learning process advanced is our ability to transfer

knowledge from one situation to another. Humans often draw upon more than

just training for generalization: we continuously adapt to changing environments.

Instead of learning from scratch, humans tackle new tasks on the basis of pre-

viously accumulated knowledge, and it is this unique ability that has inspired
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the application of transfer learning as a possible solution for the issue described

above.

In recent years, research has increased the focus on transfer learning (Pan and

Yang, 2010) and its application to real-world problems in the field of computa-

tional intelligence. As a possible solution to a lack of enough data with labels,

transfer learning aims to construct new predictive models much more quickly

and effectively by exploiting the knowledge accumulated in an auxiliary domain,

which in some way, or to some extent, relates to the original domain. Transfer

learning examples include: using already-categorized French documents to help

classify English documents, building recognition models capable of identifying

novel visual categories (Zhu et al., 2011), and predicting the banks’ status in one

country based on the data of banks in another country (Behbood et al., 2015).

A well-known example of transfer learning is indoor location estimation

through the WiFi signals (Lim et al., 2007). Location estimation in an indoor

environment is an important task in AI, from activity recognition and robotics

to various user-assisted technologies such as home-based healthcare. The WiFi-

based indoor localization problem, however, is a difficult task because the data

distribution is constantly changing depending on various factors, such as human

movement, temperature and humidity. When applying machine-learning-based

approaches, it is very costly to collect and label the training data in the form of

received signal strength values (RSS) and location label pairs in a large-scale

building, as this necessitates the use of a mobile device while walking through

a building to collect the RSS values and mark down the ground truth locations.

When the signal distribution changes, the processes has to be repeated again.

For example, in Fig. 1.1, all the RSS values in all locations of a building are

collected at 8:26 am, thus a well-performing location prediction model can be

built. However, the RSS values at 4:21 pm are quite different from those at 8:26
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am, so the previously constructed model cannot be used to predict the location

using the RSS data obtained at 4:21 pm. Similarly, in Fig. 1.2, all the RSS values

are collected by device A and a location estimation model can be built based on

these data. If the device is changed, the model cannot be used anymore, i.e. a

model built using data from device A cannot be used to estimate the location

based on the data collected by device B. Transfer learning can handle the problem

of detecting a user’s current location based on previously collected WiFi data (Pan

et al., 2008). To handle the adaptation problems in Fig. 1.1 and Fig. 1.2, transfer

learning methods explore the knowledge learned in the previous time period or

by the previous device, and abstract and transfer the obtained knowledge to the

current domain (time period and new device) and build a new model to solve the

new tasks.

Figure 1.1 RSS collected in different time periods

Figure 1.2 RSS collected by different devices
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Transfer learning sits within the machine learning research area; hence, its

methods use many notable machine learning techniques as basic training models,

such as support vector machine (SVM) (Xu et al., 2014), NN (Long et al., 2016),

naïve Bayes (Gönen and Margolin, 2014), and case-based models (Klenk and

Forbus, 2009). Additionally, researchers in deep learning explore the transfer

ability of deep models (Bengio, 2012). In practice, it is common to pre-train a

ConvNet on very large datasets, and remove the last fully-connected layers, then

treat the rest of the ConvNet as a fixed feature extractor for the new datasets. This

is motivated by the observation that the earlier features of a ConvNet contain

more generic features (e.g. edge detector or color blob detector) that should be

useful to many tasks, but later layers of the ConvNet become progressively more

specific to the details of the classes contained in the original dataset. For more

information on transfer learning, we refer the readers to several survey papers

that provide reviews and summaries of the various transfer learning methods and

categories. There have been many studies in the area of transfer learning, and

related work can be divided into two categories: homogeneous domain adaptation

and heterogeneous domain adaptation. In homogeneous domain adaptation, the

source domain and target domain have the same feature space but different

distributions. In heterogeneous domain adaptation, both the feature space and

distributions are different in the source and target domains.

Although transfer learning exhibits an upward trend, there is still a huge gap

between the existing work and domain adaptation tasks. For instance, a signifi-

cant amount of transfer learning research has been undertaken for classification

problems (Dai et al., 2007c), yet studies on regression problems are still scarce.

In addition, the existing works ignore the inherent phenomenon of uncertainty

– a crucial factor during the knowledge transfer process. There is a clear co-

dependency between the level of certainty in learning a task and the amount of
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information that is available; problems with too little information have a high de-

gree of uncertainty. If there are too few data with labels in the target domain, only

a finite amount of information can be extracted, and this leads to a high degree of

uncertainty. However, the introduction of fuzzy systems (Berkan and Trubatch,

1997) has shown promising results in overcoming this problem. Another reason

why the current transfer learning methods can not be acceptaned is the information

granularity inherent in many problems. For instance, 128GB of mobile storage is

considered large today, whereas 32GB was regarded as large five years ago. The

precise values, 128GB and 32GB, both need to be expressed as a granular value,

“large”, for learning to be effectively transferred from the five-year-old domain

to today’s domain. Extracting additional abstract knowledge shared between

domains should therefore assist knowledge transfer. Granular computing (GrC)

(Bargiela and Pedrycz, 2016) is an emerging information processing paradigm

that transforms complex data into information granules at different levels of res-

olution to reveal different features and irregularities. GrC’s ability to address

information at different levels of abstraction could improve the performance of

transfer learning. This thesis intends to fill this gap by developing a set of fuzzy

rule-based transfer learning methods for the domain adaptation problems.

1.2 Research questions and objectives

This research aims to develop a set of fuzzy transfer learning models to handle

the domain adaptation problems in homogeneous and heterogeneous spaces, and

will answer the following research questions:

QUESTION 1 How to explore the relation between the source domain and target

domain?
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The model of the source domain cannot be used to solve the tasks in the target

domain mainly due to the discrepancy in feature space and the data distributions.

A different feature space represents a different number of input variables, and

non-identical distributions of two domains indicate the bias or poor performance

when predicting the output of target data using the model of the source domain.

However, the source domain is assumed to be related to the target domain, and the

knowledge of the source domain could help improve the construction of the target

model. Therefore, it is crucial to find out the the relation between the source and

target domains and apply the relation to guide the knowledge transfer between

two domains.

QUESTION 2 How to grasp abstract knowledge in two domains?

The abstract knowledge in two domains comprises two aspects: information

granularity and abstract features. The granules in different platforms may have

different representations, and the level of granularity is dependent on the given

data. In transfer learning problems, it is important to find the appropriate form

of granules and determine the granularity level of data, so that the abstract

knowledge shared between domains can be transferred to a suitable level of

granularity. Additionally, for the heterogeneous domain adaptation, the different

feature spaces require exploring a more abstract space to represent the shared

features, so the common knowledge in two domains can be delivered in an abstract

way.

QUESTION 3 How to utilize the existing fuzzy rules of the source domain to

adapt to the tasks of the target domain in homogeneous space?

A fuzzy rule consists of two components: a condition part, which is deter-

mined by the centers of the clustering, and a conclusion part, which is governed
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by the linear functions. The divergence of data’s distributions leads to the differ-

ent fuzzy rules conditions and non-identical domain knowledge influences the

conclusions of fuzzy rules. However, the homogeneous space decides whether

the fuzzy rules in two domains have the same dimension, and their feature spaces

are the same. In order to apply the fuzzy rules of the souce domain for the target

data, the fuzzy rules need to be changed, and the way the existing fuzzy rules are

changed greatly affects the effectiveness of transfer learning.

QUESTION 4 How to transfer the knowledge of the source domain to the target

domain in heterogeneous space?

The greatest divergence between the source domain and target domain is the

difference in feature spaces. The non-identical dimensions mean that the model

of the source domain cannot be used for target data. Thus, exploring a latent

feature space is an important procedure to unify the features in two domains. With

the transformation to the latent feature space, the domain adaptation problem

converts from the homogeneous space to the heterogeneous space. In the latent

feature space, although the number of features is the same for the two domains,

the meanings of the feature and the distributions are still quite different. Thus, the

fuzzy rules of the source domain still cannot be directly used for the target data. In

addition, the relation between the fuzzy rules in the two domains become unclear

after the data are projected to the latent feature space. Therefore, modifying of

the fuzzy rules is still a challenging procedure to transfer the knowledge.

This research aims to achieve the following objectives, which are expected to

answer the above research questions:

OBJECTIVE 1 To discover the discrepancy between the fuzzy rule models in

two domains.
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This objective corresponds to research Question 1. Since the fuzzy rule-based

model is used in this thesis as the basic model for transfer learning, the divergence

of the source and target domains is discussed from the perspective of fuzzy rules.

The discrepancies between the fuzzy rules in the two domains are explored from

two aspects. First, the feature spaces of the two domains are compared and the

distributions are measured to determine whether the condition parts of the fuzzy

rules is the same in the two domains. Secondly, the consistency of the fuzzy

rules’ conclusions is judged from the domain-related knowledge. Similar domain

knowledge represents similar conditions of the fuzzy rules. This study develops

a method to discover the relation between the source and target domains, and

provides the basis for the following knowledge transfer procedure.

OBJECTIVE 2 To develop a granular domain adaptation method to extract the

abstract knowledge in the two domains.

This objective corresponds to research Question 2. The fuzzy rules are re-

garded as information granules to represent the abstract knowledge and be trans-

ferred between the domains with different levels of granularity. A latent feature

space is extracted to map the original data to the new feature space and convert

the heterogeneous domain adaptation problem to the homogeneous problem. The

learned latent feature space should satisfy several requirements: reducing the

gap between the distributions of data, and keeping the manifold of data in the

new feature space. This study develops a feature extraction method to extract

a common feature space and proposes a granular domain adaptation method to

facilitate the knowledge transfer through fuzzy rules.

OBJECTIVE 3 To develop a fuzzy domain adaptation method to transfer knowl-

edge between domains in homogeneous spaces.



1.3 Research contributions 9

This objective corresponds to research Question 3. For a well-built fuzzy rules

model, the useful components are the clusters’ centers and the corresponding

linear functions. In order to fit the target data, the existing centers of the clusters

and coefficients of the linear functions need to be modified, and the labeled target

data can be used to guide this procedure. This study develops an optimization-

based method to modify the existing fuzzy rules of the source domain to fit the

tasks in the target domain.

OBJECTIVE 4 To develop a fuzzy domain adaptation method to transfer knowl-

edge between domains in heterogeneous spaces.

This objective corresponds to research Question 4. A latent feature space is

learned to explored the abstract features shared between domains. The source

and target data are mapped to a common latent feature space and share the same

features. Although the relation between the fuzzy rules of the two domains in

the latent feature space is not clear, we adopt the strategy of changing both the

conditions and conclusions of the fuzzy rules, and apply the optimization method

to guide the modification of the fuzzy rules. This study develops a fuzzy rule-

based method to bridge the fuzzy rules of the two domains in heterogeneous

space.

1.3 Research contributions

The main contributions of this study are concisely summarised as follows:

• A new fuzzy rule-based domain adaptation method is developed to transfer

the knowledge of the source domain in homogeneous space by modifying

the input space using nonlinear mappings, so that the existing fuzzy rules

are more compatible with the target data.
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• Granular domain adaptation methods are proposed to improve the perfor-

mance of domain adaptation by considering the information granularity

inherent in transfer learning. Further, an entire framework is presented

to provide guidance for domain adaptation in the Takagi-Sugeno fuzzy

models.

• A new domain adaptation method is proposed to transfer fuzzy rules from

the source domain to the target domain even if the numbers of fuzzy rules

does not match in two domains, which is a common case in the transfer

learning problems.

• The knowledge contained in the unlabeled target data is explored to assist

in the construction of the target model, which introduces a new way to

extract as much as information as possible in the target domain.

• An innovative method that combines IGMM and active learning is presented

to enhance the performance and generalizability of the construct model.

IGMM is used to explore the relationship between the data structures in

the source and target domains, and the idea of active learning is applied

to increase the amount of labeled information in target domain by actively

labeling the most informative data.

• A fuzzy domain adaptation method is developed to minimize the gap

between the source domain and target domain, and facilitate the transfer of

fuzzy rules for the two domains in heterogeneous spaces, which addresses

the challenge brought about by the different feature spaces and distributions.
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1.4 Research significance

The theoretical and practical significance of this research is summarized as fol-

lows:

Theoretical significance: The findings of this study contribute to the transfer

learning community in the following two ways: enriching the theoretical analysis

for transfer learning; and facilitating the application of transfer learning to more

complex scenarios. More specifically, fuzzy systems are introduced to domain

adaptation to handle the uncertainty during the transfer learning procedure, and

the proposed methods could develop the capability of fuzzy rule-based methods

in dealing with knowledge transfer between domains. Furthermore, the pro-

posed methods concentrate on solving the regression tasks in transfer learning.

Compared with the classification prediction problems, the continuous outputs in

regression tasks are affected by more factors and are more complex. The extended

application scenarios not only improve the impact of this area, but also motivate

its continuing development.

Practical significance: The findings of this study contribute to the benefit

of society given the important role transfer learning plays in modern life. The

findings help resolve the real-world cold start problem especially in new areas

where labeled data are scarce while a large amount of unlabeled data in related

domains are available. Corporations and organizations can utilize the previous

data or data from the related areas to help solve the current tasks although the

data distributions and types are quite different, which saves a lot of human and

financial resources. This has potential for many other applications that could

benefit from this study.
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1.5 Thesis structure

The structure of the thesis is shown in Fig. 1.3 and the chapters are organized as

follows:

Figure 1.3 Thesis structure

• In Chapter 2, this thesis reviews the definitions related to transfer learning

and the current state-of-the-art of the research on transfer learning. In

addition, the idea of granular computing is introduced.
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• In Chapter 3, this thesis develops a fuzzy rule-based transfer learning

method to deal with the domain adaptation problems in homogeneous

spaces. The input space is modified through mappings so that the existing

fuzzy rules of the source domain are compatible with the current prediction

tasks in the target domain.

• In Chapter 4, this thesis develops a granular transfer learning method to han-

dle the domain adaptation problems in homogeneous space. Granular com-

puting techniques are applied to help knowledge transfer between domains.

Three methods and related algorithms are proposed, which considered

together, constitute an overall framework that provides a comprehensive

framework for the domain adaptation-based fuzzy models.

• In Chapter 5, this thesis presents a fuzzy domain adaptation method to

solve the mismatching problems of the number of fuzzy rules in the two

domains. In addition to the nonlinear mappings to change the input space,

a piece-wise linear function is also used to construct the mappings and

modify the existing fuzzy rules. In addition, the proposed method is used

to solve domain adaptation in classification problems.

• In Chapter 6, this thesis presents a innovative methods that applies IGMM

and active learning to enhance the performance and generalizability of the

constructed model. IGMM is used to explore the relationship between the

data structures in the source and target domains and provide guidance on

a domain selection and transfer strategy. The idea of active learning is

applied to increase the amount of labeled information in target domain by

actively labeling the most informative data in the source domain for use in

the target domain.
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• In Chapter 7, this thesis presents a fuzzy regression transfer learning method

to deal with the domain adaptation problems in heterogeneous spaces, where

both the distributions and feature space are different. A latent feature space

is extracted to minimize the gap between the two domains so that the

knowledge can be transferred in the latent feature space.

• Finally, Chapter 8 summarises the findings of the thesis and points to

directions for future work.

1.6 Publications related to this thesis
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Chapter 2

Literature Review

This chapter presents a discussion of the research background and relevant work

in connection with this research. In Section 2.1, the related definitions of transfer

learning and domain adaptation are introduced. Sections 2.2 to 2.3 review the

studies on transfer learning based on different ways of classifying the literature.

Sections 2.2 presents the transfer learning techniques based on the content trans-

ferred between domains, including instance, feature representation, parameters,

and relational knowledge. Section 2.3 discusses the transfer learning methods

based on the domain knowledge, including supervised transfer, semi-supervised

transfer, and unsupervised transfer. Section 2.4 reviews the literature on transfer

learning based on the applied computational intelligence techniques, including

NN, Bayes, fuzzy systems, and genetic algorithms. Section 2.5 introduces some

basic ideas in granular computing. Section 2.6 briefly summarizes this chapter.

2.1 Definitions and categories of transfer learning

and the category

The definitions related to transfer learning are introduced.
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Definition 2.1. (Domain) (Pan and Yang, 2010)

A domain is denoted by D = {F,P(X)}, where F is a feature space, and

P(X),X = x1,x2, ...,xn are the probability distributions of the instances.

Definition 2.2. (Task) (Pan and Yang, 2010)

A task is denoted by T = {Y, f (·)}, where Y ∈ R is the response, and f (·) is

an objective predictive function.

Definition 2.3. (Transfer Learning) (Pan and Yang, 2010)

Given a source domain Ds, a learning task Ts, a target domain Dt , and a

learning task Tt , transfer learning aims to improve the learning of the target

predictive function ft(·) in Dt using the knowledge in Ds an Ts, where Ds �= Dt ,

or Ts �= Tt .

Transfer learning addresses the problem of how to leverage previously ac-

quired knowledge (a source domain) to improve the efficiency of learning in a

new domain (the target domain). The existing methods in transfer learning can

be mainly divided into two categories: homogeneous domain and adaptation and

heterogeneous domain adaptation.

Definition 2.4. (Homogeneous Domain Adaptation)

Homogeneous domain adaptation is a category of transfer learning in which

the feature space is the same, Fs = Ft , but the corresponding probability distribu-

tions are different Ps(XXX) �= Pt((((X)).

Definition 2.5. (Heterogeneous Domain Adaptation)

Heterogeneous domain adaptation is a category of transfer learning in which

the feature space is the same, Fs �= Ft , but the corresponding probability distribu-

tions are different Ps(XXX) �= Pt((((X)).
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2.2 Different types of transfer learning methods based

on content

The methods of transfer learning can be divided into four types: instance transfer

learning, feature representation transfer learning, parameter transfer learning, and

relational knowledge transfer learning. The main idea and the representative

method in each category are described as follows.

The idea of instance transfer learning involves reweighting the instances of

the source domain to ensure the new data have a similar distribution to the target

domain, so that the model of the source domain can be used to solve the tasks in

the target domain. The commonly used and well-known instance transfer learning

method is a boosting algorithm, TrAdaBoost (Zhu, 2006). In TrAdaBoost, it is

assumed that the data in the source and target domains have identical features

and labels, but different marginal probability distributions. Due to the different

distributions, some of the target data are helpful for learning the target model, but

some are useless or even harmful to the learning. A method is proposed to change

the weights of the data in the two domains with different strategies. The weights

of the source data that have a positive effect are increased and the weights of the

source data that have a negetive effect are decreased. Except for the data in the

target domain, the weights associated with the incorrectly classified examples are

increased, and the weights associated with the correctly classified examples are

decreased.

The intuitive idea behind feature representation transfer learning is to learn a

‘good’ feature representation for the target domain. In this case, the knowledge

used to transfer across domains is encoded into the learned feature representation.

With the new feature representation, the performance of the target task is expected

to improve significantly. (Baralis et al., 2008) present a method for learning a
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low-dimensional representation which is shared across a set of multiple related

tasks. Based on the well-known 1-norm regularization problem which provides

such a sparse representation for a single task case, they generalize this formulation

to a multiple task case. Their method learns a few features common across the

tasks by regularizing within the tasks while keeping them coupled to each other.

Moreover, the method can be used, as a special case, to select a few features

from a prescribed set. Since the extended problem is non-convex, they develop an

equivalent convex optimization problem and present an algorithm to solve it. The

learning algorithm simultaneously learns both the features and the task functions

through two alternating steps. The first step consists of independently learning the

parameters of the tasks’ regression or classification functions. The second step

consists of learning, in an unsupervised way, a low-dimensional representation

for these task parameters, which they show to be equivalent to learning common

features across the tasks. The number of common features learned is controlled

by the regularization parameters, much like sparsity is controlled in the case of

single-task 1-norm regularization.

The parameter transfer approach assumes that the source tasks and the target

tasks share some parameters or the prior distribution of the hyperparameters of

the models. The transferred knowledge is encoded into the shared parameters or

priors as knowledge can be transferred across tasks. (Dai et al., 2007a) propose an

approach to multi-task learning based on the minimization of regularized functions

similar to existing ones, such as the one for SVM, which has been successfully

used in the past for single-task learning. Their approach is able to model the

relation between tasks in terms of a novel kernel function that uses a task-coupling

parameter. This is the first generalization of regularization-based methods from

single-task to multi-task learning. They implement an instance of the proposed

approach similar to SVM and test it empirically using both simulated and real
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data. The experimental results show that the proposed method performs better

than existing multi-task learning methods and largely outperforms single-task

learning using SVMs.

Relational knowledge transfer learning deals with knowledge transfer for

relational domains. The basic assumption behind this context is that some rela-

tionship between the data in the source and target domains are similar. Thus, the

knowledge to be transferred is the relationships between the data. (Pedrycz, 2013)

presents an approach to mapping source knowledge when minimal target domain

data is available. In particular, their approach addresses the single-entity-centered

setting in which the learner is provided with information concerning only a single

entity. The single-entity-centered setting can be viewed as one extreme on the

spectrum of possible available relational data. They present a new method, called

the Short-Range to Long-Range, which evaluates possible source-to-target pred-

icate correspondence based on short-range clauses in order to also transfer the

knowledge captured in long-range clauses. The experiments additionally show

that the most accurate model for the source domain is not always the best model

to use for transfer.

2.3 Types of transfer learning models based on do-

main knowledge

In addition, models to transfer learning can be divided into three types according

to how much knowledge exists in each domain. 1) Supervised knowledge transfer

aims to only use the labeled instances in the source domains to transfer knowledge

to a target domain (target domain has some labeled instances (Duan et al., 2012).

2) Semi-supervised knowledge transfer addresses transfer problems when there

are unlabeled instances in the source domains that could be used to help improve
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accuracy in the target domain (the target domain has some labeled instances

(Li et al., 2014). 3) Unsupervised knowledge transfer transfers knowledge from

a related domain to an unknown target domain that does not have any labeled

instances (Gong et al., 2014). For each type of transfer learning model, transfer

learning feature spaces can be either homogeneous feature spaces, where the

source and target domain have the same features, or heterogeneous feature spaces,

where the source and target domain have different features.

In the supervised knowledge transfer, one representative model that deals

with the domain adaptation in homogeneous spaces is the method of transfer

component analysis (Pan et al., 2011). It measures the distance between two do-

mains using maximum mean discrepancy (MMD), and minimizes this distance to

make the source domain and target domain become closer to each other. Another

model is the geodesic flow kernels model (Gong et al., 2014), which integrates

the subspaces between the source and target domain using the geodesic flow of

a Grassmann manifold. (Shi and Sha, 2012) proposed a method of information-

theoretical learning, which learns the common feature space for two domains,

and the specific feature space for each domain separately. Based on the extracted

feature spaces, the information-theoretic metric is optimized to improve the ac-

curacy of the target model. The models that handle the heterogeneous domain

adaptation include manifold alignment-based models (Wang and Mahadevan,

2011), asymmetric regularized cross-domain transformation (Kulis et al., 2011),

and heterogeneous spectral mapping (Shi et al., 2013).

In the semi-supervised knowledge transfer, many methods have been proposed

to solve the distribution divergence between two domains in the homogeneous

space. (Kanamori et al., 2009) treat the domain adaptation problem as the covari-

ate shift, and increase the weights of the source data that are located in the dense

region in the target domain to approximate the distribution of the target domain.
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However, this method does not work well when there is a big gap between the

source and target domains or some important target features can be represented

in the source domain. Self-labeling adaptation models (Jiang and Zhai, 2007)

adopts a self-training method to update the source model with labeled target data.

Also, the performance highly depends on the initial prediction model, and is not

suitable in cases where there is a huge divergence between the source and target

domains. For the heterogeneous domain adaptation problem, DASH-N (Nguyen

et al., 2015) is proposed to extract the hierarchy of features together with the

transformations that rectify the mismatch between the source and target domains.

This method also has good performance in relation to object recognition.

In unsupervised knowledge transfer, we assume that there are no labeled data

available in the target domain, and all the data in the source domain are labeled.

Homogeneous unsupervised knowledge transfer is studied as a part of homoge-

neous supervised knowledge transfer when there are no labeled data available in

the target domain. The representative models include transfer component analysis

(Pan et al., 2011), geodesic flow kernels (Gong et al., 2014), and information-

theoretic metric (Wang and Mahadevan, 2011). The heterogeneous unsupervised

knowledge transfer is a very challenging issue and only a few research studies

have attempted to solve it. Kernel canonical correlation analysis (Yeh et al., 2014)

was proposed to address this issue, but there is a strict condition that the data in

the two domains must be paired.
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2.4 Types of transfer learning based on computa-

tional intelligence techniques

There are several types of transfer learning models based on computational intel-

ligence techniques, including NN, Bayes, fuzzy system, and genetic algorithms.

These different types of transfer learning models are reviewed in this section.

2.4.1 Transfer learning using NN

NN aims to solve complex non-linear problems using a learning-based method

inspired by the human brain structure and processes. In classical machine learning

problems, many studies have demonstrated the superior performance of NN

compared to statistical methods. This has encouraged many researchers to use

NN for transfer learning, particularly for complicated problems. To address the

problem in transfer learning, a number of NN-based transfer learning algorithms

have been developed in recent years. This section reviews three of the principal

NN techniques: Deep NN, Multiple Tasks NN, and Radial Basis Function NN,

and presents their application to transfer learning.

2.4.1.1 Transfer learning using deep NN

Deep NN is considered to be an intelligent feature extraction module that offers

great flexibility in extracting high-level features in transfer learning. The promi-

nent characteristic of deep NN is its multiple hidden layers, which can capture the

intricate non-linear representations of data. (Hubel and Wiesel, 1962) proposed

multi-stage Hubel-Wiesel architectures that consist of alternating layers of convo-

lutions and max pooling to extract data features. A new model blending the above

structure and multiple tasks is proposed for transfer learning (Ahmed et al., 2008).

In this model, a target task and related tasks are trained together with shared input
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and hidden layers, and separately output neurons. The model is then extended

to the case in which each task has multiple output neurons (Huang et al., 2013).

Likewise, based on the multi-stage Hubel-Wiesel architectures, whether shared

hidden layers trained by the source task can be reused on a different target task is

detected. For the target task model, only the last classification layer needs to be

retrained, but any layer of the new model could be fine-tuned if desired. In this

case, the parameters of hidden layers in the source task model act as initialization

parameters of the new target task model, and this strategy is especially promising

for a model in which good initialization is very important (Cireşan et al., 2012).

As previously mentioned, generally all the layers except the last layer are treated

as feature extractors in a deep NN. In contrast to this network structure, a new

feature extractor structure is proposed by (Collobert and Weston, 2008). Only

the first two layers are used to extract features at different levels, such as word

level and sentence level in natural language processing (NLP). Subsequent layers

are classical NN layers used for prediction. The stacked denoising autoencoder

(SDA) is another structure that is presented in deep NN [50]. The core idea of

SDA is that unsupervised learning is used to pre-train each layer, and ultimately

all layers are fine-tuned in a supervised learning way. Based on the SDA model,

different feature transference strategies are introduced to target tasks with vary-

ing degrees of complexity. The number of layers transferred to the new model

depends on the high-level or low-level feature representations that are needed.

This means if low-level features are needed, only the first layer parameters are

transferred to the target task (Kandaswamy et al., 2014). In addition, an interpo-

lating path is presented to transfer knowledge from the source task to the target

task in a deep NN. The original high dimensional features of the source and target

domains are projected to lower dimensional subspaces that lie on the Grassman

manifold, which presents a way to interpolate smoothly between the source and
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target domains; thus, a series of feature sets is generated on the interpolating

path and intermediate feature extractors are formed based on deep NN (Chopra

et al., 2013). Deep NN can also combine with other technology to promote the

performance of transfer learning. (Swietojanski et al., 2012) applied restricted

Boltzmann machine (RBM) to pre-train deep NN, and the outputs of the network

are used as features for a hidden Markov model.

2.4.1.2 Transfer learning using multiple task NN

To improve the learning for the target task, multiple task learning (MTL) is

proposed. Information contained in other related tasks is used to promote the

performance of the target task (Caruna, 1993). In multiple task NN learning,

all tasks are trained in parallel using the shared input and hidden neurons and

separate output neurons depending on different tasks (Caruana, 1998). The biggest

difference between the MTL and the MTL in deep NN is the number of hidden

layers. Generally, the number of hidden layers in MTL is much smaller than in

deep NNs. In MTL, source tasks as auxiliary information help the target task

to improve performance. However, due to different relatedness between source

tasks and the target task, the contributions of source tasks should be distinguished.

Therefore, a modified version of multitask learning called ηMTL is introduced.

Based on a measure of relatedness between source tasks and the target task,

ηMTL applies a separate learning rate for each task output neuron (Silver and

Mercer, 2001). (Silver and Mercer, 2002) presented a task rehearsal method

(TRM) to transfer knowledge of source tasks to the target task at a functional

level. Instead of the interrelation between representations of various tasks, the

relationship between functions of tasks is the core content in their new model.

After demonstrating the good performance of ηMTL and TRM on synthetic

tasks, they were practically applied to a series of medical diagnostic tasks (Silver
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and Mercer, 2007). In the MTL model, the output layer consists of a separate

neuron corresponding to each task, which may lead to redundant outputs and

overlapping information. In addition, for the continuous tasks, contextual cues

must be provided to guide the system to associate an example with a particular

task. In light of these problems, (Silver and Poirier, 2007) proposed context-

sensitive multiple task learning (csMTL) with two major differences. To eliminate

the redundant outputs and reduce the free parameters, only one neuron is included

in the output layer. The other difference is reflected in the input layer, which

can be divided into two parts. Apart from the set of input variables for the tasks,

the input layer also contains a set of context inputs that associates each training

example with a particular task. To verify the effectiveness of csMTL, a set of

experiments was designed to detect csMTL and MTL NNs in their ability to

transfer knowledge (Silver et al., 2008). The above model makes the assumption

that each task only has one output neuron. Further, csMTL is extended to learn

tasks that have multiple output neurons (Silver and Tu, 2008).

2.4.1.3 Transfer learning using radial basis function NNs

(Yamauchi, 2008) considered covariate shift, one category of transfer learning,

and incremental learning. Under the assumption that incremental learning envi-

ronments are a subset of covariate shift, a novel incremental learning method is

presented on the basis of radial basis function NN. Further, a number of model-

selection criteria are set up to optimize the network; for example, the information

criterion (Shimodaira, 2000) is applied to determine the number of hidden neu-

rons (Yamauchi, 2009). In some of the literature, NN acts as a part of the whole

algorithm. (Liu et al., 2009) applied NN to initialize the weights of labeled data

in the source domain. Each instance in the source domain is input into the NN

trained by limited target labeled data to obtain the contribution degree based on
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the error value. In addition, the NN is used as a pre-processing technique to ex-

tract features from high dimensional space to low dimensional space (Ueki et al.,

2010). Sometimes, NN is combined with other intelligent techniques to form an

integrated model to improve the performance of transfer learning (Celiberto Jr

et al., 2011).

2.4.2 Transfer learning using Bayes

Bayesian techniques are methods that are related to statistical inference and are

developed based on Bayesian theory. A Bayesian classifier is a probabilistic

methodology for solving classification problems. Since probability is a useful

tool for modeling the uncertainty in the real world and is adequate for quantifying

the certainty degree of an uncertain truth, a Bayesian classifier is popular in the

machine learning community. When it comes to the transfer learning setting,

the distribution of the training data and test data is not identical, so a Bayesian

classifier trained on training data may not be predictive for the test data. To

address this challenging problem, many Bayesian-based transfer learning algo-

rithms have been developed in recent years. This section reviews three of the

main Bayesian techniques: naïve Bayes classifier, Bayesian network and the hier-

archical Bayesian model, and illustrates their application within the framework of

transfer learning.

2.4.2.1 Transfer learning using naïve Bayes

The naïve Bayes classifiers Lewis (1992) are among the most popular classifiers

in real-world applications. They pose a simple but strong assumption that there

is independence between each pair of features (attributes) given the class vari-

ables. Though this assumption is not suitable in most real scenarios, naïve Bayes

classifiers have nevertheless been proved to work quite well in some complicated
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applications, especially automatic medical diagnosis (Kononenko, 1993), spam

filtering (Androutsopoulos et al., 2000) and text categorization (Sebastiani, 2002),

in which they may even outperform more advanced algorithms, such as support

vector machine, or random forests.

To adapt the naïve Bayes classifier from the training data to the test data, (Dai

et al., 2007b) proposed a novel naïve Bayes transfer learning (NBTL) classification

algorithm for text categorization. NBTL first trains a naïve Bayes classifier on

the training data and applies the learned classifier on the test data to obtain

a pseudo label for the test data during learning, thereby providing an initial

model estimation for the test data under the target distribution. The expectation

maximization (EM) algorithm is then applied in the iteration to find a local

optimal model only for fitting the target distribution, meaning that the naïve Bayes

classifier trained on the training data is adapted to the test data. To measure the

difference between the different distributions, KL divergence is used to estimate a

trade-off parameter in the NBTL model, and the experiment results show that the

performance of NBTL increases when the distribution between the training data

and the test data is significantly different. The main disadvantage of NBTL lies in

the fact that the influence of new-domain specific features is ignored. Instead of

treating both old-domain and new-domain data equally, an adaptive naïve Bayes

is proposed in (Tan et al., 2009). It uses a weighted EM algorithm to dynamically

increase the importance of new-domain data and decrease the weight of old data,

while at the same time emphasizing the usage of both generalizable features

drawn from the old-domain data and all the features from the new-domain data for

tackling the cross-domain sentiment classification problem. (Roy and Kaelbling,

2007) developed an alternative method of transferring the naïve Bayes classifier.

They first partition the dataset into a number of clusters, such that the data for
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each cluster for all tasks has the same distribution. Then they train one classifier

for each partition; all classifiers are then combined using a Dirichlet process.

In addition to text classification, (Ma et al., 2012) developed a transfer naïve

Bayes (TNB) algorithm to predict cross-company software defects. The im-

plementation can be summarized in three steps: it first collects maximum and

minimum value vectors of the target feature from test data, then each feature of a

training sample is compared with the corresponding part of those two vectors to

calculate the number of similar attributes and the weight of that training instance

is computed through a gravitational analogy. After obtaining all the weights for

the training data, a prediction model can be built with those weighted training

data to classify the test dataset.

2.4.2.2 Transfer learning using Bayesian network

Assuming that total independence between features is not applicable for many

real-world problems, the occurrence of an event may arise as the result of a num-

ber of relevant factors. In other words, there are correlations between features in a

decision region and the Bayesian network is a suitable representation to this fact.

A Bayesian network is a graphical model that encodes probabilistic relationships

among variables of interest. It consists of two components: (1) a directed acyclic

graph (DAG) which contains nodes and arcs. In particular, the nodes can be

observed quantities, latent variables, or unknown parameters, while the directed

arcs reflect conditional dependencies among variables, and (2) conditional proba-

bility tables (CPTs), which record local probability distributions associated with

each node. Bayesian networks have four distinct advantages when compared to

other data mining methods, namely, the ability to handle incomplete datasets,

to discover causal relationships hidden in the data, to incorporate both domain
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knowledge and data into one model, and to avoid data over-fitting (Heckerman

et al., 1998).

In a simple case, the graphical model of a Bayesian network can be constructed

by the prior knowledge of an expert. However in some complex applications,

the definition of “network” is difficult for humans, so it is necessary to learn the

network structure and parameters of the local distributions from data (Buntine,

1996). To learn a Bayesian network from data, one needs to consider two impor-

tant phases: structure learning and parameter learning, respectively. The former

relates to the learning of a graphical model from data, while the latter deals with

the evaluation of condition probability distribution for each variable given the

model. To our knowledge, most work focuses on structure learning by leveraging

previous data, and less effort is expended on parameter learning.

When the training data in a task is scarce, learning a reliable Bayesian network

is difficult; therefore transfer learning can help improve the robustness of learned

networks by exploiting data from related tasks or knowledge from domain experts.

In (Niculescu-Mizil and Caruana, 2007), the authors extended Bayesian network

learning from a single domain (task) to multiple domains (tasks). In this case,

instead of learning a structure in isolation, the relationships between tasks should

be taken into account. Similar to the multi-task learning scenario, multiple

Bayesian network structures are jointly built from multiple related datasets. To

make learning efficient, the parameters of Bayesian networks from related tasks

are assumed to be independent. The prior is defined in such a way that it penalizes

structures that are different from one another. A score and search approach is then

performed on the space of multiple Bayesian networks to find the best structures,

in particular, by defining a suitable search space and devising a branch and bound

procedure that enables efficient moves in this search space. In contrast to learning

optimal models simultaneously for different tasks, (Luis et al., 2010) proposed
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learning models from auxiliary tasks to improve related tasks. In this paper,

without providing sufficient data for an independence test, a PC-TL algorithm

is developed with consideration of both the confidence of the independence

tests and the similarity of the auxiliary tasks to the target task in a combined

function. An example that uses transfer learning to strengthen the quality of the

learned Bayesian networks through the use of an inductive bias can also be found

in (Richardson and Domingos, 2003). The main limitation of such multi-task

network structure learning algorithms lies in the assumption that all pairs of

tasks are equally related, which violates the truth that different pairs of tasks

can differ in their degree of relatedness. As a result, (Oyen et al., 2012) relaxed

this assumption by adding a task relatedness metric, which explicitly controls

the amount of information sharing between tasks, into a learning objective to

incorporate domain knowledge about task-relatedness. Experimental results show

that leveraging domain knowledge produces models that are both robust and in

accordance with a domain expert’s objective. Recently, (Oyen and Lane, 2013)

pointed out that it is more appropriate to estimate a posterior distribution over

multiple learned Bayesian networks rather than a single posteriori. In their paper,

the authors proposed the incorporation of structure bias into order-conditional

network discovery algorithms to extend network discovery in individual Bayesian

network learning (Friedman and Koller, 2003; Koivisto and Sood, 2004) for

transfer network learning.,

Given a Bayesian network structure, the work of parameter learning is to

estimate the conditional probability tables (CPTs) for each node given the combi-

nation of its parent’s nodes. If we have data from all tasks, then we can directly

estimate the CPTs from the data. However, in some cases, we only have models

from related tasks and need to estimate the CPT for the target task. In (Luis

et al., 2010), two novel aggregation methods were defined. The first calculates a
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weighted average of the probabilities from the data of the auxiliary tasks based

on the confidence of the probability estimated from the auxiliary tasks and the

similarity with the target estimates. This average is then combined with the

target probability estimate, weighted by a factor that depends on its similarity

to the target probability. The second method works similarly, but the average

of probabilities is obtained from those closer to the target rather than from all

the data of the auxiliary tasks. In addition, the average is combined to the target

estimate with a confidence factor, which is based on the amount of data.

2.4.2.3 Transfer learning using a hierarchical Bayesian model

Hierarchical Bayesian models are considered to be a particular type of Bayesian

network and are used when the data are structured in groups. This hierarchical

model can represent and reason about knowledge at multiple levels of abstraction,

therefore a hierarchical Bayesian model provides a unified framework to explain

both how abstract knowledge is used for induction and how abstract knowledge

can be acquired.

In considering the problem of multi-task learning, (Wilson et al., 2007) used

a hierarchical Bayesian infinite mixture model to model the distribution over

multiple Markov decision processes (MDP) such that the characteristics of new

environments can be quickly inferred based on the learned distribution as an

informed prior. This idea is extended to solve the problem of sequential decision-

making tasks (Wilson et al., 2012). (Yang et al., 2008) combined all the tasks in a

single RBF network and defined a novel Bayesian multi-task learning model for

non-linear regression. (Raykar et al., 2008) presented a novel Bayesian multiple

instance learning (MIL) algorithm which performs feature selection and classifier

construction simultaneously. The results show that the proposed method is more

accurate and effective when a smaller set of useful features is selected.
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In reference to the domain adaptation problem, a novel hierarchical Bayesian

domain adaptation model was developed based on the use of a hierarchical Bayes

prior (Finkel and Manning, 2009). In the proposed model, several parameters are

set to each feature in each domain, and the top level parameters are proposed on

the upper level such that the Gaussian prior over the parameter values in each

domain are now centered around these top level parameters instead of around zero,

while the zero-mean Gaussian prior is placed over the top level parameters. At

the same time, (Wood and Teh, 2009) designed a doubly hierarchical Pitman-Yor

process language model, in which the bottom layer utilizes multiple hierarchical

Pitman-Yor process language models to represent a number of domains while

the top layer is responsible for sharing the statistical strength. A more special

case is considered in (Salakhutdinov et al., 2012), where only a single example

from a new category is provided; thus, it is more difficult to estimate the variance

and similarity metric for categorizing an object in this case. It is possible with

this model to encode priors for new classes into super-categories. Following the

inference of the sub-category to which the novel category belongs, the model can

estimate not only the mean of the new category but also an appropriate similarity

metric based on parameters inherited from the super-category.

2.4.3 Transfer learning using fuzzy systems and genetic algo-

rithms

Imprecision, approximation, vagueness and ambiguity of information are driven

by the variability encountered when trying to learn an activity with little infor-

mation. There is a clear co-dependency on the level of certainty in any learning

activity and the amount of information that is available, and problems with little

information, can have a high degree of uncertainty. This is why several research
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studies appears very recently applied fuzzy techniques to transfer learning. The

use of fuzzy logic allows for the incorporation of approximation and a greater

expressiveness of the uncertainty within the knowledge transfer. (Zadeh, 1965)

introduced the concept of fuzzy sets on which he later expanded on by introducing

further aspects of fuzzy logic, including fuzzy rules in (Bellman and Zadeh, 1970).

The two primary elements within fuzzy logic, the linguistic variable and the

fuzzy if-then rule, are able to mimic the human ability to capture imprecision and

uncertainty within knowledge transfer. Fuzzy logic forms a major component of

the published fuzzy transfer learning techniques. (Behbood et al., 2011, 2013a)

developed a fuzzy-based transductive transfer learning for long-term bank failure

prediction in which the distribution of data in the source domain differs from that

in the target domain. They applied three classical predictors, NN, SVM and fuzzy

NN, to predict the initial labels for samples in the target domain, then attempted

to refine the labels using fuzzy similarity measures. The authors subsequently

improved the performance of the fuzzy refinement domain adaptation method

(Behbood et al., 2014) by developing a novel fuzzy measure to simultaneously

take account of the similarity and dissimilarity in the refinement process. The pro-

posed method has been applied to text categorization and bank failure prediction.

The experiment results demonstrated the superior performance of the proposed

method compared to popular classical transductive transfer learning methods. Us-

ing fuzzy techniques in similarity measurement and label production, the authors

demonstrated the advantage of fuzzy logic in knowledge transfer where the target

domain lacks critical information and involves uncertainty and vagueness. (Shell

and Coupland, 2012, 2015) proposed a framework of fuzzy transfer learning to

form a prediction model in intelligent environments. To address the issues of

modeling environments in the presence of uncertainty and noise, they introduced

a fuzzy logic-based transfer learning that enables the absorption of the inherent
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uncertainty and dynamic nature of transfer knowledge in intelligent environments.

They created a transferable fuzzy inference system using labeled data in the source

domain, then adapted and applied the resultant rule base to predict the labels for

samples in the target domain. The source rules were adjusted and adapted to

the target domain using the Euclidean distance measure. The proposed method

was examined in two simulated intelligent environments. The experiment results

demonstrated the superior performance of fuzzy transfer learning compared to

classical prediction models; however the method has not been compared with

transfer learning methods. (Deng et al., 2014) proposed the generalized hidden-

mapping ridge regression (GHRR) method to train various types of classical

intelligence models, including NNs, fuzzy logic systems and kernel methods.

The knowledge-leverage based transfer learning mechanism is integrated with

GHRR to realize the inductive transfer learning method called transfer GHRR

(TGHRR). Since the information from the induced knowledge is much clearer

and more concise than the information from the data in the source domain, it

is more convenient to control and balance the similarity and difference of data

distributions between the source and target domains. The proposed GHRR and

TGHRR algorithms have been evaluated experimentally by performing regression

and classification on synthetic and real world datasets. The results demonstrated

that the performance of TGHRR is competitive with or even superior to existing

state-of-the-art inductive transfer learning algorithms.

Genetic algorithms are an evolutionary method that simulates the process of

natural selection to mainly solve optimization and search problems. This method

uses techniques inspired by natural evolution such as inheritance, mutation, se-

lection and crossover. (Koçer and Arslan, 2010) introduced the use of genetic

algorithm and transfer learning by extending a previously constructed algorithm.

Their approach was to extend the transfer learning method of producing a trans-
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lation function. This process allows for differing value functions that have been

learn to be mapped from source to target tasks. The authors incorporated the use

of a set of policies originally constructed by a genetic algorithm to form the initial

population for training the target task. They showed that the transfer of inter-task

mappings can reduce the time required to learn a second, more complex task.

2.4.4 Applications of transfer learning

Transfer learning approaches with the support of computational intelligence

methods such as NN, Bayesian networks, and fuzzy logic have been applied in

real-world applications. These applications largely fall into the following five

categories: 1) NLP; 2) computer vision; 3) biology; 4) finance; and 5) business

management.

2.4.4.1 Natural language processing

NLP, which can be regarded as the study of human languages, is proposed to

make natural language processing interpretable by computers. In general, there

are numerous sub-learning tasks in NLP fields, such as text-based learning prob-

lems (e.g., text classification or non-topical text analysis), language knowledge

understanding, etc.

For text-related analysis, i.e., exploring useful information from a given

document, the learning problem of how to label text documents across different

distributions was addressed (Dai et al., 2007b). In this setting, the labeled training

samples shared different distributions from the unlabeled test data. Accordingly,

a novel transfer-learning algorithm based on an EM based Naive Bayes model

was proposed for further learning, which has demonstrated the best performance

on three different types of data sets. Moreover, considering that most existing

transfer learning methods assume that features and labels are numeric, and lack
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the ability to handle the uncertainty properties, (Behbood et al., 2013b) proposed

a fuzzy domain adaptation approach and carried out an investigation into its

applicability to text classification. In addition, for sentiment classification, which

is a key challenge in non-topical text analysis, the transfer learning technique is

also applicable, such as adapting naïve Bayes to domain adaptation for sentiment

analysis by fully utilizing the information from both the old-domain and unlabeled

new-domain data sets (Tan et al., 2009).

Furthermore, the transfer learning approach can be used to deal with lan-

guage knowledge understanding problems. For speech recognition, for example,

(Swietojanski et al., 2012) exploited untranscribed acoustic data into the target lan-

guages in a deep NN on unsupervised cross-lingual knowledge transfer. Similarly,

(Huang et al., 2013) dealt with the cross-language knowledge transfer learning

tasks by a shared-hidden-layer multi-lingual deep NN.

2.4.4.2 Computer vision and image processing

Computer vision applied to transfer learning using computational intelligence

includes methods for acquiring, processing, analysing, and understanding images,

especially in high-dimensional data from the real world, to produce numerical

or symbolic information. In this section, we summarize computer visual appli-

cations for camera image processing, from digits to letter processing, and video

processing.

In early camera image applications based on computational intelligent transfer

learning, all approaches used a database of camera images of different objects,

each of which was of a distinct color or size and was used for vision learning,

such as ALVINN-like road-following vision recognition (Caruana, 1998). One

challenge in image object recognition is that the distributions of the training

images and test images are different. Thus, (Chopra et al., 2013) argued that in
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the representation learning camp for images, existing deep learning approaches

could not encode the distributional shift between the source and target domains.

To this end, the authors proposed a novel transfer deep learning method for

object recognition which allows the application of deep learning for domain

adaptation. Camera images were also used to solve robotics problems. A visual

object tracking routine, which recognizes and tracks the marker in real time,

challenged robot researchers (Thrun, 1994, 1996) and a robot-mounted camera

(Caruana, 1998) was employed for task mappings, e.g. (Taylor et al., 2007).

Recently, image learning has mainly been used for human facial recognition,

e.g., gender and ethnicity recognition based on facial appearance (Ahmed et al.,

2008), emotional facial appearance recognition derived from synthetic images of

neutral faces to that of corresponding images of angry, happy and sad faces (Silver

and Tu, 2008), age estimations from face images (Ueki et al., 2010), and gaze

gesture recognition by eye tracking devices and eye gaze technologies (Shell and

Coupland, 2012). Knowledge transfer between different handwritten character

recognition tasks (Cireşan et al., 2012) is another kind of application of transfer

learning in computer vision. (Kandaswamy et al., 2014) trained a NN to classify

Latin digits (specific source problem) and reused it to classify lowercase letters

(different but related target problem) without having to train it from scratch. In the

empirical analysis, the authors used the proposed NN to transfer knowledge from

Arabic digits to Latin digits as well. (Kandaswamy et al., 2014) also considered a

problem of classifying images of English lowercase a-to-z by reusing fine-tuned

features of English handwritten digits 0-to-9.

By applying salient feature detection and tracking in videos to simulate fixa-

tions and smooth pursuit in human vision, (Zou et al., 2012) successfully imple-

mented an unsupervised learning algorithm in a self-taught learning setting. With

concrete recognition, features learned from natural videos do not only apply to
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still images, but also give competitive results on a number of object recognition

benchmarks.

2.4.4.3 Biology

Transfer learning has been applied to biology fields, including medical problems,

biological modeling designs, ecology issues, and so on. In applications related to

medical issues, (Caruna, 1993) suggested using multi-task learning in artificial

NNs, and proposed an inductive transfer learning approach for pneumonia risk

prediction. A life-long inductive learning approach (Silver and Mercer, 2002)

retained task knowledge in a representational form and transferred knowledge

in another form of virtual examples on three heart disease domains, through an

NN-based multi-task learning algorithm. They also put forward another type of

sequential inductive transfer model for a medical diagnostics task, i.e., coronary

artery disease diagnosis (Silver and Mercer, 2007). Recently, (Oyen and Lane,

2013) argued that existing transfer learning methods for Bayesian networks focus

on a single posteriori estimation, and that in doing so, other models may be

ignored. To this end, they proposed a transfer multi-Bayesian networks model for

whole-brain neuroimaging.

From the aspect of biological modeling designs, e.g., robot bionics, (Celib-

erto Jr et al., 2011) combined three artificial intelligence techniques, case-based

reasoning, heuristically accelerated reinforcement learning and NNs, in a transfer

learning problem. They then proposed a novel model called L3 to speed up the

reinforcement learning framework for a set of empirical evaluations between two

domains (the Acrobot and the Robocup 3D). Another important biology domain,

ecology, has attracted the attention of researchers into transfer learning. For

instance, (Niculescu-Mizil and Caruana, 2007) proposed a multi-task Bayesian

network structure learning (i.e., inductive transfer) to re-evaluate the performance
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of ALARM (a logical alarm reduction mechanism) and to handle a real bird

ecology problem in North America.

2.4.4.4 Finance

Another application area of transfer learning is finance, such as in the area of

car insurance risk estimations and financial early warning systems. (Niculescu-

Mizil and Caruana, 2007) presented an inductive transfer learning approach,

which jointly learns multiple Bayesian network structures instead of adaptive

probabilistic networks from multiple related data sets. The authors examined the

proposed method using car insurance risk estimation networks. It is worth noting

that the works on intelligent financial warning systems and long-term prediction

in banking ecosystems (Behbood et al., 2014) are the first systematic studies to

apply transfer learning approaches using fuzzy logic techniques of computational

intelligence to real-world financial applications to exploit the knowledge of the

banking system, e.g., transferring information from one country to establish a

prediction model in another country.

2.4.4.5 Business management

Transfer learning using computational intelligence has been applied in business

management. For instance, (Roy and Kaelbling, 2007) proposed an efficient

Bayesian task-level transfer learning model to tackle the user’s behavior in the

meeting domain. (Jin and Sun, 2008) indicated that traditional NN methods for

traffic flow forecasting are based on a single task which cannot utilize information

from other tasks. To address this challenge, multi-task based NN is proposed

to transfer knowledge to deal with traffic flow forecasting. Luis, (Luis et al.,

2010) proposed the use of a novel transfer Bayesian network learning framework,

including structure and parameter learning, to handle a product manufacture
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process issue. Recently, (Ma et al., 2012) studied the cross-company software

defect prediction scenario in which the source and target data sets come from

different companies, and proposed a novel transfer naïve Bayes as the solution. A

dynamic model for intelligent environments has been proposed to make use of

the data from different feature spaces and domains (Shell and Coupland, 2012),

with a novel fuzzy transfer learning process.

2.5 Granular computing

2.5.1 Concepts of granular computing

Information granules as intuitively appealing constructs play a pivotal role in hu-

man cognitive and decision-making activities (Pedrycz and Chen, 2015). We per-

ceive complex phenomena by organizing existing knowledge along with available

experimental evidence. Knowledge is structured in a form of some meaningful,

semantically sound entities, which are central to all ensuing processes of describ-

ing the world, reasoning about the environment and support decision-making

activities.

In general, an information granule is regarded as a collection of elements

drawn together by their closeness (resemblance, proximity, functionality, etc.)

articulated in terms of some useful spatial, temporal, or functional relationships

(Pedrycz et al., 2013). Granular computing involves representing, constructing

and processing information granularity. Information granules permeate almost

all human endeavors. No matter which problem is taken into consideration, we

usually set it up in a certain conceptual framework composed of some generic

and conceptually meaningful entities - information granules, which we regard to

be of relevance to the problem formulation, further problem solving, and a way in

which the findings are communicated to the community. Information granules
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realize a framework in which we formulate generic concepts by adopting a certain

level of abstraction.

Information granules are the key components of knowledge representation

and processing. The level of granularity of information granules (their size, to

be more descriptive) becomes crucial to the problem description and an overall

strategy of problem solving, and the hierarchy of information granules supports

an important aspect of perception of phenomena and delivers a tangible way

of dealing with the complexity of the system by focusing on the most essential

facets of the problem. There is no universal level of granularity of information;

commonly the size of granules is problem-oriented and user dependent (Pedrycz,

2001). Human-centricity is an inherent feature of intelligent systems. It is

anticipated that two-way effective human-machine communication is imperative.

Humans perceive the world, reason, and communicate at some level of abstraction.

Abstraction comes hand-in-hand with non-numeric constructs, which embrace

collections of entities characterized by some notions of closeness, proximity,

resemblance, or similarity.

In the algorithmic realization of granular computing, the implicit nature of

information granules has to be translated into constructs that are explicit in

nature, viz. described formally in which information granules can be efficiently

processed. It identifies the essential commonalities between the surprisingly

diversified problems and technologies used there, which could be cast into a

unified framework known as a granular world. A fully operational processing

entity interacts with the external world (that could be another granular or numeric

world) by collecting necessary granular information and returning the outcomes

of the granular computing (Pedrycz and Homenda, 2013).
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2.5.2 The formalisms of granular computing

The existing plethora of formalisms of granular computing includes set theory

(interval analysis), rough sets, fuzzy sets, shadowed sets, probability, random

sets and so on. These existing well-established development are placed under the

same roof by clearly visualizing that in spite of their visibly distinct underpin-

nings (and ensuing processing), they exhibit some fundamental commonalities.

In this sense, granular computing establishes a highly stimulating environment of

synergy between the individual approaches. By building upon the commonalities

of the existing formal approaches, granular computing helps assemble heteroge-

neous and multifaceted models of processing of information granules by clearly

recognizing the orthogonal nature of some of the existing and well-established

frameworks (Pedrycz and Homenda, 2013).

Granular computing fully acknowledges a notion of variable granularity whose

range could cover detailed numeric entities and very abstract and general informa-

tion granules. It looks at the aspects of compatibility of such information granules

and the ensuing communication mechanisms of the granular worlds. Information

granules arise as an evident realization of the fundamental paradigm of abstraction.

Next, we introduce the existing platforms separately. Sets (intervals) realize a

concept of abstraction by introducing a notion of dichotomy. We allow an element

to belong to a given information granule or to be excluded from it. Along with set

theory comes a well-developed discipline of interval analysis. Sets are described

by characteristic functions taking on values 0 or 1. Fuzzy sets are important con-

ceptual and algorithmic generalization of sets. By admitting partial membership

of an element to a given information granule, we bring an important feature to

ensure the concept has rapport with reality. It helps working with the notions

where the principle of dichotomy is neither justified nor advantageous (Pedrycz

and Gomide, 2007). Shadowed sets are the description of information granules by
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distinguishing those elements which fully belong to the concept, those which are

excluded from it, and those whose belongingness is completely unknown (Pedrycz

and Vukovich, 2002). Formally, these information granules are described as a

mapping, where the elements with membership quantified as the entire [0,1]

interval are used to describe a shadow of the construct. Probability-oriented infor-

mation granules are expressed in the form of some probability density functions or

probability functions. They capture a collection of elements resulting from some

experiment. In virtue of the concept of probability, the granularity of information

becomes a manifestation of the occurrence of some elements. For instance, each

element of a set comes with a probability density function truncated to [0,1],

which quantifies a degree of membership to the information granule. Rough sets

emphasize a roughness of description of a given concept X when being realized

in terms of the indiscernibility relation provided in advance. The roughness of

the description of X is manifested in terms of its lower and upper approximations

associated with a certain rough set (Lin, 1998).

Next, we see the information granules from a symbolic and numeric view. A

concept - information granule is viewed as a single symbol (entity). This view

is very much present in the AI community, where computing revolves around

symbolic processing. In addition, information granules are associated with a

detailed numeric characterization. Fuzzy sets are profound examples in this regard.

We start with numeric membership functions. All ensuing processing involves

numeric membership grades so, in essence, it focuses on number crunching.

2.5.3 The application of granular computing

In the image processing area, in spite of the continuous progress in the area, a

human being assumes a dominant and very much uncontested position when it

comes to understanding and interpreting images. We do not focus our attention
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on individual pixels and process them as such but group them together into

semantically meaningful constructs – familiar objects we deal with in everyday

life. Such objects involve regions that consist of pixels or categories of pixels

drawn together because of their proximity in the image, similar texture, color, etc

(Butenkov, 2004). This remarkable and unchallenged ability of humans is due

to our effortless ability to construct information granules, manipulate them and

arrive at sound conclusions.

In the processing and interpretation of time series, from our perspective we

can describe time series in a semi-qualitative manner by pointing at specific

regions of such signals. One distinguishes some segments of temporal signals

and interprets their combinations. For example, in the stock market, one analyzes

numerous time series by looking at existing amplitudes, trends, patterns, and the

relationships among them. Time is another important and omnipresent variable

that is subjected to granulation. We use seconds, minutes, days, months, and

years. Depending on the specific problem we have in mind, who the user is and

the size of the information granules (time intervals) could vary quite significantly

(Chen and Chen, 2015).

Another application is the design of software systems. We develop software

artifacts by admitting a modular structure of an overall architecture of the designed

system. Each module is a result of identifying essential functional closeness of

some components of the overall system. Modularity (granularity) is the holy

grail of the systematic software design, supporting the production of high quality

software products (Han and Dong, 2007).



2.6 Summary 47

2.6 Summary

Transfer learning has become a hot topic in machine learning and an powerful

tool for a model’s construction in a new area which does not have too much data.

This chapter has reviewed the current state-of-the-art researches in this field. The

different types of transfer learning methods, these being content transfer, domain

knowledge and computational intelligence techniques, are reviewed. The reviews

have shown that transfer learning is experiencing its developing stage, so there is

still a gap between current theories and techniques with complicated real-world

tasks, especially complicated heterogeneous domain adaptation problems, where

the different feature space is quite a gap between the two domains. Therefore,

this study aims to fill this gap by contributing some new theories and techniques

to this field, and applies these new theories and techniques on complex transfer

learning tasks.



Chapter 3

Fuzzy Homogeneous Domain

Adaptation

3.1 Introduction

In the homogeneous domain adaptation problems, the source data and target

data have the same feature space but different distributions. The discrepancy of

the distributions in two domains makes the source model have a poor accuracy

when solving the tasks in the target domain. Each feature in the feature space

is assumed to be determined by some hidden features. For example, the credit

risk, an index of a bank, is determined by loan exposure, loan funding, past due

loan rate, loss rate, and so on. In two domains, for instance the banks in America

and the banks in Australia, they both have the index of the credit risk as a feature,

but the decisive factors of this index are not identical in the two countries, which

leads to the same feature with different distributions.

There have been a significant amount of research that studies transfer learning

for classification problems, whereas studies on regression problems are still scarce.

In this chapter, we focus on addressing regression domain adaptation problems
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using regression transfer learning techniques. Given that fuzzy system modeling

is an important category of modeling with extensive applications (Lemos et al.,

2011), incorporating regression transfer learning to a fuzzy model holds promise.

Additionally, domains which lack information tend to suffer from uncertainty, and

fuzzy regression transfer learning can cope efficiently with uncertainty. In transfer

learning, target tasks in new environments often exhibit this uncertainty, especially

when there is insufficient information, therefore a fuzzy system combined with

transfer learning might exhibit a substantial capacity to model uncertainty.

A novel method of changing the input space is proposed to make the existing

fuzzy model of the source domain fit the regression tasks in the target domain. The

idea behind changing the input variables is that each input variable is assumed

to be determined by some hidden features, and the distributions of the input

variables in two domains are different because of different hidden features or

different weights of these features. The approach of changing the input space

adjusts the hidden features and their corresponding weights, and target data are

used to complete this process so that the modified input distribution is much more

similar with the target domain.

The main contributions of this chapter are twofold. First, a novel approach

to regression, based on the Takagi-Sugeno fuzzy model, is introduced to address

situations in which insufficient training data is available in the target domain but

there is sufficient training data in the source domain. The Takagi-Sugeno model’s

fuzzy rules are constructed using source data, then modified through mappings to

be reused to estimate values in the target domain. Second, this approach preserves

the privacy of the source data because only the fuzzy rules are extracted.

The rest of this chapter is organized as follows. Section 3.2 introduces the

Takagi-Sugeno fuzzy model, which is the basic model applied in our domain

adaptation method. Section 3.3 discusses the problem we aim to solve and
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presents a fuzzy rule-based method to deal with the domain adaptation problem

in homogeneous space. The input space is modified by mappings so that the

existing fuzzy rules of the source domain can be suitable for the prediction tasks

in the target domain. Section 3.4 explains the evaluation and analysis of the

experimental results for the proposed approach. Finally, summary of this chapter

is discussed in Section 3.5.

3.2 Takagi-Sugeno fuzzy model

This section discusses the Takagi-Sugeno fuzzy model, which is the basic model

applied in our work to construct fuzzy rules to solve the prediction tasks. The

details of the construction procedures for Takagi-Sugeno fuzzy model are given

with more details in the following.

The Takagi-Sugeno fuzzy model is an effective way to represent a fuzzy model

in a nonlinear dynamic system. A Takagi-Sugeno model, composed of c fuzzy

rules, is formally represented as:

if xxx is Ai(xxx, vvvi), then y is Li(xxx,aaai) i = 1,2, ...,c (3.1)

Each fuzzy rule comprises one condition, which is described by the prototype

vvvi, and one conclusion, which is typically governed by the coefficients of the

linear function Li of the input variables aaai. When the input of the Takagi-Sugeno

fuzzy model is xxx, the output y is represented as:

y =
c

∑
i=1

Ai(xxx,vvvi)Li(xxx,aaai) (3.2)

The construction of this fuzzy rule-based model uses a set of instances

{(xxx1, y1), ...,(xxxN , yN)} to formulate condition Ai and optimize the parameters
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of the linear function Li. The design procedure can be summarized in two steps

(Hadjili and Wertz, 2002):

Step 1: Forming the conditions A1,A2, ...,Ac through fuzzy clustering.

Typically, fuzzy C- means (FCM) (Havens et al., 2012) is used to con-

struct the clusters and calculate the centers of clusters vvvi. FCM partitions the

N data xxx1,xxx2, ...,xxxN into c clusters, where 1 < c < N. As a result, a collec-

tion of c centers of clusters, vvv1,vvv2, ...,vvvc, and a partition matrix, U = [uik], i =

1,2, ...,c,k = 1,2, ...,N are formed. The partition matrix satisfies two require-

ments uik ∈ [0,1],∑c
i=1 uik = 1,∀k and 0 < ∑N

k=1 uik < N,∀i.

The objective function 3.3 is minimized in the FCM:

J =
c

∑
i=1

N

∑
k=1

(uik)
m‖xxxk − vvvi‖2 (3.3)

where ‖ · ‖ stands for a distance function, and m (m < 1) is a fuzzification

coefficient that affects the shape and overlap among the resulting membership

functions.

Since real-world data have variables located in different ranges, a weighted

Euclidean distance avoids bias towards any particular variable. The distance is

expressed in the form

‖xxxk − vvvi‖2 =
N

∑
j=1

(xk j − vi j)
2

σ2
j

(3.4)

where σ j is the standard deviation of the jth feature, and n is the dimensional-

ity of the input data.

The centers of clusters are calculated as:

vvvi =
∑N

k=1(uik)
mxxxk

∑N
k=1(uik)m

(3.5)
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and the entries of the partition matrix are expressed as follows:

uik =
1

∑c
j=1

‖xxxk−vvvi‖
‖xxxk−vvv j‖

2
m−1

(3.6)

The entire process is repeated until no significant changes to the entries of the

partition matrix U are reported in successive iterations of the algorithm.

Step 1 results in c centers of clusters, vvv1,vvv2, ...,vvvc, that determine A1,A2, ...,Ac,

and Ai(xxx, vvvi) can be calculated in the form:

Ai(xxxk, vvvi) =
1

∑c
j=1

‖xxxk−vvvi‖
‖xxxk−vvv j‖

2
m−1

(3.7)

Step 2: Optimizing the parameters of the linear function Li(xxx,aaai).

Suppose we have a pair of data (xxx,y). When the input of the Takagi-Sugeno

fuzzy model is xxx, the output is denoted as ŷ and determined as:

ŷ =
c

∑
i=1

Ai(xxx, vvvi)Li(xxx,aaai) (3.8)

where Li(xxx,aaai) = aaaT
i

⎛
⎜⎝1

xxx

⎞
⎟⎠, aaai is the coefficients vector of linear function Li

in the form of aaai =

(
ai0 ai1 . . . ain

)T

, and xxx is n-dimensional input data,

xxx =
(

x1 x2 . . . xN

)T

.

Next, we simplify 3.8:

ŷ =
c

∑
i=1

Ai(xxx, vvvi)aaaT
i

⎛
⎜⎝1

xxx

⎞
⎟⎠=

c

∑
i=1

aaaT
i

⎛
⎜⎝ Ai(xxx, vvvi)

Ai(xxx, vvvi)xxx

⎞
⎟⎠ (3.9)
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We denote zzzi(xxx) =

⎛
⎜⎝ Ai(xxx, vvvi)

Ai(xxx, vvvi)xxx

⎞
⎟⎠, then ŷ can be rewritten as:

ŷ =
c

∑
i=1

aaaT
i zzzi(xxx) =

c

∑
i=1

zzzT
i (xxx)aaai = fff T (xxx)aaa (3.10)

where fff T (xxx) =
(

zzz1(xxx) zzz2(xxx) . . . zzzc(xxx)

)
,aaa =

(
aaa1 aaa2 . . . aaan

)T

.

Therefore we find ŷ = fff T (xxx)aaa, i.e. for the given input xxx, the output of the

Takagi-Sugeno fuzzy model is parameter aaa′s linear function. Additionally we

expect that ŷ will approximate y, which is the target value corresponding to xxx.

This can be achieved by an appropriate parameter aaa through a calculating process

based on the dataset GGG = {(xxx1,y1),(xxx2,y2), ...,(xxxN ,yN)}.

For all the inputs xxx1,xxx2, ...,xxxN , the corresponding outputs are calculated as:

ŷi = fff T (xxxi)aaa i = 1,2, ...,N (3.11)

We combine all the outputs and denote this as ŶYY :

ŶYY =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ŷ1

ŷ2

. . .

ŷN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

fff T (xxx1)aaa

fff T (xxx2)aaa

. . .

fff T (xxxN)aaa

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= FFFaaa (3.12)

where FFF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

fff T (xxx1)

fff T (xxx2)

. . .

fff T (xxxN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

zzzT
1 (xxx1) zzzT

2 (xxx1) . . . zzzT
c (xxx1)

zzzT
1 (xxx2) zzzT

2 (xxx2) . . . zzzT
c (xxx2)

. . . . . . . . . . . .

zzzT
1 (xxxN) zzzT

2 (xxxN) . . . zzzT
c (xxxN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

ŶYY is expected to be as close as YYY =

(
y1 y2 . . . yN

)T

, which is the target

value corresponding to inputs xxx1,xxx2, ...,xxxN .
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Our aim is to minimize the objective function as follows:

Q = (FFFaaa−YYY )T (FFFaaa−YYY ) (3.13)

Since Q is a quadratic function of aaa, the optimal aaa can be obtained analytically:

aaaopt = (FFFT FFF)−1FFFTYYY (3.14)

Therefore, the fuzzy rule’s conclusion can be calculated based on the derived

aaa:

Li(xxxk,aaai) = ai0 +ai1xk1 + · · ·+ainxkn i = 1, . . . ,c (3.15)

Based on steps 1 and 2, the conditions and conclusions of the fuzzy rules are

formed, and a Takagi-Sugeno fuzzy model is built.

3.3 Fuzzy domain adaptation

3.3.1 Problem statement

The dataset in the source domain is denoted by DDD= {(xxxs
1,y

s
1),(xxx

s
2,y

s
2), ...,(xxx

s
Ns
,ys

Ns
)},

where xxxs
k ∈ Rn,k = 1,2, ...,Ns is the n-dimensional input variable, the label ys

k ∈ R

is the continuous output variable, and Ns indicates the number of data. Since the

amount of source data with labels is massive, a well-performing regression model

for the source domain can be learned.

The dataset in the target domain contains two subsets: one with labels and

one without labels HHH = {(xxxt
1,y

t
1), ...,(xxx

t
Nt
,yt

Nt
)}, where xxxt

k ∈ Rn,k = 1,2, ...,Nt is

the n-dimensional input variable, yt
k ∈ R,k = 1,2, ...,Nt1 is the continuous output

variable. The number of data in HHH is much less than the data in DDD, i.e. Nt << Ns,

and not sufficient to build a good model.
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Although data in the source domain and target domain have the same dimen-

sion of the input space, the marginal probability distribution of the input variables

in two domains are quite different. The model of source domain, therefore, could

not be directly used to solve the tasks in the target domain. Since we suppose that

the source domain and target domain have some common knowledge and relate

to each other, the knowledge in the existing model of source domain could be

used to help the construction of target model.

3.3.2 Fuzzy rule-based domain adaptation in homogeneous

space

We propose a fuzzy rule-based method to use the accumulated knowledge (fuzzy

rules) in the source domains to assist the solution of the target tasks. The main

idea of our fuzzy transfer learning method is presented in this subsection, and the

procedures required to implement it are described in subsection 3.3.3.

A Takagi-Sugeno fuzzy model Ms for the source domain can be built based

on the dataset DDD.

model Ms

if xxxs is Ai(xxxs, vvvs
i ), then ys is Li(xxxs,aaas

i ) i = 1,2, ...,c (3.16)

For the target domain, suppose the ideal model is Mt

model Mt

if xxxt is Ai(xxxt , vvvt
i), then yt is Li(xxxt ,aaat

i) i = 1,2, ...,c (3.17)

Here, we suppose the numbers of fuzzy rules are the same in both source and

target domains.
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Building a well-performing Takagi-Sugeno fuzzy model needs a large amount

of data with labels, and inadequately data in HHHL cannot guarantee performance of

the constructed model in the target domain. Furthermore, discrepancies between

the source and target data mean that using the source model to solve target tasks

is impossible.

Given that there is insufficient data to train a new fuzzy model Mt , we hope to

use learned knowledge (fuzzy rules) in the existing model Ms to help construct

a fuzzy model that is more compatible with the target data. This requires the

optimization of a continuous mapping of each input variable in the input space of

the target data. The input space is transformed to Φ(xxxt) by mapping Φ, and a new

fuzzy model Mt
is constructed using the fuzzy rules from fuzzy model Ms.

Model Mt
, described in the forms of fuzzy rules, is:

if xxxt is Ai(Φ(xxxt), Φ(vvvs
i )), then yt is Li(Φ(xxxt),aaas

i ) i = 1,2, ...,c (3.18)

The output of model Mt
is calculated as:

gt =
c

∑
i=1

Ai(Φ(xxxt), Φ(vvvs
i ))Li(Φ(xxxt),aaas

i ) (3.19)

Our aim is to find such Φ so that Mt ≈ Mt , i.e.

c

∑
i=1

Ai(Φ(xxxt), Φ(vvvs
i ))Li(Φ(xxxt),aaas

i )≈ yt (3.20)

The key to our fuzzy regression transfer learning method is to map the input

space through Φ. A nonlinear continuous function based on sigmoid functions

is used to construct the mapping Φ. Other forms of mapping suitable for the

problem could also be considered.
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3.3.3 Knowledge transfer in fuzzy rule-based models

The procedure for transferring knowledge from a source domain to a target domain

requires two steps. First, a Takagi-Sugeno fuzzy model, based on source data, is

constructed, then a new fuzzy model for the target domain is built by modifying

the input space using fuzzy rules from the source domain.

Step 1: Constructing a Takagi-Sugeno fuzzy model Ms based on source data.

Based on the dataset DDD, a Takagi-Sugeno fuzzy model Ms for the source

domain is constructed.

Model Ms, described in the forms of fuzzy rules, is:

if xxxs
k is Ai(xxxs

k, vvvs
i ), then ys is Li(xxxs

k,aaa
s
i ) i = 1,2, ...,c (3.21)

The main blocks of a fuzzy rule are the condition and conclusion, which are

dominated by the prototype and linear function respectively. The fuzzy model Ms

is constructed by calculating the centers of clusters of the data and estimating the

parameters of the linear functions standing in the conclusions of the rules.

1) Forming the prototypes

Fuzzy C-means (FCM) is used to cluster the input data {xxxk} and find the

prototypes:

VVV s = [vvvs
1 vvvs

2 · · ·vvvs
c]

T (3.22)

where c is the number of clusters, i.e. the number of fuzzy rules.

Estimating an “optimal” number of clusters in the clustering algorithm is also

still an open issue, and the solution to this problem greatly depends upon the

data and the problem. Here, we adopt a strategy of dynamically changing the

number of clusters (centers of clusters). The number of clusters (c) is chosen

from a certain range and a fuzzy regression transfer learning model is constructed
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for each selected c. The model with the best transfer performance is then chosen

to address the problem at hand.

The input data xxxs
k therefore belongs to the prototype (cluster) vvvs

i with the

membership degree Ai(xxxs
k,vvv

s
i ), which is calculated as follows:

Ai(xxxs
k,vvv

s
i ) =

1

∑c
j=1(

‖xxxs
k−vvvs

i‖
‖xxxs

k−vvvs
j‖)

2
m−1

(3.23)

2) Developing linear functions

Since the functions in the conclusion are linear, they are uniquely described

by the coefficients aaas
i , i = 1,2, . . . ,c. Based on the analysis completed in Section

3.2, the coefficients of the linear functions are calculated as follows:

[aaas
1 aaas

2 · · ·aaas
c] = (FFFT FFF)−1FFFTYYY (3.24)

where FFF =

(
fff T (xxxs

1) . . . fff T (xxxs
N)

)T

, fff T (xxxs
k)=

⎛
⎜⎝ A1(xxxs

k,vvv
s
1) . . . Ac(xxxs

k,vvv
s
c)

A1(xxxs
k,vvv

s
1)xxx

s
k . . . Ac(xxxs

k,vvv
s
c)xxx

s
k

⎞
⎟⎠.

[aaas
1 aaas

2 · · ·aaas
c] is the coefficient matrix of the linear functions, where aaai =

[as
i0 as

i1 · · ·as
in]

T is the coefficient vector of the ith linear function Li, i = 1,2, . . . ,c.

As a consequence, the centers of clusters and linear functions are calculated

to construct the fuzzy rules in 3.21. When a new datum xxxs
k appears, the output of

fuzzy model Ms is calculated as follows:

gs
k =

c

∑
i=1

Ai(xxxs
k, vvvs

i )Li(xxxs
k,aaa

s
i ) (3.25)

where Ai(xxxs
k,vvv

s
i ) = 1/∑c

j=1(
‖xxxs

k−vvvs
i‖

‖xxxs
k−vvvs

j‖)
2

m−1 , Li(xxxs
k,aaa

s
i ) = as

i0 +as
i1xs

1 + . . .+as
inxs

n.

This fuzzy model Ms will not perform well on the target data HHH, however. To

improve its performance, the input space of the target domain must be made more

compatible with Ms’s fuzzy rules.



3.3 Fuzzy domain adaptation 59

Step 2: Modifying the input space and using the fuzzy rules of the existing model.

Nonlinear mappings based on sigmoid functions are use to modify the input space

of target domain. The mappings’ construction and optimization are presented as

follows.

The nonlinear function is constructed through a network that is composed of P

nodes in the hidden layer and a single node at the output layer. The transformation

of the jth input variable of data xxxt
k is shown in Fig. 3.1 as an example of the

nonlinear mapping for each input variable.

Figure 3.1 Architecture of nonlinear mapping

The active functions of the nodes in the hidden layer are sigmoid functions,

which are dominated by two parameters. Therefore, as shown in Fig. 3.1, the

graphic representation of the transformed jth input variable of data xxxt
k is:

Φ j(xxxt
k j) =

P

∑
p=1

w jp ∗ zt
k j (3.26)

where zt
k j =

1

1+e
−α jp(x

t
k j−βip)

, j = 1,2, ...,n, p = 1,2, ...P, α jp. w jp indicates the

weights of the pth node’s contribution to the output, and satisfies ∑P
p=1 w jp =

max xt
j = max{xt

1 j,x
t
2 j, ...,x

t
N j}
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By taking advantage of the nonlinear mappings, the input space is transformed

so that the new input variables become more compatible with the fuzzy rules of

the existing fuzzy model.

The input space is modified by constructing a mapping for each input variable,

say Φ j(xt
k j), where xt

k j is the jth input variable of xxxt
k. The input space is thus

transformed by Φ = [Φ1Φ2 · · ·Φn], and the input data xxxt
k becomes Φ(xxxt

k). The

specific form of Φ(xxxt
k) depends on the construction method for Φ. As described

above, nonlinear continuous mappings, shown in Fig. 3.1, are used here, and the

corresponding Φ(xxxt
k) is calculated through 3.27:

Φ(xxxt
k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Φ1(xxxt
k1)

Φ2(xxxt
k2)

. . .

Φn(xxxt
kn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑P
p=1 w1p/(1+ e−α1p(xxxt

k1−β1p))

∑P
p=1 w2p/(1+ e−α2p(xxxt

k2−β2p))

. . .

∑P
p=1 wnp/(1+ e−αnp(xxxt

kn−βnp))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3.27)

Take advantage of the mappings, nonlinear functions, transformations are

made to the input spaces so that the new input variables become more compatible

to the fuzzy rules of the existing fuzzy model.

Since Φ transforms the whole input space, both the input data of the dataset

{xxxt
k} and the centers of clusters in 3.22 need to be transformed using the mapping

Φ. The prototype vvvs
i becomes Φ(vvvs

i ). Model Ms’s fuzzy rules are transferred to

the new data space, and a new model Mt
is built.

model Mt

if xxxt
k is Ai(Φ(xxxt

k), Φ(vvvs
i )), then yt

k is Li(Φ(xxxt
k),aaa

s
i ) i = 1,2, · · · ,c (3.28)

where Ai(Φ(xxxt
k),Φ(vvvs

i )) = 1/∑c
j=1(

‖Φ(xxxt
k)−Φ(vvvs

i )‖
‖Φ(xxxt

k)−Φ(vvvs
j)‖)

2
m−1 ,
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Li(Φ(xxxt
k),aaa

s
i ) = as

i0 +as
i1Φ1(xt

k1)+ . . .+as
inΦn(xt

kn), i = 1,2, . . . ,c.

Therefore, when the input is xxxt
k, the output of model Mt

is:

gt
k =

c

∑
i=1

Ai(Φ(xxxt
k),Φ(vvvs

i ))Li(Φ(xxxt
k),aaa

s
i ) (3.29)

For all the input data xxxt
k in dataset, we find the output corresponding to 3.29,

and hope the output could approximate the real output of xxxt
k: yt

k. Such mapping Φ

is found through the optimization of cost function in 3.30:

Qt =
1

Nt1

Nt1

∑
k=1

c

∑
i=1

Ai(Φ(xxxt
k), Φ(vvvs

i ))Li(Φ(xxxt
k),aaa

s
i )− yt

k)
2 (3.30)

The parameters of Φ are optimized by minimizing 3.30. In the literature,

PSO and DE are reported to be two of the most suitable global optimization

algorithms (Das et al., 2008). In this chapter, we apply PSO and DE to optimize

the parameters of Φ, and their performance in the fuzzy regression transfer

learning is compared in detail in the section of experiments.

3.4 Empirical results analysis

To evaluate the proposed fuzzy regression transfer learning method and its learning

algorithm, both synthetic and real-world datasets are adopted to validate the new

method and explore the impact of optimization algorithms in the new method.

The focus of this chapter is on using the new fuzzy regression transfer technol-

ogy to address regression problems. Data outputs in regression problems are more

complicated than outputs in classification problems, and as a result of the fuzzy

model we use, the method of generating the synthetic data is crucial and must

be reasonable. Therefore, prior to demonstrating the results of the experiments,

we will describe the process of generating the source data and target data and the
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models’ construction process in Section 3.4.1. A number of symbolic representa-

tions of the experimental results are denoted in this section so that the presentation

of the experiment results is clearer. Then Section 3.4.2 compares the performance

of two optimization algorithms when building the models. Section 3.4.3 analyzes

two different connection ways of constructing the mappings. Finally, Section

3.4.4 shows the results on some real-world datasets.

3.4.1 Generation of synthetic datasets

There are four steps in implementing our method.

Step 1: Generate source data and construct fuzzy model Ms.

Step 2: Generate target data, the number of which is much smaller than the

number in the source domain, and use the existing model Ms to estimate the

outputs of the target data.

Step 3: Use the data in the target domain to construct a new model M̃t for the

target domain.

Step 4: Modify the input space of model Ms using the target data to obtain a

new model Mt
for the target domain.

We use the five-fold cross validation, which is commonly used in model

validation in machine learning, to construct the models in Steps 1, 3 and 4.

More detail follows about these four steps, especially concerning the genera-

tion of the datasets.

Step 1: Generate source data and construct the fuzzy model Ms.

This step is divided into two sub-steps.

Step 1-1: Generate source data.

The process of generating source data includes the generation of the inputs and

finding the corresponding outputs to constitute the input-output pairs. Referring

to the input data XXXs, we generate three sub-datasets XXXs
1,XXX

s
2,XXX

s
3 that have different
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distributions, and combine them to construct XXXs. The parameters related to the

input data are listed in Table 3.1.

Table 3.1 Parameters of input data in the source domain

Datasets Distributions

XXXs
1 xs

k ∼ N(μμμs
1,σσσ

s
1), xs

k ∈ XXXs
1,k = 1, ...,Ns/3

XXXs
2 xs

k ∼ N(μμμs
2,σσσ

s
2), xs

k ∈ XXXs
2,k = Ns/3+1, ...,2Ns/3

XXXs
3 xs

k ∼ N(μμμs
3,σσσ

s
3), xs

k ∈ XXXs
3,k = 2Ns/3+1, ...,Ns

We generate the input data XXXs = {xxxs
k},k = 1, ...,Ns, where Ns is the number

of source data in the source domain. Based on this, we calculate the output data

in the following way. For the sake of reasonability, the outputs are generated

according to 3.25, so the centers of clusters and linear functions are needed in

advance. Since the datasets follow normal distributions, we assume the mean

values of the normal distributions as the centers of clusters, denoted as vvvs:

vvvs = [vvvs
1 vvvs

2 vvvs
3]

T = [μμμs
1 μμμs

2 μμμs
3]

T (3.31)

The coefficients of linear functions aaas
i , i = 1,2,3, are given in Table 3.2.

Table 3.2 Parameters of input data in the source domain

Linear Functions Coefficients

L1(·,aaas
1) aaas

1 = [a10 a11 a12]

L2(·,aaas
2) aaas

2 = [a20 a21 a22]

L3(·,aaas
3) aaas

3 = [a30 a31 a32]

Based on the centers of clusters and linear functions, when the input is xxxs
k, the

output ys
k can be obtained as follows:
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ys
k = ∑c

i=1
Ai(xxxs

k,vvv
s
i )Li(xxxs

k,aaa
s
i ) (3.32)

We calculate the output YYY s = {ys
k},k = 1, . . . ,Ns, and finally obtain the data

DDD = (XXXs,YYY s).

Step 1-2: Construct the fuzzy model Ms based on data (XXXs,YYY s).

The construction of a Takagi- Sugino (TS) depends on the centers of clusters

vvvs
i and linear functions Li(·,aaas

i ). Since the construction procedure is described in

Section 3.3.3, we will not go into much detail here.

We apply the five-fold cross validation when constructing model Ms, and split

the dataset DDD into a training set DDD1(80%) and a testing set DDD2(20%). Once model

Ms has been constructed, it is tested on the testing set DDD2, and the mean square

error (MSE) is denoted as:

Q =
1

Ns2
∑Ns2

k=1
(yt

k −dt
k)

2 (3.33)

where dt
k is the output of model Ms when its input is xxxt

k, (xxxt
k,y

t
k) ∈ DDD2. Ns2 is

the number of data in the testing set DDD2. We calculate the mean and standard

deviation of Q.

Step 2: Generate target data, the number of which is much smaller than the

number in the source domain, and use the existing model Ms to estimate the

outputs of the target data.

This step is also divided into two sub-steps to better describe it.

Step 2-1: Generate target data.

The method of generating input data XXXt in the target domain is the same as

the method used in the source domain, and the parameters related to the input

data in the target domain are listed in Table 3.3.
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Table 3.3 Parameters of input data in the target domain

Datasets Distributions

XXXt
1 xt

k ∼ N(μμμ t
1,σσσ

t
1), xt

k ∈ XXXt
1,k = 1, ...,Nt/3

XXXt
2 xt

k ∼ N(μμμ t
2,σσσ

t
2), xt

k ∈ XXXt
2,k = Nt/3+1, ...,2Nt/3

XXXt
3 xt

k ∼ N(μμμ t
3,σσσ

t
3), xt

k ∈ XXXt
3,k = 2Nt/3+1, ...,Nt

The centers of clusters are also the mean values:

vt = [vvvt
1 vvvt

2 vvvt
3]

T = [μμμ t
1 μμμ t

2 μμμ t
3]

T (3.34)

The coefficients of the linear functions in the target domains are given in Table

3.4.

Table 3.4 Coefficients of linear functions in the target domain

Linear Functions Coefficients

L1(·,aaat
1) aaat

1 = [at
10 at

11 at
12]

L2(·,aaat
2) aaat

2 = [at
20 at

21 at
22]

L3(·,aaat
3) aaat

3 = [at
30 at

31 at
32]

To make the source and target data different, the centers of clusters and linear

functions in the source domain and target domain must also be different, i.e.

vvvt �= vvvs, aaat �= aaas (3.35)

where vvvs,aaas,vvvt ,aaat are the centers of clusters and coefficients of the linear functions

in the source domain and target domain, respectively.

Except for the centers of clusters, the covariance matrices of the target data

are not the same as those of the source data. This variety in the target data is

beneficial for testing the validity of our algorithm.
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Based upon the input data XXXt , the corresponding output YYYt = {yt
k} is calculated

as follows:

yt = ∑c
i=1

Ai(xxxt
k,vvv

t
i)Li(xxxt

k,aaa
s
i ) (3.36)

As a consequence, we have the data HHH = (XXXt ,YYYt) = {(xxxt
k,y

t
k)} in the target

domain. The number of data in HHH is much smaller than in DDD (Nt 
 Ns).

Step 2-2: Use the existing model Ms to estimate the outputs of the target data.

Given that the source domain and target domain have different centers of

clusters and linear functions, the fuzzy model Ms does not perform well on the

target data. This means that when the input is xxxt
k, the output ht

k calculated using

the fuzzy rules for the source data may be quite different with yt
k. We test model

Ms on target data HHH, and the discrepancy between yt
k and ht

k is denoted as Q1:

Q1 =
1

Nt ∑N
′

k=1
(ht

k − yt
k)

2 (3.37)

where ht
k is the output of model Ms when the input is xxxt

k, (xxxt
k,y

t
k) ∈ HHH, Nt is the

number of data in the target domain.

Step 3: Use the data in the target domain to construct a new model M̃t for the

target domain.

Proving that a model does not perform as well when trained with less data

in the target domain supports our assumption. Although only a small amount of

data is available in the target domain, they can nevertheless be used to train a

model; the problem is that the accuracy of the model cannot be guaranteed since

the training data is insufficient. The procedures for the construction of M̃t are

exactly the same as are used to build model Ms for the source domain, and we

also apply five-fold cross validation procedure. The target dataset HHH is split into a

training set HHH1(80%) and a testing set HHH2(20%). Model M̃t is constructed based

on the training set HHH1 and then used to predict the outputs for the testing set HHH2.
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The MSE is denoted as:

Q2 =
1

Nt2
∑Nt2

k=1
(st

k − yt
k)

2 (3.38)

where st
k is the output of model M̃t when its input is xxxt

k, (xxxt
k,y

t
k) ∈ HHH2, Nt2 is the

number of data in the testing set HHH2. The mean and standard deviation of Q2 are

obtained.

Step 4: Modify the input space of model Ms using target data to obtain a new

model Mt
for the target domain.

The input space is modified by the continuous mapping Φ, which is obtained

by minimizing 3.39 using the training set HHH1.

Q
′
=

1

Nt1
∑Nt1

k=1
(gt

k − yt
k)

2 (3.39)

where gt
k is the output of model M

′
calculated by (32) when the input is xxxt

k,

(xxxt
k,y

t
k) ∈ HHH1, Nt1 is the number of data in the training set HHH1. The optimization

algorithms PSO and DE are used to find the optimal parameters of Φ.

Following the construction of model Mt
, it is tested on the testing set HHH2, and

the MSE is denoted as:

Q3 =
1

Nt2
∑Nt2

k=1
(tt

k − yt
k)

2 (3.40)

where tt
k is the output of model Mt

when the input is xxxt
k, (xxxt

k,y
t
k) ∈ HHH2, Nt2 is

the number of data in the testing set HHH2.

The above process also involves a five-fold cross validation procedure, so the

mean and standard deviation of Q3 are calculated.

In the following experiments, Q1,Q2 and Q3 are compared, and the desired

outcome is that Q3 will be smaller than both Q1 and Q2. Q3 < Q1 shows that the
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modified model Mt
is improved compared to the existing model Ms, and Q3 < Q2

demonstrates that the modified model Mt
is better than model M̃ trained using

few data in the target domain. Next, the experimental results are given to verify

the effectiveness of the proposed fuzzy regression transfer learning method.

3.4.2 Comparison of evolution algorithms PSO and DE

The purpose of this experiment is to apply and compare two optimization algo-

rithms, namely PSO and DE, and to optimize the parameters of the mappings and

build the new fuzzy regression transfer learning model Mt
for the target domain.

Further, the validation of the new method is confirmed.

PSO and DE are computational methods that determine an optimal solution

by iteratively navigating a population of solutions, which minimizes a certain

predetermined objective function (performance index). There are three parameters

in PSO that demonstrate significant impact on optimization performance: the

inertia weight factor w, and two auxiliary parameters determining the dynamics

of the population, c1 and c2. Typically, w, c1, and c2 assume value coming from

several ranges, specifically w ∈ [0.4,1.2], c1 ∈ [1.4,2], c2 ∈ [1.4,2], whereas c1

is equal to c2 Shi and Eberhart (1998). In DE, optimization performance is

largely dependent upon the values of the differential weight F and the crossover

probability CR. The value range of F is [0,2], and the value range of CR is [0,1]

Price et al. (2006). Based on the complexity of the problems, we apply the same

initialization strategy in PSO and DE for all the experiments below; 200 candidate

solutions are generated, and the maximum number of iterations is set to 200.

The distributions of the datasets applied in this experiment are shown in Table

3.5.
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Table 3.5 Distributions of source data and target Data

Source Data Target Data

Mean values Covariance Mean values Covariances

μμμs
1 = [1 1] σσσ s

1 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠ μμμ t

1 = [1.5 1.5] σσσ t
1 =

⎛
⎜⎝0.42 0.1

0.1 0.42

⎞
⎟⎠

μμμs
2 = [2 1] σσσ s

2 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠ μμμ t

2 = [2 1.5] σσσ t
2 =

⎛
⎜⎝0.52 0.1

0.1 0.52

⎞
⎟⎠

μμμs
3 = [1.5 2] σσσ s

3 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠ μμμ t

3 = [2 2] σσσ t
3 =

⎛
⎜⎝0.52 0.1

0.1 0.52

⎞
⎟⎠

The linear functions in the source and target domains are shown in Table 3.6.

Table 3.6 Coefficients of linear functions in two domains

Source domain Target domain

L1(aaas
1) aaas

1 = [1 1 1] L1(aaat
1) aaat

1 = [1.5 0.5 1.5]

L2(aaas
2) aaas

2 = [2 2 1] L2(aaat
2) aaat

2 = [1 1 0.5]

L3(aaas
3) aaas

3 = [−1 1 3] L3(aaat
3) aaat

3 = [−1.5 1.5 4.5]

The input of the source data and the target data is displayed in Figs. 3.2 and

3.3. As can be seen, there are some crossover regions between the source data and

the target data. There are 1500 instances in the source domain, and 15 instances

in the target domain.
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Figure 3.2 Input data of source domain
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Figure 3.3 Input data of target domain

To see the difference between the source data and target data more clearly, we

combine them in one Fig. 3.4. The 3-dimension points of the source data and the

target data in the form of input-output pairs are drawn in Fig. 3.5.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.4 Source and target data (2D)
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Figure 3.5 Source and target data (3D)

We see from Figs. 3.2-3.5 that the distributions of both the input and output

of the source data and the target data are different.

The results of Q,Q1 and Q2 are shown in Table 3.7.

Table 3.7 The results of experiments

mean ± standard deviation

Q 0.01 ± 0.00

Q1 7.32 ± 0.12

Q2 183.80 ± 405.14
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In the process of constructing a new fuzzy model Mt
for the target domain to

obtain Q3, the experiment includes two parts to analyze the stability of the PSO

and DE algorithms, and the generalization of the new fuzzy regression transfer

learning model.

(a) The stability of the PSO and DE algorithms is analyzed.

The stability of PSO in different w, c1, and c2 is tested, and similarly, the

stability of DE in different F and CR is tested. For comparison, the same source

and target datasets are applied, and the experimental results of the new fuzzy

regression transfer learning model on the target domain (Q3) are displayed in

Table 3.8. Each experiment is run 10 times and we report the mean and standard

deviation to quantify the stability of the solutions and the performance of the

method.

Table 3.8 The stability of PSO and DE

PSO DE

w,c1 = c2 Q3 F,CR Q3

0.6,1.4 2.07 ± 0.86 0.5,0.4 1.75 ± 0.15

0.6,1.7 2.24 ± 1.30 0.5,0.6 0.19 ± 0.1

0.6,2 1.84±0.89 0.5,0.9 1.66±0.19

0.9,1.4 1.84±1.04 1,0.4 1.74±0.21

0.9,1.7 2.19±1.21 1,0.6 1.77±0.25

0.9,2 1.71±0.50 1,0.9 1.71±0.05

1.2,1.4 1.66± 0.73 1.5,0.4 1.62±0.43

1.2,1.7 2.30±1.26 1.5,0.6 1.61±0.32

1.2,2 2.81± 1.42 1.5,0.9 1.74±0.37

We observe from Table 3.8 that the optimization performance of DE is better

than that of PSO. Furthermore, the standard deviation in DE is smaller than the
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standard deviation in PSO, so the algorithmic stability of DE is superior to that of

PSO.

(b) The generalization of the new fuzzy regression transfer learning model is

studied.

Five-fold cross validation is applied in all the experiments. The dataset is

split into five subsets, four of which are chosen as the training set, while the

remaining subset forms the testing set. There are consequently five results for

each model. The standard deviation of the five results indicates the generalization

of the constructed model. The large standard deviation indicates either overfitting,

or indicates that the data characteristics forming the training set do not coincide

with the nature of the testing set. Conversely, the low value of the standard

deviation shows that the model constructed on the basis of the training data has

good generalization capability.

The generalization of the newly constructed model for the target domain is

tested. PSO and DE with varying parameters are used to construct the model, and

each experiment is run 10 times. The experimental results are shown in Table 3.9.

From the results, we observe that the values of the standard deviation, which

reflects the generalization aspects of the constructed model, are not always very

low. We claim that this situation is commonly encountered in transfer learning.

Our assumption in the transfer learning problem is that the data in the target

domain are limited in number and insufficient to develop a good model. Therefore,

there is only a small set of training data with which to construct a new fuzzy

regression model for the target domain, and an even smaller set of testing data.

The high values of the standard deviation in the five-fold cross validation are

anticipated, and clearly, these would decrease as the number of data in the target

data increased. However if the size of the target data increases, the target data

themselves could achieve the formation of a good model, with no need to transfer
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knowledge from another domain. The high values of the standard deviation in the

five-fold cross validation procedure are thus reasonable and to be expected.

Table 3.9 The values of Q3 under different parameters

PSO DE

w,c1 = c2 Q3 F,CR Q3

0.6,1.4 2.39 ± 3.03 0.5,0.4 2.32 ±1.51

0.6,1.7 3.92 ± 5.91 0.5,0.6 2.14 ± 1.44

0.6,2 2.86±3.18 0.5,0.9 2.46±1.83

0.9,1.4 2.91±3.13 1,0.4 2.36±1.81

0.9,1.7 2.19±1.21 1,0.6 2.40±1.77

0.9,2 4.34±6.27 1,0.9 1.71±0.05

1.2,1.4 2.92± 3.57 1.5,0.4 2.31±1.82

1.2,1.7 3.10±3.57 1.5,0.6 2.42±0.32

1.2,2 4.77± 6.76 1.5,0.9 2.27±1.73

In all the experiments in (a) and (b), the values of Q3 are always smaller than

the values of Q1 and Q2, and this demonstrates that the new fuzzy regression

transfer leaning model Mt
is better than the existing model Ms and the model M̃t

trained using few data in the target domain.

3.4.3 Comparison of different ways of constructing mappings

This experiment investigates the impact of different input space reconstruction

methods when there are interactions between the features. As there are two

datasets in the source domain and target domain in transfer learning problems,

we consider the following four cases in Table 3.10.
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Table 3.10 Distributions of source data and target data

Source domain Target domain

Case 1 N N

Case 2 Y Y

Case 3 Y N

Case 4 N Y

Here, "N" indicates that there is no interaction between the features, and "Y"

stresses that there is interaction between the features.

In the synthetic datasets, we generate data in the following way to highlight

interaction scenarios between the features. The synthetic datasets are all two-

dimensional. If the functions in the conclusion part of the fuzzy rules are in the

form L = a0 +a1x1 +a2x2 +a3x1x2, we suppose that there is interaction between

features x1 and x2. If we consider linear functions in the form L= a0+a1x1+a2x2,

we suppose that there is no interaction between the features.

We apply the two methods to construct the mappings for the input space

with the structures shown in Fig. 3.6. In structure 1, the nonlinear mapping

is constructed for each input variable. In structure 2, the nonlinear mapping is

constructed for the entire input space (viz. all variables).
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method 1 method 2

Figure 3.6 Two methods of constructing the mappings for the input space

These two methods of constructing mappings for the input space are applied

to the above four cases and the results are compared to determine whether there is

an interaction between the features, and which method of transforming the input

space is superior. Every experiment is run 10 times, and the experimental results

of the proposed fuzzy regression transfer learning model in the target domain are

reported in Table 3.11.

From the results, we note that in all cases, whether or not there is an interaction

between the features in the source domain and target domain, the performance

of the first method is far better than the performance of the second method.

Therefore, in a real-world problem where it is unknown whether there are in-

teractions between features, it is advisable to use the first method to construct

the transformation of the input space, i.e., construct the mapping for each input

variable.
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Table 3.11 Summary of the experimental results Q3(mean± standard deviation)

Cases method 1 method 2

(N,N) 0.51±0.08 2.41±1.78

(Y,Y) 0.35±0.13 1.77±3.55

(Y,N) 0.29±0.06 2.42±4.95

(N,Y) 0.48±0.04 0.98±0.54

3.4.4 Experiments on real-world datasets

Two public datasets are applied to elaborate on the usefulness of the new fuzzy

regression transfer learning in dealing with real world problems. Since the

studies on regression problems of adapting a domain are scarce, there are no

public datasets in these scenarios. In this work, therefore, the real-world datasets

from UCI Machine Learning Repository are used and modified to simulate the

regression domain adaptation problems and verify the proposed method. The way

of modifying the datasets is crucial, so we give the detailed description to these

datasets.

1) Housing dataset

The UCI Machine Learning Repository is a public dataset for regression

problems. We use the “Housing Data Set” from this repository and revise it

for the purpose of transfer learning. The dataset is split into two datasets using

the attribute “TAX” to represent the full-value property-tax rate per $10,000.

Instances of “TAX” being smaller than 600 form the source dataset, and instances

of “TAX” being larger than 600 constitute the target dataset. There are 360

instances in the source domain and 60 instances in the target domain. We select

two attributes to construct the feature spaces (average number of rooms per

dwelling, and weighted distance to five Boston employment centers), and use the
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attribute “MEDV”, representing the median value of owner-occupied homes in

$1000’s, as the output value. The input data in the source and target domains are

shown in Fig. 3.7, and the 3-dimensional input-output data points are displayed

in Fig. 3.8.
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Figure 3.7 Housing data (2D)
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Figure 3.8 Housing data (3D)

As can be seen from Fig. 3.7 and Fig. 3.8, the distributions of both the input

data and the output data in the two domains are different. The DE optimization

algorithm is used to optimize the parameters, and F = 0.5, and CR = 0.9. This

experiment also uses a five-fold cross validation procedure, and for the purpose

of analysis, the number of clusters is fixed as 6. The results are outlined in Table

3.12 and the values of Q, Q1, Q2 and Q3 are listed in Table 3.13.

Table 3.12 Results of dataset "Housing"

mean ± standard deviation

Q 16.77 ± 9.03

Q1 144.53 ± 13.35

Q2 26915.57 ± 146894.50

Q3 171.70 ± 224.09
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Table 3.13 The values of Q1, Q2, and Q3 for "Housing"

Q Q1 Q2 Q3

1 16.22 140.45 94.25 70.18

2 13.79 167.55 108388.78 572.06

3 30.68 133.81 170.59 75.25

4 17.44 143.39 31.22 86.26

5 5.69 137.48 25892.99 54.75

As shown in Table 3.13, the values of Q1 are all greater than 130, which

indicates that the model for the source domain is unable to effectively solve

regression tasks in the target domain. The results shown in the fourth column

of the table indicate that the value of Q2 is unstable. This is due to the small

amount of available target data, so a model built from these training data cannot

be generalized for the testing data.

The mean value of Q3 shown in Table 3.12 is not small (171.70), but when

analyzing the values of Q3 in Table 3.13, we find that the other values of Q3 are

small and almost all are less than the values of Q1 and Q2. The results for the

second experiment show an exception (572.06), but also lead to a large standard

deviation. The reason for the large value of Q3 is that the number of data in the

target domain is small, so the training data does not reflect the characteristics of

the testing data. Our new fuzzy regression transfer learning method therefore

performs well on this real-world problem.

2) Concrete compressive strength dataset

In this series of experiments, we include another real-world dataset from the

Machine Learning Repository, “Concrete Compressive Strength” data. The data

has 8 attributes: “cement”, “blast furnace slag”, “fly ash”, “water,” “superplasti-

cizer”, “coarse aggregate”, “fine aggregate”, and “age”, and the output feature
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is “concrete compressive strength”. We revise the dataset in two aspects to make

it more appropriate for transfer learning. First, the dataset is split into a source

domain and a target domain according to the attribute “age”: instances with “age”

smaller than 100 fall into the source domain, and instances with “age” bigger than

100 fall into the target domain. To clearly differentiate between the source data

and the target data, the attributes “blast furnace slag”, “fly ash” and “superplasti-

cizer” are perturbed by random numbers following different distributions in two

domains. There are 900 instances in the source domain and 60 instances in the

target domain.

For this dataset, DE is used to optimize the parameters, and F = 0.5, and

CR= 0.9. In addition, we apply the method incorporating the automatic change of

number of clusters described in Section III-A, and compare the results to choose

the best solution. The five-fold cross validation procedure is applied, and the

results are reported in the form of mean±standard deviation in Table 3.14.

Table 3.14 Results of dataset "Concrete Compressive Strength"

5 clusters 6 clusters 7 clusters 8 clusters

Q 0.02 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00

Q1 1.97 ± 1.22 2.65 ± 1.27 2.20 ± 0.94 2.13 ± 1.00

Q2 16232.88 ± 161546.09 ± 1240.89 ± 249.13 ±
259181.71 215316.00 2648.12 409.39

Q3 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

High values of Q1 indicate that the model in the source domain does not

work well for the target data. High values of Q2 indicate that the target data is

insufficient for training a good model. From the results shown in the last row of

Table 3.14, we see that the introduced fuzzy regression transfer learning method

is effective in all cases, no matter how many clusters are used. When the number
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of clusters is set to 5, the mean value of Q3 in five-fold cross validation is the

smallest, as is the standard deviation. As a result, using 5 clusters for this problem

is the best option.

3.5 Summary

We proposed a fuzzy regression transfer learning method that modifies the input

space of data through mappings to change the proportions of the hidden features

for each input variables, so that the existing fuzzy rules of source domain could be

more compatible for solving tasks in the target domain. Meanwhile, two different

evolutionary optimization algorithms, PSO and DE, are compared and analyzed

to find out the impact of the optimization procedure to the performance of the

built model. Additionally, different connection ways of constructing the mappings

for input space are discussed to reveal which structure of mappings is better for

the domain adaptation tasks. This method effectively solves regression problems

in the target domain when only a small amount of labeled data is available.

Experimental results show that our method greatly improves the performance

of the existing model in estimating the values of the target domain. The good

performance of the proposed method on the synthetic and real-world datasets

demonstrates the capability of the presented models to execute knowledge transfer

with little labeled target data.



Chapter 4

Granular Domain Adaptation in

Takagi-Sugeno Fuzzy Models

4.1 Introduction

Although many approaches have been introduced as possible solutions for transfer

learning problems, their performance is not yet acceptable. One reason is the

information granularity inherent in many problems. For instance, 128GB of

mobile storage is considered large today, whereas 32GB was regarded as large

five years ago. The precise values, 128GB and 32GB, both need to be expressed

as a granular value, “large”, for learning to be effectively transferred from the

five-year-old domain to today’s domain. Extracting additional abstract knowledge

shared between domains should therefore assist knowledge transfer. Granular

computing (GrC) is an emerging information processing paradigm that transforms

complex data into information granules at different levels of resolution to reveal

different features and irregularities. GrC’s ability to address information at

different levels of abstraction could improve the performance of transfer learning,

and consequently we propose several granular fuzzy regression domain adaptation
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methods (Zuo et al., 2017b), GFRDA for short, to address regression domain

adaptation problems.

Granular computing is an emerging information processing paradigm that

transforms complex data into information granules at different solution levels.

Information granules can be perceived as a collection of elements drawn together

by their closeness (resemblance, proximity, functionality, etc.) and articulated in

terms of useful spatial, temporal, or functional relationships. Granular computing

(GrC) represents, constructs, and processes information granules.

Information granules are formalized in many different ways. Depending on

the problem, different formalisms to represent the information granules have

been applied, such as interval sets, fuzzy sets, rough sets, and shadowed sets.

The level of granularity determines the level of detail used to classify the data.

Different types of knowledge can be captured or learned by representing data with

information granules at different levels (Pedrycz, 2014). Features and regularities

in the data can emerge, while the detail is deliberately hidden (Pedrycz, 2013).

For example, interesting cloud patterns representing a cyclone may be notable in a

low-resolution satellite image, while in a higher-resolution image, this large-scale

atmospheric phenomenon might be missed. High resolution images are more

useful for observing small-scale phenomenon, such as an interesting street pattern

in Manhattan.

The most significant perspective we introduce with regard to GrC is that

it is possible to obtain different levels of knowledge when dealing with data

represented by information granules that have different levels of granularity. The

higher the level of granularity, the more abstract the knowledge obtained.
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4.2 Problem statement

The dataset in the source domain is denoted by DDD = (xxxs
1,y

s
1),(xxx

s
2,y

s
2), ...,(xxx

s
Ns
,ys

Ns
),

where xxxs
k ∈ Rn,k = 1,2, ...,Ns is the n-dimensional input variable, the label ys

k ∈ R

is the continuous output variable, and Ns indicates the number of data. Since the

amount of source data with labels is massive, a well-performing regression model

for the source domain can be learned.

The dataset in the target domain contains two subsets: one with labels and

one without labels HHH = {HHHL,HHHU}= {{(xxxt
1,y

t
1), ...,(xxx

t
Nt1

,yt
Nt1

)},{xxxt
Nt1+1

, ...,xxxt
Nt
}},

where xxxt
k ∈ Rn,k = 1,2, ...,Nt is the n-dimensional input variable, yt

k ∈ R,k =

1,2, ...,Nt1 is the continuous output variable. HHHL includes the instances with

labels, and HHHU contains the data without labels. The numbers of data in HHHL and

HHHU are Nt1 and Nt −Nt1, respectively, and satisfy Nt1 << Nt ,Nt1 << Ns.

The different data distributions in two domains make the usage of source

model for the target tasks become impossible. Additionally, the insufficient

labeled data in the the target domain cannot guarantee the accuracy of the con-

structed model for the target domain. Therefore, we hope to use learned knowl-

edge of source domain to help build a fuzzy model that is compatible with target

data.

4.3 The definitions of fuzzy domain adaptation

In the original definition of transfer learning, the source domain and the target

domain are distinguished by the feature space, the probability distribution in the

domain, and by the task, usually represented by a prediction function. In domain

adaptation, which is a category of inductive transfer learning, the source domain

and the target domain have the same feature space but a different distribution (Pan

and Yang, 2010). Most works in the computational intelligence area on domain
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adaptation are based on this definition and apply neural or Bayes networks as the

basic learning model.

We use a TS as the basic model for our learning tasks. Since the characteristics

of this fuzzy rule-based model are not the same as a neural or Bayesian networks,

domain adaptation must be redefined for fuzzy systems as follows:

Definition 4.1. (Fuzzy Domain Adaptation)

In a TS, a source domain and a target domain are represented as:

Source domain: Ds = {Fs = (F1, · · · ,Fn),Gs(xxx) = (Gs1(xxx), · · · ,Gsc(xxx)),Ls =

{Ls1, · · · ,Lsc}}
Target domain: Dt = {Ft = (F1, · · · ,Fn),Gt(xxx) = (Gt1(xxx), · · · ,Gtc(xxx)),Lt =

{Lt1, · · · ,Ltc}}

where Fs and Ft are the feature spaces in two domains. Gs1, · · · ,Gsc and Gt1, · · · ,
Gtc are the constructed fuzzy sets in two domains, and Gs1(xxx), · · · ,Gsc(xxx) and

Gt1(xxx), · · · ,Gtc(xxx) form the membership functions, which determine the condi-

tion parts of the fuzzy rules. Ls and Lt are the linear functions that govern the

conclusion parts of the fuzzy rules.

In fuzzy homogeneous domain adaptation, the feature spaces in the two

domains are the same, Fs = Ft , but either the fuzzy sets or the linear functions or

both are different across the two domains, giving Gs(xxx) �=Gt(xxx), and/or Ls �= Lt . In

general, we consider that Gs(xxx) = Gt(xxx) means Gsi(xxx) = Gti(xxx), i = 1, · · · ,c, and

Gsi(xxx) �= Gti(xxx) means Gsi(xxx) �= Gti(xxx), i = 1, · · · ,c. Similarly, Ls = Lt indicates

Lsi = Lti, i = 1, · · · ,c, and Ls �= Lt indicates Lsi �= Lti, i = 1, · · · ,c.
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4.4 Granular domain adaptation in Takagi-Sugeno

fuzzy models

A framework of granular fuzzy domain adaptation is proposed first to provide a

comprehensive framework for the domain adaptation-based of fuzzy models. The

methods and the corresponding algorithms are described with details to deal with

different cases in fuzzy transfer learning. Finally, the performance index is given

to facilitate the validation of the proposed methods.

4.4.1 Granular transfer learning framework

According to the fuzzy domain adaptation model defined above, the discrepancies

between the source domain and the target domain can be summarized according

to one of three cases: having different conditions, different conclusions, or both.

To emphasize the difference, the source domain’s model is fixed, and the target

domain’s model is varied according to these three cases.

Suppose fuzzy model Ms in the source domain, described in the form of the

fuzzy rules, is:

model Ms

if xxxs is Ai(xxxs, vvvs
i ), then y is Li(xxxs,aaas

i ) i = 1,2, · · · ,c (4.1)

The target models that corrpesponds different cases are as follows:

model Mt
1

if xxxt is Ai(xxxt , vvvt
i), then y is Li(xxxt ,aaas

i ) i = 1,2, · · · ,c (4.2)
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model Mt
2

if xxxt is Ai(xxxt , vvvs
i ), then y is Li(xxxt ,aaat

i) i = 1,2, · · · ,c (4.3)

model Mt
3

if xxxt is Ai(xxxt , vvvt
i), then y is Li(xxxt ,aaat

i) i = 1,2, · · · ,c (4.4)

In the first case, comparing models Ms and Mt
1, the conditions of the fuzzy

rules in the two domains are different, but the conclusions are the same. In the

second case, comparing models Ms and Mt
2, the conditions of the fuzzy rules are

the same, but the conclusions are totally different. In the third case, comparing

models Ms and Mt
3, the conditions and conclusions of the fuzzy rules in both the

source and target domains are different.

There are now massive amounts of labeled data in the source domain and a

well-performing model Ms can be built. In the target domain, there is a large

amount of unlabeled data and little labeled data, so establishing a prediction

model is impossible. Because the fuzzy rules in the two domains are different,

the model for the source domain Ms is not suited to regression tasks in the target

domain.

Next, domain adaptation problems are analyzed from the perspective of GrC.

The knowledge contained in both the source and target domains can be treated

as information granules. Since the information granules in each domain have

different levels of granularity, a model based solely on knowledge from the source

domain could not directly solve tasks in the target domain. For example, RAM

is an important index for predicting the price of a computer. Thirty years ago,

computers typically had 256kb of RAM, whereas now 8G is fairly standard. These

two values, 256kb and 8G, can both be treated as information granules, but with
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different granularity levels as their unit of measurement are different. Therefore,

the knowledge gleaned from data based on 256kb is not suitable for tasks relevant

to the 8G information.

The higher the granularity level in GrC, the more abstract the knowledge

extracted. Based on the existing knowledge (information granules) in the source

domain, our idea is to extract and construct information granules at a higher level

of granularity so that knowledge can be appropriately shared between the two

domains. However, the knowledge contained in the new information granules

cannot be directly used to solve tasks in the target domain since the required level

of granularity is different. An additional procedure is needed to transform the

new information granules to a lower level, so they can be applied to help solve

the target tasks. The essence of this process is shown in Fig. 4.1.

Model for source domain

Granular  model 

Model for target domain

Figure 4.1 Knowledge transfer from a GrC perspective

The process has two steps. A granular model is built by transforming the

information granules from a lower level to a higher level, and the granularity level

of the new granules is reduced to suit the target domain.
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Continuing the example of the computer’s internal storage, our aim is to use

a more abstract representation to describe a computer’s RAM 30 years ago. For

instance “large capacity” instead of a numerical value: 256kb. We can still say

a computer of today has “large capacity” if its RAM meets or exceeds 8G. In

this example, “large capacity” is treated as an information granule with a higher

granularity level that builds a bridge to connect two granules of lower level.

Instead of conducting the two steps in Fig. 4.1 separately, we implement

them simultaneously. Because the results of the first step significantly impact

the performance of the following procedure, merging the two steps benefits the

method’s execution. A nonlinear space transformation is used to achieve these two

steps, and an optimization process makes the resulting model more compatible

with the tasks in the target domain.

Different strategies are applied in the three domain adaptation cases to imple-

ment the above process. Where the conditions of the fuzzy rules in two domains

are different, the conditions are changed using a space transformation so that the

transformed fuzzy rules approximate the expected model in the target domain.

Where the conclusions of the fuzzy rules are different, the conclusions are changed

using mapping to ensure the newly constructed model is as close as possible to

the expected target model. Where both the conditions and the conclusions are

different, a method that modifies both the conditions and conclusions is used so

that the transformed fuzzy rules approximate the expected fuzzy rules and are

more compatible with the target domain.

Since the conditions of fuzzy rules are governed by the input data, the method

that changes the conditions can be regarded as transforming the input space. The

conclusions determine the output of the fuzzy rules, so this method transforms

the output space. Similarly, the last method transforms both the input and output

spaces.
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A simple example with one-dimensional input data is shown in Fig. 4.2 to

illustrate space transformation in our proposed model.

Figure 4.2 An example of conditions of fuzzy rules under space transformation

The left section of Fig. 4.2 shows the membership functions of the fuzzy sets

constructed with FCM. Using the space transformation Φ, the input variable xxx

becomes Φ(xxx). More importantly, the membership functions in the new space

have been changed, as shown on the right.

This section describes the specific procedures of the proposed Granular Fuzzy

Regression Domain Adaptation (GFRDA) methods, followed by the performance

index used to evaluate the constructed models.

4.4.2 Methods and algorithms of GFRDA

In the proposed GFRDA methods, the process of transferring knowledge from

the source domain to the target domain has two steps. First a TS fuzzy model

based on source data is constructed; second, a new fuzzy model for the target

domain is built by modifying the input and/or output space of the existing model

(fuzzy rules). The first step is the same for all three methods, while the second

step differs depending on the method. This process is shown in Fig. 4.3.
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Step 1
Build source model

Step 2
Modify spaces

Case 1
Transform input 

space

Case 2
Transform output 

space

Case 3
Transform input and 

output spaces

Target model

Figure 4.3 The granular fuzzy domain adaptation process

The procedure for Step 1, building a fuzzy model for the source domain,

follows.

Step 1: Construct a TS fuzzy model Ms based on source data.

A TS fuzzy model Ms is constructed using source data DDD.

model Ms

if xxxs
k is Ai(xxxs

k, vvvs
i ), then ys

k is Li(xxxs
k,aaa

s
i ) i = 1,2, · · · ,c (4.5)

The main blocks of fuzzy rules are the conditions and conclusions, which are

dominated by prototypes of the data and linear functions, respectively. Model

Ms is therefore constructed by calculating the data prototypes and the linear

functions. Thus, we have the prototypes vvvs
1, · · · ,vvvs

c, and the linear functions

L1(·,aaas
1), · · · ,Lc(·,aaas

c).
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We now take some data from the dataset HHH in the target domain; however,

model Ms does not perform well on dataset HHH, since these data follow a different

fuzzy model and different fuzzy rules to those of model Ms. The number of

labelled data in dataset HHHL is not sufficiently large to build a good model for the

target domain, so the proposed methods apply knowledge from the source domain

to help the target domain build a new model.

In the second step, the input and/or output space of model Ms obtained in Step

1 is modified through mappings using the labeled target data HHHL to build a new

fuzzy model for the target domain.

Step 2: Modify the existing fuzzy rules to build a new fuzzy regression model

for the target domain.

The three different homogeneous domain adaptation cases, shown in 4.2 - 4.4,

are considered, and the steps for the corresponding GFRDA method are explained

below.

Step 2a) Method 1: change the input space

To handle the cases where the fuzzy rules’ conditions in the source and target

domains are not identical, we apply the method proposed in Chapter 3 Zuo et al.

(2017a). The target domain’s ideal model is described in 4.2. Since the way of

constructing the space transformation is the same in these three methods, we

detail it in this method and not repeat in the other two methods.

Since there is insufficient labeled data to train the fuzzy model Mt
1, the learned

knowledge (fuzzy rules) in the existing model Ms is used to help the target

domain construct a new fuzzy model. In this method, the input space is changed

by optimizing a continuous mapping for each input variable. Through mapping

Φ, the input space is transformed to Φ(xxxt), and the new fuzzy model Mt
1 for the

target domain is constructed using the fuzzy rules from model Ms. This process

and resulting architecture are shown in Fig. 4.4.
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Figure 4.4 Method 1: changing the input space

model Mt
1

if xxxt
k is Ai(Φ(xxxt

k), vvvs
i ), then yk is Li(Φ(xxxt

k),aaa
s
i ) i = 1,2, · · · ,c (4.6)

Because mapping Φ is a transformation of the input space, the changes are

reflected in the input data and the prototypes (the centers of the clusters) with the

forms Φ(xxxt
k) and Φ(vvvs

i ).

Therefore the output of model Mt
1 is:

gt
k =

c

∑
i=1

Ai(Φ(xxxt
k), vvvs

i )Li(Φ(xxxt
k),aaa

s
i ) (4.7)

Our aim is to find a Φ such that Mt
1 becomes compatible with the target data,

i.e.,

Nt

∑
k=1

c

∑
i=1

Ai(Φ(xxxt
k), vvvs

i )Li(Φ(xxxt
k),aaa

s
i )≈

Nt

∑
k=1

yt
k (4.8)

The parameters of Φ are optimized by minimizing the objective function as

follows:
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Qt
1 =

√√√√ 1

Nt1

Nt1

∑
k=1

c

∑
i=1

Ai(Φ(xxxt
k), vvvs

i )Li(Φ(xxxt
k),aaa

s
i )− yt

k)
2 +

λ
2

wT w (4.9)

The first term in 4.9 is the approximation error that aims to minimize the gap

between the output of model Mt
1 and the target data’s real output. The second

term introduces a structural risk term into the objective function. The parameter λ

indicates the tradeoff between the quality of an approximation and the complexity

of the approximation function; w is the vector of all the parameters optimized.

The mapping is the key element in each of our GFRDA methods. We use

nonlinear continuous functions, composed of sigmoid functions, to construct the

mappings of Φ.

Similarly, the nonlinear mappings based on sigmoid functions are used to

change the input space of the target domain. The mapping is composed of P

nodes in the hidden layer and a single node at the output layer that constructs the

network. The two parametric sigmoid functions are applied to the hidden nodes,

where the pth sigmoid function for the jth input variable of xxxt
k is:

zk jp =
1

1+ e−α jp(xt
k j−β jp)

(4.10)

where j = 1, . . . ,n, p = 1, . . . ,P, α jp > 0.

Therefore, the transformation of input variable xt
k j under mapping Φ j is:

Φ j(xt
k j) =

P

∑
p=1

w jp ∗ zk jp (4.11)

where w jp represents the weight of the pth sigmoid function of the output variable,

and satisfies
P
∑

p=1
w jp = max{xt

1 j, · · ·,xt
Nt j}. zk jp is calculated through 4.10.
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Φ= [Φ1Φ2 · · ·Φn], where Φ j is constructed following the procedure described

above. Thus the input data xxxt
k becomes Φ(xxxt

k):

Φ
(
xxxt

k
)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ1

(
xt

k1

)
Φ2

(
xt

k2

)
. . .

Φn
(
xt

kn

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑P
p=1 w1p

1

1+e−α1p(xt
k1

−β1p)

∑P
p=1 w2p

1

1+e−α2p(xt
k2

−β2p)

· · ·
∑P

p=1 wnp
1

1+e−αnp(xt
kn−βnp)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.12)

Taking advantage of the nonlinear mappings, transformations are made to the

input space so that the new input variables become more compatible with the data

in the target domain. The parameters of Φ are derived through an optimization

process by minimizing 4.9 using the labeled dataset HHHL. The dataset HHHU is used

to test the performance of the model after its construction.

Step 2b) Method 2: change the output space

This method handles cases where the conclusions of the fuzzy rules in the two

domains are different. The target domain’s ideal model is described in 4.3.

Again, there are insufficient data to train the fuzzy model Mt
2 for the target

domain. Since the conclusions are different to those in the source domain, we in-

troduce a method to modify the output space by optimizing a continuous mapping

for each output. The output space is modified by mapping Ψ, and a new fuzzy

model Mt
2 for the target domain is constructed based on the fuzzy rules in model

Ms. The process and resulting architecture are shown in Fig. 4.5.
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Figure 4.5 Method 2: changing the output space

model Mt
2

if xxxt
k is Ai(xxxt

k, vvvs
i ), then yt

k is Ψi(Li(xxxt
k,aaa

s
i )) i = 1,2, · · · ,c (4.13)

Therefore, the output of model Mt
2 is:

gt
k =

c

∑
i=1

Ai(xxxt
k, vvvs

i )Ψi(Li(xxxt
k,aaa

s
i )) (4.14)

Our aim is to find a Ψ such that Mt
2 becomes compatible with the target data,

i.e.,

Nt

∑
k=1

c

∑
i=1

Ai(xxxt
k, vvvs

i )Ψi(Li(xxxt
k,aaa

s
i ))≈

Nt

∑
k=1

yt
k (4.15)

The parameters of Ψ are optimized by minimizing the objective function as

follows:

Qt
2 =

√√√√ 1

Nt1

Nt1

∑
k=1

c

∑
i=1

Ai(xxxt
k, vvvs

i )Ψi(Li(xxxt
k,aaa

s
i ))− yt

k)
2 +

λ
2

wT w (4.16)
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The construction of mapping Ψ is similar to the construction of mapping Ψ

in Method 1. Ψ = [Ψ1Ψ2 · · ·Ψc], and the parameters are obtained by minimizing

4.16 using the labeled dataset HHHL; w represents the vector of all the parameters

optimized.

Step 2c) Method 3: changing both the input and output spaces

In this case, both the conditions and the conclusions of the fuzzy rules in the

two domains are different. The target domain’s ideal model is described in 4.4.

This method is a combination of the first two and uses the mappings to modify

the input and output spaces. The input space is transformed to Φ(xxxt) by mapping

Φ, the output space is transformed by mapping Ψ, and the new fuzzy model Mt
3

for the target domain is constructed based on the fuzzy rules in model Ms. The

process and resulting architecture are shown in Fig. 4.6.

Figure 4.6 Method 3: changing both the input and output spaces

Model Mt
3, described in the form of fuzzy rules, is:

model Mt
3

if xxxt
k is Ai(Φ(xxxt

k), vvvs
i ), then yk is Ψi(Li(Φ(xxxt

k),aaa
s
i )) i = 1,2, · · · ,c (4.17)

Therefore, the output of model Mt
3 is:
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gt
k =

c

∑
i=1

Ai(Φ(xxxt
k), vvvs

i )Ψi(Li(Φ(xxxt
k),aaa

s
i )) (4.18)

Our aim is to find a Φ and Ψ such that Mt
3 becomes compatible with the target

data, i.e.,

Nt

∑
k=1

c

∑
i=1

Ai(Φ(xxxt
k), vvvs

i )Ψi(Li(Φ(xxxt
k),aaa

s
i ))≈

Nt

∑
k=1

yt
k (4.19)

The parameters of Φ and Ψ are optimized by minimizing the objective function

as follows:

Qt
3 =

√√√√ 1

Nt1

Nt1

∑
k=1

c

∑
i=1

Ai(Φ(xxxt), vvvs
i )Ψi(Li(Φ(xxxt),aaas

i ))− yt
k)

2 +
λ
2

wT w (4.20)

The construction of mappings Φ and Ψ is exactly the same as that in Methods

1 and 2, and the parameters of Φ and Ψ are optimized by minimizing 4.20 using

the labeled dataset HHHL. Similarly, the objective function includes two terms: the

approximation error and the structural risk.

4.4.3 Performance index

Another model is also trained using insufficient data in the target domain. Al-

though there is only a small amount of labeled data in the target domain, they

can still be used to train a model. Proving that a model does not perform as well

when trained with less data in the target domain supports our assumption. As a

result, three models are constructed: the first is built using the source data for the

source domain (model Ms); the second is built using the insufficient target data for

the target domain (model M̃t); and the third is built using the proposed granular
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fuzzy domain adaptation methods Mt
(models Mt

1,M
t
1,M

t
1, corresponding to three

cases).

The datasets in the source domain and the target domain are DDD and HHH, as

described in the above subsection. When constructing the above models, we

used a five-fold cross validation procedure, which is commonly used to validate

models in machine learning. Dataset DDD is split into a training set DDD1 (80%) and a

testing set DDD2 (20%). The number of data in DDD, DDD1 and DDD2 are Ns, Ns1, and Ns2,

respectively. Similarly, the labeled data in HHHL are split into a training set HHHL1

(80%) with Nt11 data and a testing set HHHL2 (20%) with Nt12 data.

Symbolic representations of the models’ performance follow.

Model’s performance in the source domain is represented by Q, which is the

root mean square error (RMSE) of the expected value and the output from model

Ms.

Q =

√√√√ 1

Ns2

Ns2

∑
k=1

(ds
k − ys

k)
2 (4.21)

where ds
k is the output of model Ms when its input is xxxs

k, xxxs
k ∈ DDD2.

For consistency, dataset HHHU is used to test the model’s performance in the

target domain in the following discussion.

The performance of model Ms in the target domain is denoted by Q1, which

indicates the ability of the source domain’s model to address tasks in the target

domain.

Q1 =

√√√√ 1

Nt −Nt1

Nt

∑
k=Nt1+1

(ht
k − yt

k)
2 (4.22)

where ht
k is the output of model Ms when the input is xxxt

k, xxxt
k ∈ HHHU , and yt

k is the

expected output to input xxxt
k.
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The insufficient labeled data in the target domain HHHL are used to train a model

M̃t for the target domain using the same construction procedures as model Ms for

the source domain. The performance of model M̃t in the target domain is denoted

as Q2:

Q2 =

√√√√ 1

Nt −Nt1

Nt

∑
k=Nt1+1

(st
k − yt

k)
2 (4.23)

where st
k is the output of model M̃t when its input is xxxt

k, xxxt
k ∈ HHHU , and yt

k is the

expected output to input xxxt
k.

The model Mt
1,M

t
2,M

t
3, constructed using our GFRDA methods, is also tested

on the target dataset HHHU , and the result is denoted as Q3:

Q3 =

√√√√ 1

Nt −Nt1

Nt

∑
k=Nt1+1

(rt
k − yt

k)
2 (4.24)

where rt
k is the output of model Mt

when the input is xxxt
k, xxxt

k ∈ HHHU , yt
k is the

expected output to input xxxt
k.

When constructing the model Mt
for the target domain, a DE algorithm is used

to optimize the parameters of the mappings and build the new GFRDA models

for the target domain. DE is a computational method that determines an optimal

solution by iteratively navigating a population of solutions, which minimizes a

certain predetermined objective function. Such methods are commonly known as

metaheuristics, as they make few or no assumptions about the problem being opti-

mized and can search very large spaces of candidate solutions Price et al. (2006);

Storn and Price (1997). PSO is another famous evolutionary algorithm. Based on

the experimental results in Chapter 3 Zuo et al. (2017a), the algorithmic stability

of DE is superior to PSO, so DE was selected as the optimization algorithm for

the models’ construction. In DE, there are two parameters that largely influence
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optimization performance: the differential weight F and the crossover probability

CR. The value range of F is [0,2], and the value range of CR is [0,1]. In addition,

due to the problem’s complexity, the same initialization strategy is used in all

the experiments below: 200 candidate solutions are generated, and the maximum

number of iterations is set to 200.

The values of Q1,Q2 and Q3 are compared in the following experiments. The

desired outcome is that Q3 should be smaller than both Q1 and Q2. Q3 < Q1

demonstrates that the performance of the new constructed model Mt
on the target

domain is superior to the existing model Ms, and Q3 < Q2 shows that the model

M̃t trained using a few labeled data has poor performance compared to model Mt
.

4.5 Empirical results analysis

Both synthetic and real-world datasets were used to evaluate the proposed GFRDA

methods and their algorithms. Except for the domain adaptation problems for

regression tasks, the proposed methods are also used to solve a special scenario

in classification problem, the label space adaptation.

4.5.1 Experiments on synthetic datasets

This section consists of three experiments to discuss and analyze the effectiveness

of the proposed GFRDA methods. The first experiment validates the presented

methods and analyzes the impact of an important parameter in the performance

of the constructed models – the trade-off parameter λ . The second experiment

explores the effect on the results when the number of the labeled target data

changes. The third experiment compares the outcomes of the three methods when

dealing with different cases in domain adaptation problems.
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4.5.1.1 Datasets and experimental settings

The datasets used in these three experiments contain some repetition, so all the

datasets are described first, followed by the details of their application.

The datasets are generated by the input data and the linear functions. The

conditions of the fuzzy rules are governed by the centers of the clusters, which

decide the membership functions of the constructed fuzzy sets. Since FCM is

used to build the clusters and the fuzzy sets, the cluster centers are significantly

affected by the distribution of the input data. Therefore, to obtain the source and

target data with different cluster centers, the input data in the source and target

domains should be generated with different distributions.

Two groups of input data with different distributions are shown in Table

4.1, and similarly two groups of linear functions with disparate parameters are

displayed in Table 4.1.

Table 4.1 contains two groups of input data, input data 1 and input data 2; the

method used to generate the data was the same for both groups. To obtain more

than one fuzzy rule and differentiate between the cluster centers, we generated

three sub-datasets by varying the distribution and combining them to construct the

whole dataset. The first sub-dataset was generated using normalized distribution

N(μμμ1,σσσ1), and the other two sub-datasets were built in the same way.

Table 4.2, lists the two groups of linear functions with different parameters.

There are three linear functions in each group that correspond to the input data in

Table 4.1.
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Table 4.1 The distributions of input data 1 and data 2

Input data 1 Input data 2

Mean values Covariance Mean values Covariances

μ1 = [1 1] σ1 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠ μ4 = [2.5 1.5] σ4 =

⎛
⎜⎝0.42 0.1

0.1 0.42

⎞
⎟⎠

μ2 = [2 1] σ2 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠ μ5 = [2 1.5] σ5 =

⎛
⎜⎝0.52 0.1

0.1 0.52

⎞
⎟⎠

μ3 = [1.5 2] σ3 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠ μ6 = [2.5 2] σ6 =

⎛
⎜⎝0.52 0.1

0.1 0.52

⎞
⎟⎠

Table 4.2 Coefficients of linear functions in the two different groups

Input data 1 input data 2

L1(aaa1) aaa1 = [1 1 1] L4(aaa4) aaa4 = [2 0.5 1.5]

L2(aaa2) aaa2 = [2 2 1] L5(aaa5) aaa5 = [1 2 0.5]

L3(aaa3) aaa3 = [−1 1 3] L5(aaa6) aaa6 = [−1.5 2 4.5]

Various combinations of the input data in Table 4.1 and the linear functions in

Table 4.2 result in different datasets. Thus, three datasets were constructed, as

shown in Table 4.3, to represent the three different cases in domain adaptation

described in Section 4.4.

Table 4.3 Datasets for three cases in domain adaptation

Source domain Target domain

Dataset 1 Input data 1 + Linear function 1 Input data 2 + Linear function 1

Dataset 2 Input data 1 + Linear function 1 Input data 1 + Linear function 2

Dataset 3 Input data 1 + Linear function 1 Input data 2 + Linear function 2
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From Table 4.3, we can see that the dataset in the source domain is fixed, and

the varying dataset in the target domains lead to three different cases. Constructing

the target data using input data 2 and linear function 1 reflects cases where the

input data differs between the two domains. Using input data 1 and linear function

2, reflects cases where the conclusion of the fuzzy rules are not the same, and

using input data 2 and linear function 2 reflects differences in both the conditions

and conclusions.

4.5.1.2 Experimental results

Experiment A: Verifying the proposed GFRDA methods.

The purpose of this subsection is to verify the ability of the proposed methods

to solve three cases in domain adaptation, and further explore the impact of the

parameter λ on the performance of the models.

Three experiments were conducted to test the methods’ performance in the

different domain adaption cases using the three datasets in Table 4.3. Addition-

ally, comparing the models’ performance with varying parameter λ was used to

determine the optimal λ . There are 1500 labeled data in the source domain, and

15 labeled and 585 unlabeled data in the target domain.

The results and analysis of these three experiments are discussed in detail

below.

a) Method 1: change the input space

This experiment changed the input space using Dataset 1 from Table 4.3

to deal with domain adaptation cases where the fuzzy rule conditions differ.

Moreover, comparing model performance with different values for parameter λ

was used to determine the optimal λ . The results are shown in Table 4.4.
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Table 4.4 Results of the first method by varying λ

λ Q Q1 Q2 Q3

0 0.08±0.01 1.88 ± 0.01 7730.09 ± 163972.14 1.13 ± 0.22

0.1 1.06 ± 0.07

0.2 1.04 ± 0.06

0.3 1.04 ± 0.05

0.4 1.04 ± 0.04

0.5 1.05 ± 0.04

0.6 1.06 ± 0.03

1 1.15 ± 0.04

2 3.41 ± 0.38

Because five-fold cross validation was used, all the values for Q, Q1, Q2 and

Q3 are written in the form of “mean± standard deviation”. Since changing λ only

impacts the construction of model Mt
1, the values of Q, Q1 and Q2 that are related

to model Ms and M̃t are constant under different λ values. From Table 4.4 we can

see that the mean value of Q1 is 1.88, which indicates that the model of the source

domain does not fit the target data very well. The number of labeled target data

is small, resulting in a very large mean value of 77730.09 and a large standard

deviation of 163972.14 for Q2 , to represent model M̃t’s performance. However,

when λ is not bigger than 1, the mean values for Q3 are smaller than those of Q1

and Q2. This indicates that the model built using our method is superior to the

source domain’s model and the model constructed using the target data. When λ

is greater than 0.4, the values of Q3 appear to have a growth trend and is lowest

when λ is equal to 0.4.

b) Method 2: change the output space
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Dataset 2 was used to simulate cases where the conclusions of the fuzzy rules

differ by changing the output space. The results are shown in Table 4.5.

Table 4.5 Results of the second method by varying λ

λ Q Q1 Q2 Q3

0 0.50 ± 0.02 3.37± 0.00 62496.40± 122924.89 1.84 ± 0.28

0.01 1.85 ± 0.24

0.02 1.89 ± 0.26

0.05 2.06 ± 0.30

0.1 3.06 ± 0.29

1 8.90 ± 0.08

Compared to the last experiment, the values of Q3 are sensitive to changes in

λ , and tends to increase with an increase in λ . When λ is smaller than 0.1, the

mean values of Q3 are no greater than the mean values of Q1 and Q2, which shows

the superiority of our proposed method. Model Mt
1 shows the best performance

when λ is set to 0.

c) Method 3: change the input and output spaces

Dataset 3 was used to test cases where both the conditions and conclusions of

the fuzzy rules differ; therefore, both the input and output spaces were transformed.

The results are shown in Table 4.6.
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Table 4.6 Results of the third method by varying λ

λ Q Q1 Q2 Q3

0 0.08± 0.01 3.28± 0.02 2496.40± 122924.89 2.32± 0.37

0.01 2.85± 0.10

0.02 2.92± 0.29

0.05 3.448± 0.30

0.1 4.05± 0.19

1 9.00± 0.07

From Table 4.6, we can see that similar to the last experiment, a tiny change

in λ results in and increase in Q3. When λ is not smaller than 0.05, the mean

value of Q3 is greater than that of Q1, which means the model using the proposed

method is not better than the source domain model. However, the proposed

method works well when the value of λ is small.

Experiment B: Exploring the impact of the number of labeled target data.

In the above experiments, the number of labeled target data was fixed at 15.

Since the optimization of the models Mt
1,M

t
2, andMt

3 is totally based on labeled

target data, they play an important role in the ability of the constructed model to

fulfill the target tasks.

This experiment was designed to analyze the performance of the constructed

model with different numbers of labeled target data. The total number of data in

the target domain is 1500, but the number of labeled data varies.

Here, we only transform the input space, as an example and list the results in

Table 4.7.
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Table 4.7 The values of Q,Q1,Q2, Q3 with different number of labeled target data

Nt Q Q1 Q2 Q3

10 0.08 ± 0.01 1.88 ± 0.01 507710.47 ± 940131.29 1.07 ± 0.07

15 1.88 ± 0.01 77730.09 ± 163972.14 1.04 ± 0.05

20 1.89 ± 0.01 17.23± 33.47 1.04 ± 0.04

25 1.88 ± 0.01 0.85± 0.54 1.01± 0.03

30 1.89 ± 0.01 0.76± 0.12 1.02 ± 0.03

As Q represents the performance of the source model on the source data,

changing the number of labeled target data Nt1 has no impact; the value of Q is

constant at different Nt1. The values of Q1, which represents the performance of

source model on unlabeled target data with number Nt−Nt1, have tiny fluctuations,

which indicates that changes in Nt1 only slightly influence Q1. The mean value

and standard deviation of Q2 decrease with a greater amount of labeled target

data. This is because more training data is available in the target data, and model

Mt
1 is able to achieve better generalization of the unlabeled target data. Even

though few labeled target data are available, the values for Q3 are smaller than

that of Q1 and Q2, which indicates that our proposed method works well in this

domain adaptation problem. When the number of labeled target data is beyond

25, the proposed method does not show superiority. However, given our central

assumption that the labeled target data are insufficient to construct a good model,

the results obtained are reasonable.

Experiment C: Comparing the performance of the proposed methods.

Experiments on A and B show that each of the proposed methods is effective

solutions to their respective domain adaptation problems. However, we were also

curious about each method’s ability to solve the other two cases and designed an

experiment to compare the performance of all three methods in all three cases.
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We must highlight that the purpose of this experiment is not to determine

the best method for each case. First, the performance of these methods depends

heavily on the datasets, so results from one dataset do not prove the validity of

these methods in the given case. Second, we have already proven that each case is

well-handled by its specifically designed method. However, if either of the other

two methods also has a good performance on knowledge transfer, they can be

treated as ‘assistant’ methods.

The three methods are used to solve the three cases in domain adaptation

problems, and the results are displayed in Table 4.8.

Table 4.8 Comparison of the three methods in three cases

Case 1 Case 2 Case 3

Q 0.08 ± 0.01 0.50 ± 0.02 0.08 ± 0.01

Q1 1.88 ± 0.01 3.37 ± 0.00 3.28 ± 0.02

Q2 77730.09 ± 62496.40 ± 62496.40 ±
163972.14 122924.89 122924.89

Q3 (method 1) 1.04 ± 0.05 4.00 ± 0.17 3.07 ± 0.14

Q3 (method 2) 1.01 ± 0.18 1.84 ± 0.28 1.85 ± 0.13

Q3 (method 3) 1.22 ± 0.32 1.88 ± 0.16 2.32 ± 0.37

From the results shown in Table 4.8, we can see that all three methods perform

well in the first case. In the second case, changing the output space or changing

both the input and output spaces can also solve this domain adaptation problem.

Similarly, all three methods are also valid for the third case, just not as well as the

other two.

Based on the results, we conclude that the specific method designed for each

case shows superior performance; furthermore, the other methods can be used as

alternatives.
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4.5.2 Experiments on real-world datasets

Three real-world datasets from the UCI Machine Learning Repository were

used to validate the effectiveness of the proposed GFRDA methods. However,

information about which case each datasets reflects is not readily available, so we

use the three methods to solve this problem and discover which method was the

most effective.

The “concrete compressive strength (CCS)” dataset contains eight input fea-

tures to predict the concrete compressive strength output feature. The dataset was

revised in two ways to make it appropriate for use in a transfer learning problem.

First, the dataset was split into a source domain and a target domain based on the

input feature “age”: instances with an age smaller than 100 fell into the source

domain, and the remaining instances were treated as data in the target domain.

Second, the input features “blast furnace slag”, “fly ash”, and “superplasticizer”

were perturbed with random numbers using the normal distributions N(0.1,0.1)

in the source data and N(5,1) for the target data. There are 900 labeled instances

in the source domain, and 30 labeled and 80 unlabeled instances in the target

domain.

The “housing dataset (HD)” aims to predict the “MEDV” using six input

attributes. The data was normalized and split into two datasets using the attribute

“TAX”, which represents the full-value property-tax rate per $10,000. Instances

of “TAX” smaller than 0.5 were used to form the source dataset, and instances

of “TAX” larger than 0.5 were used as the target dataset. The attributes “RM”,

“AGE”, and “B” of the source data were perturbed by random numbers coming

from N(0.1,0.1), while those attributes in the target data were perturbed by normal

random numbers using the distributions N(7,1), N(5,1) and N(8,1), respectively.

There are 360 labeled instances in the source domain and 130 instances in the

target data with 15 labeled.
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The “Istanbul stock exchange (ISE)” dataset aims to predict the “MSCI emerg-

ing markets index” using the attributes “stock exchange returns” and “Istanbul

stock exchange national 100 index”. The data was normalized and split into two

datasets. The first 300 instances were used to form the source domain, and the

next 120 instances were chosen as the target domain. Further, the two attributes

were perturbed with random numbers using the normal distributions N(0.1,0.1)

in the source data and N(5,1) for the target data.

The last dataset concerns “air quality (AQ)”. From the provided attributes, we

selected two attributes, “temperature” and “relative humidity”, as the input data,

and chose “absolute humidity” as the output. All the attributes were normalized,

and the dataset was split into two domains based on “relative humidity”. The

data with a “relative humidity” of greater than 0.5 were chosen as the source

domain, and the remaining data were used to form the target domain. Further,

the two attributes in the source data were all perturbed by random numbers

following a normal distribution N(0.1,0.1), and the two attributes in the target

data were perturbed by the normal random numbers following N(7,1) and N(5,1)

respectively. There are 3600 labeled instances in the source domain and 1200

instances in the target data with 15 labeled.

Five-fold cross validation was used for all experiments, and the results are

shown in Table 4.9.
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Table 4.9 Comparison of the three methods used in real-world datasets

CCS HD ISE AQ

Q 0.11±0.02 0.11±0.01 0.09±0.04 0.13 ± 0.02

Q1 1.07±0.16 2.35±0.51 3.05±0.70 6.41 ± 0.35

Q2 6488.52± 5.94± 76627.04 ± 7.27 ±
4938.04 6.29 170157.35 15.75

Q3 (method 1) 0.18±0.06 0.60±0.79 0.12±0.00 0.15 ± 0.00

Q3 (method 2) 0.15±0.01 0.18±0.06 0.13±0.00 0.15 ± 0.01

Q3 (method 3) 0.91±1.57 0.19±0.10 0.15±0.01 0.15 ± 0.00

From the results, we can see that the mean values of Q3 in all three methods

are all smaller than the mean values for Q1 and Q2. This indicates that the models

constructed using the proposed methods are better than both the existing source

domain model and the model built using few labeled target data. The first and

second methods build well-performing models for the target domain using the

“concrete compressive strength” dataset. Compared to the first method, the second

and third methods did a good job transferring the knowledge from the source

domain to the target domain in the “housing” dataset. All the three methods work

well in the “Istanbul stock exchange” dataset, and the first method showed a slight

lead. On the “air quality” dataset, the three methods showed similar results and

all worked well in addressing this domain adaptation problem.

4.5.3 Fuzzy transfer learning for label space adaptation

Sections 4.5.1 and 4.5.2 focus on the fuzzy domain adaptation in regression

problems. In this section, the proposed methods are used to some special domain

adaptation scenarios in classification task.

Experiment A: Transferring for label space adaptation.
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This experiment concentrates on the case where the difference in source and

target data is only evident in the label’s distributions, thus we apply the second

method of changing the output space and the third method of changing both the

input and output to handle the adaption in label space. The source and target data

are displayed in Figs. 4.7 and 4.8, and are generated following the identical input

distributions. The data labeled ‘0’ are represented with blue circle and the data

labeled‘1’ are shown as red asterisk. The distributions of the labels are arranged

quite differently in the two domains.

Figure 4.7 Source data for exp A Figure 4.8 Target datta for exp A

In addition, the number of clusters, i.e., the number of fuzzy rules, is an

important parameter that is difficult to determine and highly dependent on the

dataset. In this case, we adopt different numbers of clusters and compare the

results to find the optimal. All the models’ construction applies five-fold cross-

validation, and the results of Q,Q1,Q2 and Q3 with different number of clusters

are shown in Table 4.10 and Table 4.11.
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Table 4.10 Results with three clusters (fuzzy rules)

Q Q1 Q2 Q3

1 99.67 39.46 81.62 84.26

2 99.00 39.66 81.96 81.35

3 98.67 38.99 70.54 76.35

4 99.00 39.59 71.89 90.88

5 99.33 39.32 53.04 82.57

mean 99.13 39.41 71.81 83.08

stand deviation 0.38 0.27 11.76 5.26

Table 4.11 Results with four clusters (fuzzy rules)

Q Q1 Q2 Q3

1 99.00 39.73 68.51 75.68

2 95.33 37.77 58.04 82.16

3 95.00 37.50 59.46 76.42

4 99.33 39.39 66.22 75.07

5 95.00 39.05 50.20 74.59

mean 96.73 38.69 60.49 76.78

stand deviation 2.23 1.00 7.25 3.08

From the results, we can see that the mean value of Q reached 99.13% and

96.73%, and the standard deviation was very small, which means a good model

for the source domain has been achieved. However, the mean value for Q1 was

also small; 39.41% for 3 clusters and 38.69% for 4 clusters. This indicates that

prediction tasks in the target domain cannot be solved by the source domain’s

existing model. The mean value for Q2 was also not very high, and this verifies

the assumption of this work: that models constructed with little training data have
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a high probability of performing badly. Yet, the mean values for Q3 were always

greater than the mean values for Q1 and Q2. This indicates that the model trained

using the proposed method is superior, not only to the source model but also to

the target model trained with few labeled target data.

We noticed that the standard deviations for Q2 and Q3 were not small; 11.76%

and 5.26%with 3 clusters and 7.25% and 3.08%with 4 clusters. This phenomenon

is reasonable and expected, because few labeled target data were available to

train the new model – even less was available for the testing data. Obviously, the

standard deviation will decline if more labeled target data are available, but this is

not consistent with the assumption that the labeled target data is insufficient to

build a well-performed model for prediction tasks in the target domain.

Experiment B: Adapting to the change of both input and output.

In the second experiment, we deal with situations where the source data and

target data are different in both the input and labels’ distributions.

The source data and target data are shown in Figs. 4.9 and 4.10. Similarly,

data with disparate labels are represented by points in contrasting colors and

marker types, blue circles and red asterisk. The source data shows the same

pattern as that in Experiment A, but the target data is quite contrasted.

Figure 4.9 Source data for exp. B Figure 4.10 Target data for exp. B
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Likewise, five-fold-cross validation was applied to build the models. The

experimental results are shown in Tables 4.12 and 4.13.

Similarly, the results show that the proposed method improves the performance

of the existing source model when classifying the data in the target domain. The

standard deviation for Q3 was not small; 4.77% with 3 clusters and 11.28% with

4 clusters. As with Experiment A, the number of labeled target data was too low.

Another possible reason is the large gap between the source data and target data.

Table 4.12 Results with three clusters (fuzzy rules)

Q Q1 Q2 Q3

1 99.67 62.30 82.77 79.46

2 99.00 62.70 55.41 88.38

3 98.67 62.30 69.26 90.14

4 99.00 62.64 77.36 81.35

5 99.33 62.09 72.03 81.42

mean 99.13 62.41 71.36 84.15

stand deviation 0.38 0.26 10.32 4.77

Table 4.13 Results with four clusters (fuzzy rules)

Q Q1 Q2 Q3

1 99.00 62.64 81.22 68.45

2 95.33 61.28 45.81 74.12

3 95.00 58.85 57.50 85.74

4 99.33 62.50 85.00 86.35

5 95.00 59.86 84.19 60.14

mean 96.73 61.03 70.74 74.96

stand deviation 2.23 1.65 17.96 11.28
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Experiment C: Solving the real-world datasets.

A public dataset, called the banknote authentication dataset, from the Machine

Learning Repository was used to verify the effectiveness of the proposed methods.

The aim of this dataset is to distinguish between genuine and forged ‘banknote-

like’ specimens. The data were obtained by extracting the features of the images

of the genuine and forged banknotes using a wavelet transform tool.

The features of this dataset are shown in Table 4.14.

Table 4.14 Attributes of the "banknote authentication" dataset

Feature 1 Variance of wavelet transformed image

Feature 2 Skewness of wavelet transformed image

Feature 3 Curtosis of wavelet transformed image

Feature 4 Entropy of wavelet transformed image

All the features were normalized, and the dataset was split into two datasets

based on the “skewness of wavelet transformed image” feature. The data with

this feature value larger than 0.5 fell within the source domain; the remaining

data were allocated to the target domain. In total, the source domain contained

960 labeled data items in the source domain, but the target domain only contained

30 labeled data items and 320 unlabeled items. Since the input distributions in

two domains differ, the method of changing both the input and output is applied

to solve this problem. Five-fold cross-validation was used to construct all the

models. The experimental results are shown in 4.15.



4.6 Summary 117

Table 4.15 Results of the "banknote authentication" dataset

Q Q1 Q2 Q3

1 94.79 52.42 55.15 83.64

2 96.35 53.03 40.91 87.88

3 95.83 53.33 68.48 85.45

4 96.88 53.03 69.09 63.94

5 94.27 51.52 53.03 74.24

mean 95.63 52.67 57.33 79.03

stand deviation 1.08 0.72 11.79 9.89

In analyzing the results shown in Table 4.15, it is clear that the mean value

for Q2 was only 52.67%, which indicates the model built using previous data is

invalid. The mean value for Q2 was also small, at 57.33%, and even worse, the

standard deviation was not small, at 11.79%. The low accuracy and high standard

deviation for Q2 are testament to our assumption in this work: that a small amount

of labeled data cannot guarantee the performance of the constructed models. The

performance of the proposed method is reflected in the values for Q3, which show

a mean value of 79.03% and a standard deviation of 9.89%. The mean value for

Q3 was not greater than that of Q1 and Q2. This suggests the proposed model is

superior to both the previous model and the model built only with target data.

4.6 Summary

In this chapter, we propose three granular fuzzy regression domain adaptation

methods to address three challenging cases in fuzzy domain adaptation: where the

conditions, conclusions, or both the conditions and conclusions of the fuzzy rules

in the source and targets domains differ. These methods modify the input and/or
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output of the data space through mappings to make the fuzzy rules of the existing

model more compatible for solving tasks in the target domain. Our methods

effectively solve regression problems in the target domain even when only a

small amount of labeled data is available. More importantly, these three methods

constitute an entire framework to provide guidance for the domain adaptation

in TS fuzzy model. The experiments on the synthetic and real-world datasets

demonstrate the capability of the proposed methods in dealing with the fuzzy

domain adaptation in regression prediction task. Moreover, the presented method

are used to solve a specific case in the classification problem, where the label

space has shifted in the target domain. The experimental results show that the

method of changing the output space can handle the discrepancy of label space in

two domains very well.



Chapter 5

Fuzzy Domain Adaptation for the

Dismatch of Fuzzy Rules

5.1 Introduction

This chapter concentrates on the homogeneous domain adaptation problems

where the two domains have a different number of fuzzy rules. Both situations

are addressed: where the number of fuzzy rules in the source domain is greater

than in the target domain, and vice versa.

When the source domain has the greater number of fuzzy rules, the source

model can still be used and modified to fit the target data because TS fuzzy

models weight some linear functions in a nonlinear way when fitting to a curve.

Each linear function represents a fuzzy rule, and all the fuzzy rules form a fuzzy

partition of the output space. The greater the number of fuzzy rules, the more

precise the partition of the space is. It is, therefore, reasonable to consider that

a TS fuzzy model can approximate any curve as long as there is an adequate

number of fuzzy rules. And, if there is a greater number of fuzzy rules in the
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source domain than in the target domain, then it is reasonable to revise the fuzzy

rules in the source domain to fit the target data.

When the target domain has the greater number of fuzzy rules, the fuzzy rules

in the source domain must be reconstructed to a number that is no less than the

target domain. Then, the rebuilt fuzzy rules are modified and applied to fit the

target data.

Further, in addition to target data with labels, target data without labels are also

used to improve the performance of the target model. We assume that instances

that are close to each other in the input space will have similar labels. The closer

the instances, the more similar their labels are.

The rest of this chapter is organized as follows. Section 5.2 states the problem

we aim to cope with. Section 5.3 describes the proposed methods and the corre-

sponding optimization procedure. The experiments on Section 5.4 validate the

proposed methods, and compare two ways of constructing mappings for the input

space. Moreover, the presented method is used the handle the transfer learning in

classification problems. Finally, summary of this chapter is discussed in Section

5.5.

5.2 Problem statement

The dataset in the source domain is denoted by DDD = {(xxxs
1,y

s
1), · · · ,(xxxs

Ns
,ys

Ns
)},

where xxxs
k ∈ Rn, k = 1, · · · ,Ns, is the n-dimensional input variable, the label ys

k ∈ R

is the continuous output variable, and Ns indicates the number of data. Since the

amount of source data with labels is massive, a well-performing regression model

for the source domain – the TS fuzzy model Ms – can be learned.
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model Ms

if xxxs is Ai(xxxs, vvvs
i ), then ys is Li(xxxs,aaas

i ) i = 1,2, ...,cs (5.1)

The dataset in the target domain contains two subsets: one with labels and one

without labels HHH = {HHHL,HHHU} = {{(xxxt
1,y

t
1), · · · ,(xxxt

Nt1
,yt

Nt1
)},{xxxt

Nt1+1
, · · · ,xxxt

Nt
}},

where xxxt
k ∈ Rn, k = 1, · · · ,Nt is the nt-dimensional input variable, yt

k ∈ R, k =

1, · · · ,Nt1 is the continuous output variable. HHHL includes the instances with labels,

and HHHU contains the data without labels. The numbers of data in HHHL and HHHU are

Nt1 and Nt−Nt1 respectively, and satisfy Nt1 << Nt , Nt1 << Ns.

Suppose the ideal model for the target domain is Mt .

model Mt

if xxxt is Ai(xxxt , vvvt
i), then yt is Li(xxxt ,aaat

i) i = 1,2, ...,ct (5.2)

Different with the problem in Chapter 4, the numbers of fuzzy rules in two

domains are different, which impedes the usage of source model on the target

data.

5.3 Fuzzy transfer learning for dismatch of fuzzy

rules

Our fuzzy homogeneous domain adaptation (FHoDA) method for dealing with

knowledge transfer with fuzzy rule-based models follows. The FHoDA method

contains two main steps.

Step 1: Train the source model.

A source model Ms is built based on the source dataset DDD.
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model Ms

if xxxs
k is Ai(xxxs

k, vvvs
i ), then ys

k is Li(xxxs
k,aaa

s
i ) i = 1,2, · · · ,c (5.3)

where c =max(cs,ct).

c =max(cs,ct) ensures that the number of trained fuzzy rules are sufficient

to fit the target data later. So, in the first situation, c is simply equal to cs. But

in the second situation, c is equal to ct , which means that the source model is

reconstructed with the same number of fuzzy rules as the target domain. This can

facilitate modification and transfer of the fuzzy rules between domains.

Step 2: Modify the existing fuzzy rules to construct the target model.

There can be two possible differences between the fuzzy rules in source and

target domains: their conditions and/or their conclusions. However, because the

number of fuzzy rules is not equal, it is hard to tell exactly where the differences

are – the conditions or the conclusions. To guarantee the best results, we modify

the existing model using the three algorithms proposed in our previous paper Zuo

et al. (2017b) and select the one with the best performance as the target model,

i.e., we change the input space, change the output space, and change both spaces.

The corresponding target models are:

model Mt
1 (changes of input space)

if xxxt
k is Ai(Φ(xxxt

k), vvvs
i ), then yt

k is Li(Φ(xxxt
k),aaa

s
i ) i = 1,2, · · · ,c (5.4)

model Mt
2 (changes of output space)

if xxxt
k is Ai(xxxt

k, vvvs
i ), then yt

k is Ψi(Li(xxxt
k,aaa

s
i )) i = 1,2, · · · ,c (5.5)
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model Mt
3 (changes of input and output spaces)

if xxxt
k is Ai(Φ(xxxt

k), vvvs
i ), then yt

k is Ψi(Li(Φ(xxxt
k),aaa

s
i )) i = 1,2, · · · ,c (5.6)

where Φ = [Φ1 · · ·Φn], n = ns = nt , and Ψ = [Ψ1 · · ·Ψc] are the transformation

mappings for the input space and output space.

The final target model Mt
is chosen from the best among models Mt

1, Mt
2 and

Mt
3, i.e.,

Mt
= Mt

i, if Mt
i ≥Mt

j, i, j = 1.2.3 (5.7)

where M̂t
i ≥ M̂t

j means the performance of M̂t
i on the target data HHHU is no worse

than that of M̂t
j.

The construction of mappings Φ and Ψ is the key element in the FHoDA

method. The nonlinear functions are used to build the mappings Zuo et al. (2017b).

Apart from the nonlinear transformation, we also construct the mappings of

input variables using the piecewise linear functions with the structure shown in

Fig. 5.1.

Figure 5.1 Architecture of piecewise linear mapping

We construct a piecewise linear mapping for each input variable, which is a

monotonous function defined on the domain of the input variable.
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Φ : [xxxt
min,xxx

t
max]→ [xxxt

min,xxx
t
max] (5.8)

where xxxt
min and xxxt

max are the minimum and maximum values of input variable

xxxs. So the endpoints of the piecewise linear function Φ are (xxxmin,xxxmin)
t and

(xxxt
max,xxx

t
max).

Suppose there are two cutoff points in the piecewise linear function, and then

the mapping Φ is written as:

Φ(xt
k j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1−xt
m j

α1−xt
m j
∗ xt

k j +
xt

m j∗a1−xt
m j∗b1

α1−xt
m j

,xt
m j ≤ xt

k j < a1

b2−b1
a2−a1

∗ xt
k j +

b1∗a2−a1∗b2
a2−a1

,a1 ≤ xt
k j < a2

xt
M j−b2

xt
M j−a2

∗ xt
k j +

b2∗xt
M j−a2∗xt

k j
xt

M j−a2
,a2 ≤ xt

k j ≤ xt
M j

(5.9)

where (a1,b1) and (a2,b2) are the two cutoff points of the piecewise linear

function.

The parameters of the mappings Φ and Ψ are obtained through an optimization

procedure, but the cost functions are different when optimizing Φ and Ψ to get

models Mt
1, Mt

2 and Mt
3.

When training model Mt
1, i.e., applying the algorithm that changes the input

space, the cost function is:

S1=

√√√√ 1

Nt1

Nt1

∑
k=1

(
c

∑
i=1

Ai(Φ(xxxt
k),Φ(vvvs

i ))

∑c
j=1A j(Φ(xxxt

k),Φ(vvvs
j))

Li(Φ(xxxt
k),aaa

s
i )− yt

k)
2+

λ1

√√√√ 1

Nt1 ∗h

Nt1

∑
k=1

h

∑
l=1

(yt
k− yt

k(l))
2 ∗ exp(−‖xt

k− xt
k(l)‖)+

λ2

2
wT w (5.10)
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where yt
k(l) = ∑c

i=1
Ai(Φ(xt

k(l)),Φ(vvvs
i ))

∑c
j=1 Ai(Φ(xt

k(l)),Φ(vvvs
j))

Li(Φ(xt
k(l)),aaa

s
i ).

The first term in cost function 5.10 trains the model based on the target data

with labels, which aims to minimize the gap between the output of the constructed

model and the target data’s real response. The second term operates on the assump-

tion that data with less distance in the input space will have a similar response.

Therefore, for each target data xxxt
k in HHHL, the h-nearest data {xxxt

k(1) · · ·xxxt
k(h)} in

HHHU are found, and the outputs of {xxxt
k(1) · · ·xxxt

k(h)} are expected to be close to

the response of xxxt
k. exp(−‖xxxt

k− xxxt
k(l)‖ determines that the data that are closer to

the center xxxt
k, will have an output more approximate to the response of xxxt

k. The

third term is a structural risk of the cost function, and parameter λ2 indicates

the tradeoff between the quality of an approximation and the complexity of the

approximation function. w is the vector of all the optimized parameters.

When training model Mt
2, i.e., applying the algorithm that changes the output

space, the cost function is:

S2=

√√√√ 1

Nt1

Nt1

∑
k=1

(
c

∑
i=1

Ai(xxxt
k,vvv

s
i )

∑c
j=1A j(xxxt

k,vvv
s
j)

Ψi(Li(xxxt
k,aaa

s
i ))− yt

k)
2+

λ2

2
wT w (5.11)

The cost function for training the mappings for the output space contains

two terms. Both are the same as the first and third term in S1 – one trains the

model with the target data with labels, the other restrains the complexity of the

approximation function. But here, we do not use target data without labels to

train the target model. This is because xxxt
k needs to find the h -nearest data based

on distance in the input space to best use data without labels in the target domain.

However, the algorithm that changes the output space focuses on modifying the

output variables; therefore, using the data without labels here may have a negative

impact on the model’s construction.
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When training model Mt
3, i.e., applying the algorithm that changes the input

and output spaces, the cost function is:

S3=

√√√√ 1

Nt1

Nt1

∑
k=1

(
c

∑
i=1

Ai(Φ(xxxt
k),Φ(vvvs

i ))

∑c
j=1A j(Φ(xxxt

k),Φ(vvvs
j))

Ψi(Li(Φ(xxxt
k),aaa

s
i ))− yt

k)
2+

λ2

2
wT w

(5.12)

Similarly, only the target data with labels are applied to train the mappings for

the input and output spaces simultaneously. And a structural risk is added to the

cost function to control the complexity of the approximation function.

The overall algorithm for the FHoDA method described above is provided in

Algorithm 1.

Algorithm 1. Homogeneous domain adaptation procedure

Input: DDD, HHH,

Output: YYYU for HHHU

1. Train source model Ms based on DDD

2. Modify the fuzzy rules in Ms

2.1 Change input space, and get model Mt
1

2.2 Change output space, and get model Mt
2

2.3 Change both input and output spaces, and get model Mt
3

3. Compare Mt
1, Mt

2, and Mt
3, and choose the best one as Mt

4. Use Mt to predict the response YYYU for HHHU

5.4 Empirical results analysis

The experiments in this section comprise three sections. The first section intro-

duces the synthetic datasets and the experimental settings. The second section
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validates the effectiveness of the proposed FHoDA method. The final section

analyzes the sensitivity of some critical parameters.

5.4.1 Datasets and experimental settings

Four synthetic datasets were generated with different numbers of fuzzy rules to

simulate various cases of homogeneous domain adaptation. As shown in Table

5.1, 500 instances were generated for each rule, so dataset 2r contained 1000

instances, dataset 3r contained 1500, and so on.

Table 5.1 Four datasets with a different number of fuzzy rules

number of fuzzy rules number of instances

dataset 2r 2 1000

dataset 3r 3 1500

dataset 4r 4 2000

dataset 5r 5 2500

In each experiment, two of the four datasets were chosen as the source and

the target domain respectively. All the data in the source domain had labels, but

only 5% of the data in the target domain had labels. The remaining labels were

only available during the testing procedure. In total, 12 experiments simulating

homogeneous domain adaptation with the fuzzy rule-based models were executed.

The FHoDA method generates the target model through an optimization

process. In this work, a DE optimization algorithm was used to optimize the

parameters of the constructed mappings. DE is a computational method that

determines an optimal solution by iteratively navigating a population of solutions

to minimize a certain predetermined objective function. Such algorithms are

commonly known as metaheuristics, as they make few, or no, assumptions about

the problem being optimized and are able to search very large populations of
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candidate solutions. Beyond DE algorithms, PSO algorithms were also frequently

used. However, based on the experimental results from our previous studies Zuo

et al. (2017a), their performance and stability on this class of problems are inferior,

so we chose a DE algorithm to optimize the parameters of the transformation

mappings and construct the target model. Five-fold cross validation was used for

the construction, so all results are shown in the form “mean±variance”.

5.4.2 Validation of algorithm effectiveness

As described above, 12 experiments simulating homogeneous domain adaptation

with fuzzy rule-base models were conducted. The results are shown in Table 5.2.

The left column in Table 5.2 indicates the source and target domains. For

example, ‘5r to 4r’ indicates that the source domain is ‘dataset 5r’, and the target

domain is ‘dataset 4r’. The second column shows the RMSE of the source model

on the target data without labels HHHU , which is treated as the baseline of the transfer

learning problem. The results in columns 3-5 are the RMSE of the models Mt
1, Mt

2

and Mt
3, on target data HHHU . The model with the best performance among Mt

1, Mt
2

and Mt
3 was then selected as the final target model Mt

. The last column displays

the RMSE of Mt
on HHHU , which is simply the minimum value from columns 3-5.

Comparing the values in the second and sixth columns of Table 5.2, we

can conclude that the proposed FHoDA method efficiently transfers knowledge

between the domains and greatly improves the ability of the modified model

to solve regression tasks in the target domain. In addition to validating the

effectiveness of the proposed method, we also analyzed the performance of

models Mt
1, Mt

2 and Mt
3. In nine of the twelve experiments, model Mt

2 – the

algorithm that changes the output space – outperformed the other two models, Mt
1,

Mt
2 and Mt

3, the algorithm that changes the input space, provided an advantage in

only three experiments, while model Mt
3, Mt

2 and Mt
3, which changes both spaces,
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was inferior in all 12 experiments. That said, we cannot assert that Mt
3 will always

fail to compete because the performance of these three models heavily depends

on the dataset. The impracticality of experimenting with all, or at least enough,

datasets means we need to retain an algorithm that changes both the input and

output spaces in our method for the foreseeable future.

Moreover, since target data without labels HHHU are used to improve model

Mt
1’s performance, Table 5.3 compares the RMSE of model Mt

1 when built with

and without target data that had no labels. Lower values are shown in bold.

The results show that using target data HHHU for training was better in ten of the

twelve experiments – a clear performance improvement for Mt
1. However, in two

experiments, using target data without labels had a negative impact. The cause

may lie in the model’s construction. If some of the target data with labels were

located at the junction of two clusters (fuzzy rules), the utilization of HHHU , finding

the h-nearest data without labels for each target data with response, will result in

an inappropriately constructed model.
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Table 5.2 Results of the twelve experiments

Source to target
RMSE of the models

Ms Mt
1 Mt

2 Mt
3 Mt

5r to 4r 5.0019± 1.0756± 0.6221± 1.0207± 0.6221±
0.0000 0.0004 0.0119 0.0253 0.0119

5r to 3r 4.1156± 0.8962± 0.9803± 1.4873± 0.8962±
0.0000 0.0083 0.0553 0.0553 0.0083

5r to 2r 5.5329± 0.5573± 1.0150± 1.7513± 0.5573±
0.0000 0.0005 0.3262 0.7348 0.0005

4r to 3r 1.1917± 2.0996± 0.6364± 2.2208± 0.6364±
0.0000 0.1718 0.0211 0.6394 0.0211

4r to 2r 2.2465± 1.5711± 0.9608± 1.2663± 0.9608±
0.0000 0.0108 0.0855 0.3276 0.0855

3r to 2r 2.3964± 0.5772± 0.6980± 1.0758± 0.5772±
0.0000 0.0005 0.1221 0.0067 0.0005

2r to 3r 2.2852± 0.8074± 0.6862± 0.8522± 0.6862±
0.0000 0.0044 0.0036 0.0061 0.0036

2r to 4r 2.3701± 1.2947± 0.6618± 0.7212± 0.6618±
0.0002 0.0039 0.0031 0.0017 0.0031

2r to 5r 6.4372± 3.7228± 1.0628± 3.2088± 1.0628±
0.0000 0.0002 0.0245 4.4997 0.0245

3r to 4r 1.0709± 0.8457± 0.6173± 0.9669± 0.6173±
0.0002 0.0005 0.0024 0.0045 0.0024

3r to 5r 4.5296± 2.5397± 1.4062± 1.9163± 1.4062±
0.0005 0.0014 0.0073 0.0726 0.0073

4r to 5r 4.2761± 3.0614± 1.3590± 2.3501± 1.3590±
0.0165 0.0037 0.0026 0.0070 0.0026
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Table 5.3 Mt
1 built using/not using HHHU - model comparison

Source to target datasets
RMSE of the models

model Mt
1 (not using HHHU ) model Mt

1 (using HHHU )

5r to 4r 1.0781± 1.0756±
0.0004 0.0004

5r to 3r 0.9352± 0.8962±
0.0057 0.0083

5r to 2r 0.5602± 0.5573±
0.0016 0.0005

4r to 3r 2.1269± 2.0996±
0.2059 0.1718

4r to 2r 1.5981± 1.5711±
0.0310 0.0108

3r to 2r 0.5882± 0.5772±
0.0016 0.0005

2r to 3r 0.8080± 0.8074±
0.0093 0.0044

2r to 4r 1.2522± 1.2947±
0.0009 0.0039

2r to 5r 3.6904± 3.7228±
0.0012 0.0002

3r to 4r 0.8876± 0.8457±
0.0009 0.0005

3r to 5r 2.5273± 2.5397±
0.0007 0.0014

4r to 5r 3.0755± 3.0614±
0.0110 0.0037

5.4.3 Parameter sensitivity analysis

Within FHoDA’s optimization procedure, some parameters play an important role

in model construction in the target domain. The three groups of experiments,
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shown in Figs. 5.2 - 5.4, were designed to explore the impact of these parameters.

Fig. 5.2 depicts the effect of parameter p (the number of nodes used to construct

mappings for the input space) on model M̂t
1’s performance. Fig. 5.3 shows model

Mt
2’s performance with a varying q (the number of nodes used when building the

mappings for the output space). Fig. 5.4 charts model M̂t
1’s performance with

different values for h (the number of target data without labels selected for each

target data with response). Only the results for the experiments ‘5r to 4r’, ‘5r to

3r’ and ‘5r to 2r’ have been included in the figures to illustrate the impact of the

parameters on the performance of the model.

Observing the results shown in Fig. 5.2, the parameter p had a slight impact

on model construction in experiment ‘5r to 2r’. The variations in the model’s

performance as p varied were almost the same in experiments ‘5r to 4r’ and ‘5r to

3r’. When p was changed from 2 to 4, the RMSE increased, then decreased with

a p of 5, and peaked at a p of 6.

Figure 5.2 Sensitivity analysis of parameter p in three experiments
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Figure 5.3 Sensitivity analysis of parameter q in three experiments

The results in Fig. 5.3 show no obvious changes to model construction with

different values of q in the ‘5r to 4r’ experiment. In ‘5r to 3r’, the RMSE shows a

rising trend at q values greater than 4, and, in ‘5r to 2r’, the RMSE fluctuates as

the q values change.

Figure 5.4 Sensitivity analysis of parameter h in three experiments
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Fig. 5.4 shows fluctuations in all three experiments. The model’s best per-

formance appears when h=8 in ‘5r to 4r’, h =10 in ‘5r to 3r’, and h =8 in ‘5r

to 2r’. Notice that the performance of the model does not always develop an

increasing trend. When more data without labels around the target data with

labels are selected to improve model construction, data at greater distances are

found. It is unreasonable to suppose that data at large distances will have similar

labels, so a growing number of selected target data without labels will eventually

lead to a negative impact on the model’s optimization.

5.5 Comparison of two ways of constructing map-

pings

Two experiments are executed to compare the two ways of constructing the

mappings for the input space, the nonlinear functions and the piecewise linear

functions.

Experiment A: Data with obvious partitions.

In this experiment, we utilize a source dataset that has obvious partitions. The

source data (left) and target data are shown in Fig. 5.5 and Fig. 5.6.

Figure 5.5 Source data Figure 5.6 Target data
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There are 500*3 instances in both source domain and target domain. But in

target domain, only 1% data are as training set, and the remaining 99% data are

as testing data. We can see that the distributions of source data and target data are

quite different. The partition in source domain is quite obvious, but there are no

obvious bounds between the clusters in target domain. Therefore, if there are only

few data in target domain, then they can’t guarantee the accuracy of the trained

model, and the performance of the built model heavily depends on the positions

of the training data. Especially, if the training data locate in the cross-section of

the clusters, then the accuracy of the trained model in testing model maybe quite

bad.

Here, nonlinear continuous functions based on sigmoid functions and piece-

wise linear functions are used respectively to build the mappings for input vari-

ables. Some important parameters in model Mt
are shown in Table 5.4 and Table

5.5.

Table 5.4 Parameters in model Mt
(nonlinear mappings)

Fuzzification coefficient in FCM m = 1.2

Number of sigmoid functions in the nonlinear mappings P = 5

The lower and upper bounds of optimized parameters

α ∈ [0,1]

β ∈ [−5,5]
ω ∈ [−5,5]

PSO is used here to get the optimal parameters α,β , and ω of mappings Φ.

And in PSO, the given ranges of parameters are quite important, because they

determine the researching spaces.
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Table 5.5 Parameters in model Mt (piecewise linear mappings)

Fuzzification coefficient in FCM m = 1.2

Number of cutoff points in piecewise linear functions q= 4

q is a parameter that control the shape of the piecewise linear functions.

The experimental results are shown in Table 5.6.

Table 5.6 The regression results

Q 0.0000

Q1 17.8208

Q2 11.6251

Q3(Nonlinear mappings) 1.4424

Q3(Piecewise linear mappings) 2.7590

Since the target data do not have obvious partitions, the few data in target

domain can’t train a well-performed model Ms
, which has a high mean square

error in testing data (Q2 = 11.6251). Our proposed new method can build a

good model for target domain, using the nonlinear mappings or piecewise linear

mappings.

Apart from the effectiveness of the proposed method, we are quite care about

the mappings of the input variables. Figs. 5.7 and 5.8 and show the nonlinear

mappings and piecewise linear mappings for input variable 1 (red) and input

variable 2 (blue).
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Figure 5.7 Nonlinear mappings Figure 5.8 Piecewise liner mappings

Experiment B: Data without obvious partitions.

In this experiment, the data in source domain doesn’t have obvious partitions.

Source data (left) and target data (right) are draw in Fig. 5.9 and Fig. 5.10

respectively.

Figure 5.9 Source data Figure 5.10 Target data

From Fig. 5.9 we could see that there have some crossed regions in the source

data. The setting of the parameters in this experiment is the same with that in

Experiment A, shown in Tables 5.4 and 5.5. The experimental results are shown

in Table 5.7.
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Table 5.7 The regression results

Q 0.0068

Q1 4.5450

Q2 3605.0528

Q3(Nonlinear mappings) 2.0409

Q3(Piecewise linear mappings) 3.0962

Because the clusters in source domain have some overlapping regions, the

mean square error of model Ms in source domain is 0.0068 that isn’t like the result

in Experiment A, close to zero. The model Mt
has a big error when predicting the

value in testing data, which indicates that the data in training set can’t identify

the partitions of target data. Since in the experiment setting, the 15 training data

are randomly selected from the whole target dataset (randomly select 5 instances

in every cluster ), the training set in two experiments maybe quite different, and

this leads to the different values of Q2 in two experiments. Although the training

data in target domain are not quality, the proposed method can still use them to

train good mappings for the input variables, and the resulting model Mt has a low

error in testing set, 2.0409 and 3.0962 respectively when nonlinear mappings and

piecewise linear mappings are constructed.

The mappings of input variable 1 (red) and input variable 2 (blue) are shown

in Figs. 5.11 and 5.12.
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Figure 5.11 Nonlinear mappings Figure 5.12 Piecewise linear mappings

5.6 Application to the classification problems

The experiments in this subsection include two parts that are distinguished by

different relationships between source domain and target domain. Firstly, we

will consider the situation that the distributions of source data and target data are

different. In addition, since in our experiments all the datasets follow Gaussian

distributions that are determined by mean values and variances, the experiments

in the first part are also divided into three subparts to explore the validity of

the proposed method to address different situations in transfer learning. The

second part focuses on the situation that the patterns of classes in two domains

have changed. In this section, only the method of changing the input space

are implemented to modify the existing models and construct models for target

domain.

Experiment A: The distributions of datasets in two domains change

Here, we use the 2-D synthetic data, and consider the following three discrep-

ancies of distributions in two domains:
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Table 5.8 Three cases of different distributions

Case 1 The mean values are different, and the variances are the same.

Case 2 The mean values are the same, and the variances are different.

Case 3 The mean values are different, and the variances are different.

The identical fuzzy transfer learning model is constructed for the three cases,

and the parameters in model Mt are listed in Table 5.9.

Table 5.9 Parameters in model Mt
(nonlinear mappings)

fuzzification coefficient in FCM m = 1.2

number of sigmoid functions in the nonlinear mappings P = 5

The lower and upper bounds of optimized parameters

α ∈ [0,1]

β ∈ [−5,5]
ω ∈ [−5,5]

In the first case, the mean values of datasets in source and target domains

are different, but the variances are the same. Table 5.10 gives the information of

datasets in source domain and target domain.

Table 5.10 Information of datasets in source and target domains

Source data Target Data

1 μs
1 = [1 1] σ s

1 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠ 1 μ t

1 = [2 1] σ t
1 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠

2 μs
2 = [1 3] σ s

2 =

⎛
⎜⎝0.42 0

0 0.42

⎞
⎟⎠ 2 μ t

2 = [5 3] σ t
2 =

⎛
⎜⎝0.42 0

0 0.42

⎞
⎟⎠

3 μs
3 = [3 2] σ s

3 =

⎛
⎜⎝0.32 0

0 0.32

⎞
⎟⎠ 3 μ t

3 = [2 4] σ t
3 =

⎛
⎜⎝0.32 0

0 0.32

⎞
⎟⎠
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From Table 5.10 we can see that datasets from two domains are labelled

according to the distributions, so data with different labels (1, 2, and 3) follow

different distributions.

The results of this experiment are listed in Table 5.11.

Table 5.11 Accuracy of models in predicting the labels in domains

Accuracy of model Ms in source domain 98.87%

Accuracy of model Ms in target domain 38.20%

Accuracy of model Mt
in target domain 80.20%

Because the mean values of datasets in two domains are different, model Ms

trained using source data doesn’t have a good performance in classifying the

data in target domain, the accuracy is only 38.20%. Our method can improve

the accuracy of classifying target data, and the accuracy of the new model Mt
is

80.20% in target domain.

In the second case, the mean values of data in two domains are the same, but

the variances are different. Table 5.12 gives the experiments setting of the second

case.

Table 5.12 Information of datasets in two domains

Source Data Target Data

1 μμμs
1 = [1 1] σσσ s

1 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠ 1 μμμ t

1 = [1 1] σσσ t
1 =

⎛
⎜⎝0.42 0.1

0.1 0.42

⎞
⎟⎠

2 μμμs
2 = [1 3] σσσ s

2 =

⎛
⎜⎝0.42 0

0 0.42

⎞
⎟⎠ 2 μμμ t

2 = [1 3] σσσ t
2 =

⎛
⎜⎝0.52 0.1

0.1 0.52

⎞
⎟⎠

3 μμμs
3 = [3 2] σσσ s

3 =

⎛
⎜⎝0.32 0

0 0.32

⎞
⎟⎠ 3 μμμ t

3 = [3 2] σσσ t
3 =

⎛
⎜⎝0.42 0.1

0.1 0.42

⎞
⎟⎠
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The data are still labeled based on the distributions. Although the coverage

of data in two domains is different, partitions of data in different classes are still

very obvious. Therefore the classifier trained using source data will have a good

performance in classify the data in target domain, and this has been verified by

the experiment result. The accuracy of the existing model in predicting the labels

of source data is 98.47%, and in predicting the labels of data in target domain

is 97.33% that means the existing model can address the classification tasks in

target domain very well.

Finally, we consider the third case that the mean values and variances of data

in two domains are both different. Table 5.13 gives the data parameters in two

domains.

Table 5.13 Information of two datasets

Source Data Target Data

1 μμμs
1 = [1 1] σσσ s

1 =

⎛
⎜⎝0.52 0

0 0.52

⎞
⎟⎠ 1 μμμ t

1 = [1 4] σσσ t
1 =

⎛
⎜⎝0.42 0.1

0.1 0.42

⎞
⎟⎠

2 μμμs
2 = [1 3] σσσ s

2 =

⎛
⎜⎝0.42 0

0 0.42

⎞
⎟⎠ 2 μμμ t

2 = [2 1] σσσ t
2 =

⎛
⎜⎝0.52 0.1

0.1 0.52

⎞
⎟⎠

3 μμμs
3 = [3 2] σσσ s

3 =

⎛
⎜⎝0.32 0

0 0.32

⎞
⎟⎠ 3 μμμ t

3 = [3 3] σσσ t
3 =

⎛
⎜⎝0.42 0.1

0.1 0.42

⎞
⎟⎠

Table 5.14 Accuracy of models in predicting the labels in domains

Accuracy of model Ms in source domain 98.60%

Accuracy of model Ms in target domain 37.20%

Accuracy of model Mt
in target domain 78.07%

The experiment results are listed in Table 5.14. Comparing Table 5.11 with

Table 5.14, since the variances of datasets also change, the gap between source
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domain and target domain becomes large, and the accuracy of the existing model

in predicting labels of target data in case 3 (37.20%) is smaller than that in case 2

(38.20%). And the accuracy of the new model Mt
for target domain is 78.07%,

much higher than 37.20%.

Experiment B: The pattern of classes in two domains change.

In this part, we consider the situation that the distributions of source data

and target data are the same but the pattern of classes has changed, it means for

example, half data with label 1 in source domain got label 1 in target domain, half

data with label 1 and half data with label 2 in source domain got label 2 in target

domain, and half data with label 2 and all data with label 3 in source domain

got label 3 in target domain. The partition of datasets in target domain is clearly

shown in Figs. 5.13 and 5.14, and in order to compare source and target domain,

the partition of source datasets is also shown in Figs. 5.13 and 5.14.

Figure 5.13 Instances in source domain Figure 5.14 Instances in target domain

From Figs. 5.13 and 5.14, we can clearly see the partition of data, where red

points represent instances with label 1, blue points represent instances with label

2, and green points represent instances with label 3. Obviously, the partition of

data in source domain and target domain are quite different. From the experiment

results shown in Table 5.15, we draw the conclusion that our method could deal

with the situation that the pattern of classes changes in transfer learning very well.
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Table 5.15 Accuracy of models in predicting the labels in domains

Accuracy of model Ms in source domain 99.60%

Accuracy of model Ms in target domain 66.47%

Accuracy of model Mt
in target domain 92.71%

5.7 Summary

This chapter focuses on the special fuzzy domain adaptation case where the

number of fuzzy rules is not identical in the source and target domain. Based on

the fact that the performance of transfer learning is good if the number of fuzzy

rules in the source domain is no less than that in the target domain, a method is

proposed to deal with the situation, where the fuzzy rules do not match in two

domains. Actually, this can be created as a criterion when selecting the source

domain, i.e. choosing the source domain that has more fuzzy rules than the target

domain. Unfortunately, if there are only source domains with less fuzzy rules,

we could adopt the approach of reconstructing the source model with more fuzzy

rules, and using them to perform the transfer learning procedure. The experiments

validate the proposed method when handling the fuzzy rule mismatch case, and

analyze the sensitivity of some parameters of constructing the nonlinear mappings

for input and output spaces. except for the nonlinear mappings are used to change

the input space of the model, piecewise linear mappings are also adopted to

modify the existing model. Moreover, the method is used to solve the domain

adaptation classification problem with multiple labels, and the results demonstrate

a good capability of our method in this scenario.



Chapter 6

Fuzzy Transfer Learning Based on

IGMM and Active Learning

6.1 Introduction

Although some fuzzy rule-based methods are presented to cope with the domain

adaptation problems, two main issues are still outstanding. One critical factor

that affects the performance of the constructed fuzzy models is to correctly

determine the number of fuzzy rules to use. Given a set of data points without

any information about the data’s distribution, it is difficult to find an appropriate

number of clusters to differentiate the data. The traditional brute-force approach

of trying every number is time-consuming and rather inefficient. The second issue

is how to acquire enough labeled data of sufficiently high quality to build a model

for the target domain. For example, even if some labeled data is available, if all

or most of that data only pertain to one aspect of the domain, the constructed

model will contain inherent bias. Hence, in this chapter, we propose a method for

dealing with these two issues to improve the accuracy of target models.
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The rest of this chapter is organized as follows. Section 6.2 presents the

preliminaries of this chapter, including the IGMM and active learning. Section

6.3 details the fuzzy rule-based method and how an IGMM and active learning

are used to improve the performance of the target model. Sections 6.4 and 6.5

present the validation tests using synthetic and real-world datasets. Finally, the

summary of this chapter is discussed in Section 6.6.

6.2 Preliminaries

This section gives an overview of the IGMM and active learning, which will be

applied in the presented method.

6.2.1 The infinite Gaussian mixture model

The finite Gaussian mixture model with k components (k Gaussian distributions)

is written as

p(y|μ1,μ2, . . . ,μk,s1,s2, . . . ,sk,π1,π2, . . . ,πk) =
k

∑
j=1

π jN(μ j,s−1j ) (6.1)

where μ j are the means, s j are the precisions (inverse variances), and π j are the

mixing proportions (which must be positive and sum to one). N is a (normalized)

Gaussian distribution with a specified mean and variance, and y = {y1, . . . ,yn}
are the observations. We wish to find the best solution (π j,μ j,s j) with respect

to y. However, k needs to be selected by a user and is sometimes sensitive to

the training process. Thus, researchers find selecting k automatically a more

desirable approach, which means that we need to find the best k even when

k→ ∞. (Rasmussen, 2000) proposed an IGMM to explore the properties of 6.1

when k→ ∞. If we assume μ j has Gaussian priors p(μ j|λ ,r)∼ N(λ ,r−1,s j) has
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Gamma priors p(s j|β ,ω) ∼ G(β ,ω−1), and π j is given a symmetric Dirichlet

prior (also known as multivariate beta) with a concentration parameter α/k, the

limitation of the conditional posterior, when k→ ∞, is calculated by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(ci = j|c−i,μ j,s j,α) ∝ n−i, j
n−1+α s

1
2
j e−

s j(yi−μ j)
2

2 , for component j where n−i, j > 0

p(ci 	= ci′ for alli
′ 	= i|c−i,λ ,r,β ,ω,α) ∝

α
n−1+α

∫
p(yi|μ j,s j)p(μ j,s j|λ ,r,β ,ω)dμ jds j

(6.2)

where ci is a stochastic indicator variable taking its values from 1 . . . k, c−i =

(c1, . . . ,ci−1,ci+1, . . . ,cn), and n−i, j is the number of observations, excluding yi,

that are associated with component j. Thus, we have conditional posterior for a

single indicator given all the other indicatorsμ j and s j. Using 6.2 and the Gibbs

sampling method, we can determine the value of k (i.e., by finding a new class

or removing an existing class) based on the posterior probability for a single

indicator, which means k can be selected automatically in a one-time sampling

process (Rasmussen, 2000). After completing the sampling process T times, the

k with the highest frequency is chosen as the final selection.

6.2.2 Active learning

Active learning is a subfield of machine learning. The key hypothesis behind

active learning is that the performance of a learning algorithm can be boosted if it

is allowed to choose the data from which it learns (Settles, 2010). In supervised

machine learning systems, a large number of labeled instances are required to

build a model. Sometimes these labels come at little or no cost, but in other cases,

obtaining labels can be very difficult, time-consuming, or expensive. Active

learning is well-suited to such scenarios, where labeled data is hard to obtain. A
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variety of different active learning strategies have been used to select unlabeled

data for a human annotator to label. However, all these strategies require the

“informativeness” of the unlabeled instances to be evaluated through a query strat-

egy, such as uncertainty sampling (Lewis and Catlett, 1994), query-by-committee

(Burbidge et al., 2007), expected model change (Settles et al., 2008), expected

error reduction (Guo and Greiner, 2007), variance reduction (Settles and Craven,

2008), or a density-weight method (Xu et al., 2007).

6.3 Domain adaptation through active learning

This section presents the framework of our method and the motivation behind

each procedure in overview and then in more detail. A theoretical analysis of the

method’s performance index is also included.

6.3.1 The framework

The proposed method consists of four main procedures: using an IGMM to reveal

the structure of the data; applying active learning techniques to augment the

information in the target domain; training the model in the source domain; and,

finally, executing knowledge transfer in the form of fuzzy rules from the source

domain to the target domain. The framework is shown in Fig. 6.1.

When constructing a Takagi-Sugeno fuzzy model, the number of clusters

(fuzzy rules) should be known beforehand. However, it is often hard to determine

the optimal number of clusters for a specific dataset without additional information.

The most recent methods traverse all the numbers in a range and select the one

with the best performance – a brute-force approach. However, this approach is

costly and, sometimes, finding the optimal range is not easy.
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Figure 6.1 The framework of the active learning-based fuzzy transfer learning method

IGMM provides a solution for clustering the data with no necessary prior

knowledge to limit the number of clusters to traverse. The idea behind IGMM

is to fit the data distribution by mixing Gaussian distributions – a process that

can be treated as a data structure detection procedure, which is of benefit to all

cluster-based systems.

IGMM’s role in the first procedure is to describe the structure of the data,

which is beneficial for determining the number of fuzzy rules to use when con-

structing the subsequent models for both domains. Knowing the data structures

in each domain is very important, as it greatly influences the effectiveness of the

knowledge transfer process. For example, if the data structures in both domains

are very similar, i.e., they have the same number of clusters and the means of the

combined Gaussian distributions are close, then we can assume that the source

and target domains have a strong corresponding relationship. Conversely, if the

source and target domains have different numbers of clusters and the means of the

distributions are quite far, it is reasonable to assume they have a weak relationship.

To extract useful information, different transfer strategies should be adopted for
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different domain relationships. Thus, IGMM also provides a basis for guiding the

transfer procedure.

After the correlation between two domains has been evaluated, the information

in the target domain is assessed to determine the potential knowledge that can

be transferred. The data in the target domain are divided into two groups: the

instances with labels and the instances without labels. Compared to unlabeled

data, labeled data contain more information and have a greater influence on the

outcomes of prediction problems, especially regression tasks. Unlike classification

tasks, where the results largely depend on the distribution and structure of the data,

regression prediction tasks rely on more complicated factors. For instance, in

the Takagi-Sugeno fuzzy regression model, the data distributions only determine

the conditions of the fuzzy rules, i.e., whether or not each instance adheres to

a particular fuzzy rule. The conclusions and the linear functions are governed

by other factors that have a more critical impact on the final output. This is also

the main reason that unsupervised domain adaptation is infeasible for regression

tasks where only unlabeled data are available.

Therefore, labeled target data is necessary for the learning process in domain

adaptation problems, and the quality of the labeled data greatly determines the

quality of the transfer learning results. Thus, evaluating the quality of the labeled

target data is an important part of the process if the results are to be used as a

basis for subsequent procedures. Based on the characteristics of Takagi-Sugeno

fuzzy model, the aim is to try and ensure the labeled data is a member of as many

clusters as possible. If the labeled data in the target domain are spread among all

clusters, we can assume the information is sufficient to train a well-performing

model. Otherwise, if all the labeled data fall into one cluster or do not overlap

with all the clusters, the information in the target domain is considered to be of



6.3 Domain adaptation through active learning 151

low quality and needs to be augmented. Employing the IGMM and an active

learning technique makes augmenting the information in target domain a reality.

The IGMM’s “detection procedure” reveals the cluster structure of the unla-

beled data in the target domain. Additionally, the IGMM evaluates the quality

of the existing labeled target data, if lacking, the active learning technique adds

information by selecting some instances from the unlabeled group for annotation

by an expert. The process of selecting the unlabeled target data obeys one of the

core principles of active learning: the instances that contain the most information

are chosen. The informativeness of each instance is defined, which then supports

the following data selection process. Thus, with the help of active learning, the

number of the labeled target data is increased, and the information in the target

domain is expanded.

The first two procedures can be thought of as pre-processing and preparation

steps for constructing the models for each domain in the following step. A Takagi-

Sugeno fuzzy model for the source domain is trained, and a set of fuzzy rules

is generated. However, due to the discrepancies between the source and target

domains, the fuzzy rules in the source domain cannot be directly used with the

target data; they need to be modified.

Two approaches are used to modify the existing fuzzy rules: changing the

input variables and changing the output variables. Each input variable is assumed

to be determined by some hidden features, so the different distributions of input

variables in the two domains are due to the different hidden features or different

weights of these features. The idea behind changing the input variables is to

adjust the number and weights of the hidden features so that the changed input

distribution is more compatible with the target data. The approach in changing

the output space is to revise the results of the linear functions to make the new
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rules more suitable for regression tasks in the target domain. These modifications

are made through an optimization process.

6.3.2 A transfer learning method based on IGMM and active

learning

Consider two domains: a source domain with a large amount of labeled data,

and a target domain with very little labeled data. The dataset in the source do-

main is denoted as DDD = {(xxxs
1, ys

1), · · · ,(xxxs
Ns
, ys

Ns
)}, where xxxs

k ∈ Rn (k = 1, · · · ,Ns)

is an n-dimensional input variable, the label ys
k ∈ R is a continuous variable,

and Ns indicates the number of data pairs. The dataset in the target domain HHH

consists of two subsets: one with labels and one without. HHH = {HHHL,HHHU} =
{{(xxxt

1,y
t
1), · · · ,(xxxt

Nt1
,yt

Nt1
)}, {xxxt

Nt1+1
, · · · ,xxxt

Nt
}}}, where xxxt

k ∈ Rn (k = 1, · · · ,Nt) is

the n-dimensional input variable, yt
k ∈ R is the label only accessible for the first

Nt1 data. HHHL includes the instances with labels, and HHHU contains the data without

labels. The number of instances in HHHL and HHHU are Nt1 and Nt−Nt1 respectively,

and satisfy Nt1� Nt , Nt1� Ns.

In this problem setting, a well-performing model can be built for the source

domain because there are sufficient labeled data. However, that model cannot

be used directly to solve regression tasks in the target domain because the rules

needs to be modified to fit the target data first. The following steps outline a

fuzzy rule-based transfer learning method, based on IGMM and active learning,

to modify the source model for use with the target data.

Step 1. Applying IGMM to discover the structure of data

This procedure reveals the data structure of both domains, with two benefits.

First, identifying the data structures of each domain provides insights into the

relationships between the data, which can be used to guide the transfer learning
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procedure. Second, understanding the data structures is conducive to selecting

the most informative labeled data for the target domain.

Through two separate parses of an unsupervised learning process, IGMM

simulates the distributions of the data in the source and target domains. The

input data are {xxxs
1, · · · ,xxxs

Ns
} and {xxxt

1, · · · ,xxxt
Nt
}. IGMM’s exploration process is

illustrated in the following example.

Figure 6.2 Example of the results for IGMM

Fig. 6.2 shows the probabilities of various data structures in a dataset in

histogram form. The x-coordinate represents the number of Gaussian distributions,

i.e., the number of clusters, and the y-coordinate represents the number of times

that the dataset is divided into the corresponding clusters. As the figure shows, in

2000 iterations of IGMM, the dataset was divided into three clusters more than

1000 times, into four clusters about 500 times, into one cluster about 250 times,

and into two or five clusters less than 100 times. Therefore, we can conclude,

with high probability, that the dataset is composed of three Gaussian distributions

(clusters).
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Suppose the cluster range for the source domain is [csmin, csmax], where

csP has the highest probability. Similarly, the range for the target domain is

[ctmin, ctmax], with ctP as the highest probability. Comparing the histograms

of the data reveals insights into the relationship between the two domains that

can be used to select an appropriate transfer strategy. For instance, if csP is equal

to ctP, then the corresponding parameters of the Gaussian distributions are also

similar, which means the source and target domains are close, and the knowledge

of source domain is likely to be highly beneficial in constructing the model for

the target domain. Additionally, the number csP (=ctP) provides a good guide

as to the number of fuzzy rules to use to build the prediction models for each

domain. Further, this type of analysis can also be used to inform domain selection.

For example, given multiple source domains to choose from, comparing the data

structure of each candidate may reveal the most suitable match for the target

domain. And, if the none of the data structures match, i.e., csP is not identical to

ctP, a different transfer strategy can be explored. However, even with the results of

the structural analysis, determining the optimal number of fuzzy rules to use when

constructing the models may still be difficult. Therefore, a brute-force approach

across a reduced range of cluster numbers may be required to select the one that

delivers the best performance. The range for the number of clusters is:

[cmin,cmax] (6.3)

where cmin =max{2,min{csmin,ctmin}}, and cmax =min{csmax,ctmax}. Re-
stricting cmin to not less than 2 ensures the nonlinearity of the model.

Step 2. Using active learning to augment the labeled target data

The purpose of this procedure is to increase the amount information in the

target domain by actively selecting and labeling some of the data.
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The procedure begins with an evaluation of the existing labeled target data.

Given the analysis in Step 1, suppose we choose to construct the model with three

fuzzy rules c(= 3). FCM clusters the input data for the target domain into the

membership matrix U . The index of HL in Hdetermines the membership of all

the labeled target data to all the clusters. The membership matrix for the labeled

target data is denoted as UL:

UL =

⎛
⎜⎜⎜⎜⎝
0.2 0.7 0.1

0.7 0.1 0.2

0.5 0.2 0.3

⎞
⎟⎟⎟⎟⎠ (6.4)

The number of labeled data in each cluster is counted, with each instance

counted in the cluster with the highest membership. The statistic result is as

follows:

SUL =

(
2 1 0

)
(6.5)

The first two clusters contain labeled data, but the third cluster does not,

so active learning is used to augment the information in the target domain and,

hopefully, populate this cluster.

“Informativeness” is the key criteria for which data to select for labeling in

each cluster. Essentially, informativeness is a measure of information contained

in the data, and the level of informativeness is highly dependent on the cluster it

is grouped with, i.e., an instance will have a different level of informativeness in

different clusters. A concrete instance xxxt
k in the ith cluster is highly informative

if xxxt
k’s membership to the ith cluster is high. Thus, the informativeness of xxxt

k in

cluster i is defined as

Ii(xxxt
k) =Uki (6.6)
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Further, a threshold d determines the minimum number of labeled target data

needed for each cluster. Unlabeled data assessed as being highly informative

according to the above definition are then selected and sent to experts to be

annotated. Taking the example above, the d−2 unlabeled data with the highest

informativeness in the first cluster are selected for labeling. Similarly, d−1 and

d unlabeled data in the remaining two clusters are selected for labeling.

At the end of Step 2, the number of labeled target data has increased from Nt1

to 3d.

Step 3. Constructing a prediction model for the source domain

This procedure governs the construction of the source model Ms based on the

source dataset DDD. The formulation for model Ms follows

model Ms

if xxxs is Ai(xxxs, vvvs
i ), then ys is Li(xxxs,aaas

i ) i = 1,2, ...,c (6.7)

where vvvs
i are the centers of the clusters that determine the conditions of the fuzzy

rules, and aaas
i are the coefficients of the linear functions of the input variables that

govern the conclusions of the fuzzy rules.

The number of fuzzy rules c depends on the results of the analysis in Step 1.

If the data structure of the (chosen) source domain is similar to the data structure

of the target domain, c is set to csP(= ctP). If the data structures are divergent, c

is taken from the range [cmin,cmax].

Given a sufficient amount of labeled source data, a well-performing prediction

model Ms for the source domain can be built. However, the target domain will

invariably contain different data distributions to the source data, and the model

Ms would perform poorly if trained on the target data without prior modifications,

which leads to Step 4.
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Step 4. Modifying the existing fuzzy rules to fit the target data

Through this procedure, the hidden features in model Ms are adjusted, includ-

ing the amounts and weights, to modify the input space so that the distributions of

the input variables are more compatible with target data. This approach is based

on the assumption that the input variables in both domains have similar, or even

the same, hidden features.

The mappings with network structure are still applied to modify the input

space. The neurons in the hidden layers represent the connotative features to be

used as input variables. The transformation of these neurons through the layers

modifies their weights to ultimately construct input variables with new meanings

and distributions that can be used to build a new target model Mt
.

After the mapping procedure, the fuzzy rules are transformed into

if xxxt
k is Ai(Φ(xxxt

k), vvvs
i ), then ys

k is Li(Φ(xxxt
k),aaa

s
i ) i = 1,2, · · · ,c (6.8)

With this modified input space, the new fuzzy rules, including the cluster

centers and the linear coefficients can be used to predict outputs with the target

data.

Φ is mapped through an optimization procedure using the target data, which

was augmented in Step 2 to ensure a sufficient level of labeled data to construct

a well-performing model. Therefore, once optimized, the cost function in 6.9

minimizes the distance between the outputs of model Mt
and the real values in

the target data. The cost function follows:

S =

√√√√ 1

Nt1

Nt1

∑
k=1

(
c

∑
i=1

Ai(Φ(xxxt
k),Φ(vvvs

i ))Li(Φ(xxxt
k),aaa

s
i )− yt

k)
2+

λ2

2
wT w (6.9)
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The overall algorithm for the proposed method described above is provided in

Algorithm 2.

Algorithm 2. Domain adaptation procedure based on active learning

Input: DDD, HHH, Output: YYYU for HHHU 1. Apply IGMM to {xxxs
1, · · · ,xxxs

Ns
} and

{xxxt
1, · · · ,xxxt

Nt
}

2. Decide the number of clusters c

3. Apply active learning to augment target information

3.1 give the threshold d

3.2 validate the current labeled target data

3.3 find out the data with most information in each cluster

3.4 select the target data and label them

4. Train source model Ms

5. Modifying the existing model to get Mt

6. Use Mt to predict the response YYYU for HHHU

6.3.3 Performance index

This section provides the formulations for the performance indexes of the con-

structed models used to evaluate the proposed method.

Each model is constructed through five-fold cross-validation. The source

model Ms is trained on the dataset DDD, and the root mean square error (RMSE) of

Ms on training set is calculated by

Q =

√√√√ 1

Ns1

Ns1

∑
k=1

(
c

∑
i=1

Ai(xxxs
k,vvv

s
i )Li(xxxs

k,aaa
s
i )− ys

k)
2 (6.10)
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where vvvs
i are the centers of the clusters and aaas

i are the linear functions of the fuzzy

rules . xxxs
k is the input variable for the source data, and ∑c

i=1Ai(xxxs
k,vvv

s
i )Li(xxxs

k,aaa
s
i ) is

the corresponding output of the model Ms. ys
k is the real output for xxxs

k.

The probability of model Ms is tested on the target data with

Q1=

√√√√ 1

Nt

Nt

∑
k=1

(
c

∑
i=1

Ai(xxxt
k,vvv

s
i )Li(xxxt

k,aaa
s
i )− yt

k)
2 (6.11)

where vvvs
i and aaas

i are the parameters of source model. xxxt
k is the input variable of

target data, and ∑c
i=1Ai(xxxt

k,vvv
s
i )Li(xxxt

k,aaa
s
i ) is the corresponding output of the model

Ms. yt
k is the real output for xxxt

k.

The target model Mt
is tested on the unlabeled dataset to verify the generaliz-

ability of the constructed model with

Q2=

√√√√ 1

Nt−d

Nt−d

∑
k=1

(
c

∑
i=1

Ai(Φ(xxxt
k),Φ(vvvs

i )Li(Φ(xxxt
k),aaa

s
i )− yt

k)
2 (6.12)

where xxxt
k ∈ HU are the data without labels. The real labels yt

k are only available in

the testing procedure.

6.4 Experiments on synthetic datasets

In this section, we present the experiments conducted with synthetic datasets

to validate the proposed method. We specifically evaluated the impact of the

IGMM and the active learning technique on the performance of the constructed

models. Each experiment was conducted in two stages. The first stage tested

the IGMM’s ability to explore the structure of data as a basis for the knowledge



6.4 Experiments on synthetic datasets 160

transfer procedure. The second stage tested the ability of the active learning

technique to optimally augment information in the target domain.

6.4.1 Exploring data’s structure using IGMM

The design of a well-performing transfer learning algorithm depends on the

relationship between the source and target data. In this experiment, we considered

two cases to simulate different relationships between the domains. The first case

assumes that the source and target data stem from identical domains and, therefore,

their distributions are quite similar. The second case considers two quite different

source and target domains, where there is a great divergence in the data structures

between each domain. A different transfer strategy was applied in each case, and

IGMM plays a different role in each scenario.

6.4.1.1 Similar source and target data

Here, the target data was derived from the source domain, so the distributions

and structures of data in both domains are very similar. Thus, IGMM’s role is to

provide guidance with domain selection – a challenging issue in transfer learning.

For instance, suppose there are multiple source domains, but only one domain

is the most suitable for the target domain. If IGMM is able to easily find the

most suitable source domain, it would effectively improve the transfer learning

performance.

Three groups of experiments were executed to illustrate the role of IGMM

in selecting a source domain. In each group of experiments, the data in the

target domain was generated with a different number of clusters, and three source

domains with various numbers of clusters were prepared.

In the first experiment, IGMM was used to analyze the structure of the data

in these domains. From Fig. 6.3, we can see that the three source domains
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are divided into two, three, and four clusters, respectively, with the highest

probabilities. Moreover, the target data consists of two clusters with the highest

probability.

Figure 6.3 The data structure in Experiment 1

In analyzing the results of IGMM, the first source domain has the same

number of clusters as the target domain and should be the best choice for the target

domain. To verify this conclusion, knowledge from the three source domains was

transferred, in turn, to the target domain, and we compared the results to assess

the transfer performance. These results are shown in Table 6.1.

Table 6.1 Various source domains and a two-clusters target domain

datasets Q Q1 Q2

Source 1 (2) Target (2) 0.0441± 0.0006 2.2774± 0.0000 1.8487± 0.0350

Source 2 (3) Target (2) 0.0250± 0.0002 2.2743± 0.0000 1.8549± 0.0397

Source 3 (4) Target (2) 0.1023± 0.0009 2.5293± 0.0003 1.9929± 0.0481

The first two columns in Table 6.1 represent the datasets for the source and

target domains. The number in the brackets indicates the number of clusters in that



6.4 Experiments on synthetic datasets 162

dataset. All models were constructed through five-fold cross-validation; therefore,

the results in the last four columns are displayed in the form of “mean±variance”.
The third column is the RMSE of the source model on the source data, and a

low error means a well-performing regression prediction model was produced

for the source domain. The fourth column is the RMSE of source model on

the target data, which indicates that the source model is not compatible with

target data. The results in column five show the performance of the target models

constructed using the proposed methods: changing the input. The mean values in

the fifth column are less than in the fourth column, which means that the proposed

method has greatly improved the prediction accuracy of the existing model in the

target domain. In particular, comparing the results in the fifth column, we can

conclude that the first source domain showed the best performance and has the

same number of clusters as the target domain. This finding validates the role of

IGMM in selecting the most suitable domain in cases where the source and target

domain have very similar structures.

A further experiment was designed to assess the application of IGMM. The

target data was generated with three clusters, and three source domains were

generated with two, three and four clusters. The data structures for the three

source domains and the target domain are shown in Fig. 6.4, and the performance

of each of the resulting IGMMs is displayed in Table 6.2.
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Figure 6.4 The data structure in Experiment 2

Table 6.2 Various source domains and a three-clusters target domain

datasets Q Q1 Q2

Source 1 (2) Target (3) 0.0301± 0.0005 1.0320± 0.0001 0.8560± 0.0108

Source 2 (3) Target (3) 0.0196± 0.0000 0.4586± 0.0000 0.7997± 0.0482

Source 3 (4) Target (3) 0.0505± 0.0086 2.0170± 0.0067 0.8678± 0.0024

The next experiment included four datasets: three source domains, each with

a different number of clusters and one target domain. The data structures resulted

from the IGMM are shown in Fig. 6.5, and the performance of the constructed

models appears in Table 6.3.
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Figure 6.5 The data structure in Experiment 3

Table 6.3 Various source domains and a four-clusters target domain

datasets Q Q1 Q2

Source 1 (2) Target (4) 0.0153± 0.0001 3.0610± 0.0001 1.6237± 0.0043

Source 2 (3) Target (4) 0.0930± 0.0384 3.6952± 0.0586 1.4924± 0.0415

Source 3 (4) Target (4) 0.1104± 0.0142 1.9950± 0.0069 1.1537± 0.0066

We reached the same conclusion from the second and third experiments: that

the results from the IGMM both improve the performance of the constructed

target model and provide useful clues for the domain selection process. This

conclusion, therefore, validates the role of IGMM in selecting a suitable domain

in cases where the source and target domain have very similar structures.

The above three experiments tell us that the transfer learning has an obvious

effect when the number of clusters (fuzzy rules) in the source and target domains

is identical. However, the distance of the data can also affect transfer learning.

Hence, the next experiment was designed to explore the impact of data distance

on the model’s performance.
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The target dataset was generated first, and the source datasets were generated

based on the target data by gradually increasing the gap between the centers of

the clusters and the linear functions. The center of the clusters and the linear

functions in both domains follow the relation below:

vvvs
i = vvvt

i(1+ ε)aaas
i = aaat

i(1+ ε) (6.13)

where ε is an constant that controls the increment, and ε is a crucial parameter

that controls the degree of difference between the source and target data.

Table 6.4 Various source domains and a four-clusters target domain

ε Q1 Q2

0.05 0.2851 ± 0.0000 0.2299±0.0055
0.1 0.5788 ± 0.0000 0.1931±0.0037
0.15 0.8833 ± 0.0000 0.2168±0.0024
0.2 1.1956 ± 0.0000 0.2602±0.0007
0.25 1.5246 ± 0.0000 0.1903±0.0002
0.3 1.8561 ± 0.0000 0.2517±0.0013
0.35 2.1902 ± 0.0000 0.2108±0.0004
0.4 2.5384 ± 0.0000 0.2607±0.0057
0.45 2.8882 ± 0.0000 0.3365±0.0173
0.5 3.2610 ± 0.0000 0.3403±0.0003

As ε increases, the divergence between the source and target data becomes

greater. The value of ε was set to increase from 0.05 to 0.5 in steps of 0.05.

Thus, ten source datasets were generated and knowledge was transferred from

each source dataset to the same target dataset. Here, we only used the method of

changing the input space as an illustration. The results are shown in Table 6.4 and
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Fig. 6.6 clearly displays the changing tendency in model performance when as

the value of ε changes.

Figure 6.6 The model’s performance with varying values for ε

The red circles indicate the RMSE of the source model on the target data.

The increasing trend shows that with an increase of ε , the discrepancy between

the source data and target data becomes greater, and the source model becomes

more mismatched to target data. The blue circles represent the performance of

the target model using the proposed method. There are no obvious changes, but

effectiveness of the proposed method is still verified. These results also indicate

good transfer learning performance if the data structures of the two domains are

similar.

6.4.1.2 Different source and target

With this set of experiments, we evaluated IGMM’s performance in cases where

the source and target domains have very different data structures, i.e., where

each domain has a different number of clusters (fuzzy rules). Three separate
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domain adaptation experiments were conducted. Each time, one of the datasets

was selected as the target domain, and the remaining two datasets were treated as

the source domains. We used the approach of traversing all the clusters in source

and target domains to determine the optimal number of clusters.

The three datasets with different colors in Fig. 6.7 are considered. Fig. 6.7

shows that each of the three datasets has a different number of clusters and a

different data structure. The analytical results from IGMM for the three datasets

are shown in Fig. 6.8. The results of these experiments are shown in Tables 6.5 -

6.6.

Figure 6.7 Three datasets with different numbers of clusters
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Figure 6.8 The structure of the three datasets

Table 6.5 The values of Q2 with two clusters target domain

clusters 4r to 2r 3r to 2r

2 1.5003±0.4920 0.6256±0.0031
3 2.0345±0.2321 0.6150±0.1162
4 0.5992±0.0089 0.8732±0.5013
5 0.7783±0.0353 0.4578±0.0245

6 0.9645±0.1183 0.8543±0.3426

Table 6.6 The values of Q2 with three clusters target domain

clusters 2r to 3r 4r to 3r

2 1.5431±0.0213 3.0206±0.0375
3 1.5438±0.0210 2.8064±0.4057
4 1.4310±0.0172 4.7779±0.2630
5 1.4653±0.0024 1.7450±0.0041

6 1.5910±0.0024 2.3647±0.0507
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Table 6.7 The values of Q2 with four clusters target domain

clusters 2r to 4r 3r to 4r

2 1.0372±0.0072 1.4666±0.0163
3 1.6847±0.0079 1.4228±0.0025
4 1.2896±0.0143 1.3803±0.0123
5 1.6691±0.0064 1.3791±0.0077

6 1.5846±0.0237 1.4657±0.0768

The results in Tables 6.5 - 6.6 do not reveal an obvious rule for determining

the optimal number of clusters in the domain adaptation process. Thus, in cases

where the source and target domains have very different structures, the brute-force

approach of trying all the numbers and selecting the one with the best performance

remains the best option.

6.4.2 Augmenting the information in the target domain with

an active learning technique

The three experiments in this section were designed to verify the use of active

learning technique in improving the performance of the built target model. In

each experiment, the source and target datasets were generated with the same

number of fuzzy rules (two, three, and four respectively), and all the labeled target

data were selected from one cluster. The experimental results are shown in Table

6.8.
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Table 6.8 Exploring the effect of the active learning technique

Clusters Q1 Q2 (no active learning) Q2 (active learning)

2 1.3676± 0.0001 1.4596± 0.0202 1.0731± 0.0075

3 0.3534± 0.0001 0.9250± 0.0320 0.8760± 0.0157

4 2.0330± 0.0026 2.1865± 0.0653 1.7536± 0.1304

Comparing values of the third and fourth columns in the three experiments, we

found that using the active learning technique significantly enhances the accuracy

of the target model constructed using the proposed method.

In addition, we conducted the above experiments with different values of d to

determine the impact of d on the performance of the presented method.

Table 6.9 The values of Q2 with varying clusters

d Datasets (two clusters) Datasets (three clusters) Datasets (three clusters)

5 1.0731±0.0075 0.8760±0.0157 1.7536±0.1304
10 1.0768±0.0124 0.8518±0.0180 1.9097±0.0295
15 1.0076±0.0023 0.9004±0.0380 0.6976±0.0034
20 0.9702±0.0117 0.9019±0.0055 1.3242±0.0072

The results in Table 6.9 show that the performance of the constructed target

model does not display an increasing trend as the value of d increases, which

indicates that d does not play a critical role in the active learning-based domain

adaptation method.

Since IGMM identifies the data structure of the dataset, i.e., the number of

clusters, few instances could represent the information of one cluster, and the

design of our algorithm satisfies the requirement of covering the information in

all clusters. Thus, the results in Table 6.9 are reasonable and acceptable. Further,
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these results are a promising signal for good transfer learning performance with

little labeled target data.

6.5 Experiment on real-world datasets

Studies of regression problems in domain adaptation are scarce, so there are no

public datasets available to verify the proposed method. Hence, we used real-

world datasets from the UCI Machine Learning Repository and modified them to

simulate various regression domain adaptation problems. A detailed description

of these modifications follows.

The first dataset concerns “air quality”. We selected two of the existing

attributes, “temperature” and “relative humidity”, as the input data and chose

“absolute humidity” as the output. All the attributes were normalized, and the

dataset was split into two domains based on “relative humidity”. Data with a

“relative humidity” of greater than 0.5 were chosen as the source domain, and the

remaining data were used to form the target domain. Further, the two attributes

in the source data were all perturbed by random numbers following a normal

distribution N(0.1,0.1), and the two attributes in the target data were perturbed by

the normal random numbers following N(7,1) and N(5,1), respectively. There

were 3600 labeled instances in the source domain and 1200 instances in the target

data; 10 were labeled.

Although a target domain may only contain a small amount of labeled data, it

can still be used to train a model. However, we assert that a model trained solely

on a small amount of labeled data will not perform well. And, to support this

assertion, we trained a target model with various levels of labeled target data and

tested its performance denoted by “QT”.
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We used the IGMM to identify the data structures in the “air quality” dataset

and show the results in Fig. 6.9.

Figure 6.9 IGMM’s results with the "air quality" dataset

From Fig. 6.9, we can see that the data in the source domain and target

domain are both divided into two clusters with the greatest probability, so two is

the optimal number of fuzzy rules to construct models and implement transfer

learning. To verify this conclusion, we executed the proposed domain adaptation

method with varying numbers of fuzzy rules, and compared the results, as shown

in Table 6.10.

Table 6.10 The values of Q2 with varying clusters for "air quality"

Clusters Q1 Q2 QT Q3

2 0.1241±0.0000 0.2575±0.0000 0.4153±0.0060 0.1075±0.0000
3 0.1237±0.0000 0.2568±0.0000 0.3217±0.0204 0.1097±0.0000
4 0.1235±0.0000 0.2618±0.0000 0.1970±0.0034 0.1076±0.0000
5 0.1232±0.0000 0.2616±0.0000 0.2319±0.0046 0.1085±0.0000
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In all experiments, the value for Q3 was smaller than for Q2 and QT, which

indicates that the model built using our method is superior to both the existing

source model and the model built using only labeled target data. Additionally, the

small variances indicate that the models built using the proposed method have

good generalizability. Comparing the values of Q3 with different clusters, we find

that the transfer learning method has the best performance with two fuzzy rules.

In addition, the number of labeled target data increased with an increase in the

number of clusters due to the active learning technique. These results show that

determining the appropriate number of fuzzy rules is significantly more important

than accumulating more labeled data.

We conducted the same experiment on the “housing dataset”, which aims to

predict the “MEDV” (the median value of owner-occupied homes in US$1000’s)

using six input attributes. The data was normalized and split into two datasets

using the attribute “TAX”, which represents the full-value property tax rate per

$10,000. Instances of “TAX” smaller than 0.5 were used to form the source

dataset, and instances of “TAX” larger than 0.5 were used as the target dataset.

The attributes “RM”, “AGE”, and “B” of the source data were perturbed by

random numbers taken from N(0.1,0.1), while the same attributes in the target

data were perturbed by normal random numbers using the distributions N(7,1),

N(5,1) and N(8,1), respectively. There were 360 labeled instances in the source

domain and 130 instances in the target data; 10 were labeled.

Again, IGMM was used to identify the data structure. The results are shown

in Fig. 11.
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Figure 6.10 IGMM’s results with the "housing" dataset

Unlike the first dataset, where it was easy to determine the number of fuzzy

rules, in this dataset, the probability distributions of the clusters in the source

and target domains are quite different. Although the source data and target data

were derived from the same domain, our modifications resulted in quite different

data distributions in each domain. Based on our analysis of IGMM’s results, we

decided to try all the numbers of clusters as a cross-check of IGMM’s performance.

The results are shown in Table 6.11.

Table 6.11 The values of Q2 with varying clusters for "housing"

Clusters Q1 Q2 T Q3

2 0.1098±0.0003 0.2558±0.0003 0.6306±0.1175 0.1799±0.0002
3 0.1006±0.0001 0.2280±0.0005 0.2931±0.0179 0.1713±0.0002
4 0.0913±0.0002 0.1801±0.0003 0.3670±0.0093 0.2276±0.0000
5 0.0902±0.0001 0.1844±0.0002 0.2297±0.0040 0.1827±0.0002
6 0.1044±0.0017 0.2504±0.0074 0.2053±0.0007 0.2325±0.0003
7 0.0920±0.0001 0.3463±0.0266 0.2850±0.0088 0.1813±0.0001
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From Table 6.11, we can see that the constructed target model performed best

with three fuzzy rules. There was no obvious trend with a change in the number

of fuzzy rules. Therefore, traversing all the numbers of clusters and choosing the

best one remains the best method for choosing the optimal number of fuzzy rules

in cases where the source and target data greatly diverge.

6.6 Summary

This chapter presents a method of discovering the structure of data and actively

augmenting information in a target domain to improve the performance of fuzzy

rule-based domain adaptation. IGMM is used to explore the relationship between

the data structures in the source and target domains and provide guidance on a

domain selection and transfer strategy. The idea of active learning is applied to

increase the amount of labeled information in target domain by actively labeling

the most informative data in the source domain for use in the target domain. A set

of experiments on synthetic datasets verifies both the positive effect of IGMM

and the active learning technique on the transfer learning process. Additionally,

promising results on real-world datasets validate the effectiveness of the proposed

domain adaptation method in practical settings.



Chapter 7

Fuzzy Rule-based Domain

Adaptation in Heterogeneous

Spaces

7.1 Introduction

Different with the homogeneous domain adaptation problems, the heterogeneous

domain adaptation problems are more complex and challegeable due to the

different feature spaces in two domains. Therefore, extracting a common feature

space shared between domains is always a necessary procedure prior to knowledge

transfer. According to the amount of the labeled data in the target domain, the

heterogeneous domain adaptation problems can be divided into two types: semi-

supervised domain adaptation and unsupervised domain adaptation. Most of the

existing work is dedicated to the semi-supervised type, and only few literatures

focus on unsupervised domain adaptation in heterogeneous space, which is a very

difficult issue.
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The heterogeneous semi-supervised domain adaptation models have been

widely researched in recent years. But, heterogeneous unsupervised domain

adaptation models are rarely studied due to their current limitations: the feature

spaces are heterogeneous, and no labeled data in the target domain could provide

information. Kernel canonical correlation analysis (KCCA) was proposed to

address these problems when there are paired instances in the source and target

domains, but this method is not valid when there are no paired instance in both

domain.

All the methods for the heterogeneous domain adaptation concentrate on the

classification problems, and none of them is proposed to handle the regression

prediction problems. This chapter focus on using the fuzzy rule-based model

for the heterogeneous domain adaptation for regression tasks. As we described

in Chapter 1, regression problem is much more difficult and challengeable than

the classification problem, since the outputs of regression model is depended on

not only the input variables, but also some hidden factors. Therefore, we need

some labeled target data to induce the specific knowledge of target domain, and a

semi-supervised domain adaptation method in heterogeneous space using fuzzy

models is presented in this chapter.

The rest of this chapter is organized as follows. Section 7.2 formalizes the

problem we aim the solve. Section 7.3 presents the details of the heterogeneous

domain adaptation method and the corresponding algorithm. The experiments on

Section 7.4 validate the effectiveness of the presented fuzzy rule-based method

in dealing with the regression domain adaptation in heterogeneous space, and

analyze the sensitivity of some parameters of the proposed model. Moreover, this

method is also used to solve some real-world problems. Finally, the summary of

this chapter is discussed in Section 7.5.
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7.2 Problem statement

The dataset in the source domain is denoted by DDD = {(xxxs
1,y

s
1), · · · ,(xxxs

Ns
,ys

Ns
)},

where xxxs
k ∈Rns , k = 1, · · · ,Ns, is the ns-dimensional input variable, the label ys

k ∈R

is the continuous output variable, and Ns indicates the number of data. Since the

amount of source data with labels is massive, a well-performing regression model

for the source domain – the TS fuzzy model Ms – can be learned.

model Ms

if xxxs is Ai(xxxs, vvvs
i ), then ys is Li(xxxs,aaas

i ) i = 1,2, ...,cs (7.1)

The dataset in the target domain contains two subsets: one with labels and one

without labels HHH = {HHHL,HHHU} = {{(xxxt
1,y

t
1), · · · ,(xxxt

Nt1
,yt

Nt1
)},{xxxt

Nt1+1
, · · · ,xxxt

Nt
}},

where xxxt
k ∈ Rnt , k = 1, · · · ,Nt is the nt-dimensional input variable, yt

k ∈ R, k =

1, · · · ,Nt1 is the continuous output variable. HHHL includes the instances with labels,

and HHHU contains the data without labels. The numbers of data in HHHL and HHHU are

Nt1 and Nt−Nt1 respectively, and satisfy Nt1 << Nt , Nt1 << Ns.

Suppose the ideal model for the target domain is Mt .

model Mt

if xxxt is Ai(xxxt , vvvt
i), then yt is Li(xxxt ,aaat

i) i = 1,2, ...,ct (7.2)

Building a well-performing TS fuzzy model needs a large amount of data

with labels, and inadequately data in HHHL cannot guarantee performance of the

constructed model in the target domain. Furthermore, discrepancies between the

source and target data mean that using the source model to solve target tasks is

impossible.
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Clarifying the divergence between the source and target data plays a crucial

role in conducting knowledge transfers from the source domain to the target

domain. Since the proposed methods aim to adapt the domains using fuzzy rule-

based models, we differentiate the source domain and target domain using the

feature space and fuzzy rules. In general, the difference between the source and

target domains is summarized to the four cases shown in Fig. 7.1.

Case 1 Case 3

Case 2 Case 4

Figure 7.1 Four cases distinguishing the source and target domains

(1) Case 1: ns = nt , and cs = ct . The input spaces (feature spaces) in the source

and target domains have the same dimensionality with different distributions, and

the number of constructed fuzzy rules is also equal in both domains.

(2) Case 2: ns = nt , and cs 	= ct . The input spaces in both domains have the

same dimension with different distributions, but the number of fuzzy rules is

different.

(3) Case 3: ns 	= nt , and cs = ct . Discrepancies in the input data in both

domains occur in dimensionality and in distribution. However, there is an equal

number of fuzzy rules in both domains.
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(4) Case 4: ns 	= nt and cs 	= ct . This is the most complicated case. The input

space, in dimensionality and in distribution, and the number of fuzzy rules are

both different in the source and target domains.

Based on the definition of domain adaptation, Case 1 and Case 2 belong to

homogeneous domain adaptation, and Case 3 and Case 4 fall into the scope of

heterogeneous domain adaptation. Chapters 3 and 4 solve the domain adaptation

problems in Case 1, Chapter 5 handles Case 2, and Chapter 6 copes with Cases 3

and 4.

7.3 Fuzzy domain adaptation in heterogeneous spaces

The greatest challenge in heterogeneous domain adaptation is the different di-

mensions of the input spaces in both domains. This means that the distributions

of the input variables are not only different but also the number of the input

variables. To eliminate the gap caused by the mismatch of the feature spaces,

many studies in heterogeneous domain adaptation employ a method that extracts

a latent feature space that is shared between both domains. This space can then

be used to facilitate knowledge exploration and transfer between the domains.

After projecting the input data of the two domains into the latent feature space,

the heterogeneous domain adaptation problem is converted to a homogeneous

domain adaptation problem. In our method, we also use an extraction approach.

As discussed in Section 6.2, Cases 3 and 4 both belong to the category of

heterogeneous domain adaptation. The distinction between them is the number

of the fuzzy rules in the two domains. In Case 3, the number of fuzzy rules is

equal; in Case 4, it is not. After transforming the data from the original feature

space to the latent feature space, some information will be lost, and we cannot

guarantee the number of fuzzy rules will remain unchanged in the latent feature
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space. However, the relation is not limited by the number of fuzzy rules in the

domains. As long as there are a sufficient number of constructed fuzzy rules in

the latent feature space of the source domain, they can be modified and used for

tasks in the target domain.

Therefore, the proposed FHeDAmethod for solving Case 3 and Case 4 follows

with no discrimination. The FHeDA method contains three steps for transferring

knowledge from the source domain to the target domain.

Step 1: Extract the latent feature space and map all the input data to it.

Since the primary factor impeding knowledge transfer across the domains is a

mismatched feature space, the first step is to map the source and target data into a

uniform feature space, where common features can benefit from the discovery and

transfer of the knowledge. This minimizes the gap between the distributions of

the input variables for both domains. Approximating the input data distributions

across both domains has two benefits:

(a) The conditions of the fuzzy rules are dominated by the center of the

clusters, which are derived from the input data using a clustering algorithm.

In turn, the relative location of the center of the clusters greatly influences the

construction of the fuzzy rules. Converting the input data into a common latent

feature space forces the data distribution in each domain to approximate the other,

which reduces the difference between the relative location of the center of the

clusters in both domains.

(b) Projecting to the latent feature space also facilitates knowledge transfer of

the fuzzy rule conclusions, which are represented as the linear functions of input

variables. Similar distributions restrict the input variables in approximate ranges

and reduce disagreement in the input data in both domains.

In this chapter, the canonical correlation analysis (CCA) algorithm Hardoon

et al. (2004) has been used to derive the latent feature space. The latent feature
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space is extracted by learning a mapping between the original feature space and

the latent feature space. Based on the input data {xxxs
1, · · · ,xxxs

Ns
} and {xxxt

1, · · · ,xxxt
Nt
},

two mappingsUs andUt are learned simultaneously to convert the input data from

the original feature spaces of two domains to the latent feature space.

Under the mappings Us and Ut , the input data in two domains will have a new

representation as follows:

Us(xxxs
k) = xxxs

k, k = 1, · · · ,Ns (7.3)

Ut(xxxt
k) = xxxt

k, k = 1, · · · ,Nt (7.4)

Therefore, the input data {xxxs
1, · · · ,xxxs

Ns
} and {xxxt

1, · · · ,xxxt
Nt
} in two domains

becomes {xxxs
1, · · · ,xxxs

Ns
} and {xxxt

1, · · · ,xxxt
Nt
} in the latent feature space, and the di-

mension of the latent feature space is n =min(ns,nt).

Step 2: Build a TS fuzzy model for the source domain in the latent feature

space.

The dataset DDD in the source domain has become DDD = {(xxxs
1,y

s
1), · · · ,(xxxs

Ns
,ys

Ns
)},

and a TS fuzzy model Ms
is built for the source domain in the latent feature space.

model Ms

if xxxs
k is Ai(xxxs

k, vvvs
i ), then ys

k is Li(xxxs
k,aaa

s
i ) i = 1,2, · · · ,c (7.5)

where c is the critical parameter that determines the amount of fuzzy rules in the

source domain and in the target domain. This parameter is so pivotal, Section 6.4

presents a set of experiments designed to explore the impact of c on the model’s

construction.
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Although the discrepancy between the input data’s distributions in the two

domains has been reduced in the latent feature space, a gap still exists and cannot

be completely eliminated. Moreover, different linear functions (the conclusions of

the fuzzy rules) are another factor that distinguish the source and target domains,

so model Ms
in the source domain cannot be directly used to solve regression

tasks in the target domain.

Step 3: Modify the existing fuzzy rules in model Ms
to make them suitable

for the target data.

In the latent feature space, it is difficult to detect which parts of the two

domains’ fuzzy rules are different. Using the same strategy as in homogeneous

domain adaptation, we modify the source model in three different ways and

choose the one with the best performance on the target data.

model Mt
1

if xxxt
k is Ai(Φ(xxxt

k), vvvs
i ), then ys

k is Li(Φ(xxxt
k),aaa

s
i ) i = 1,2, · · · ,c (7.6)

model Mt
2

if xxxt
k is Ai(xxxt), vvvs

i , then ys
k is Ψi(Li(xxxt

k,aaa
s
i )) i = 1,2, · · · ,c (7.7)

model Mt
3

if xxxt
k is Ai(Φ(xxxt), vvvs

i ), then ys
k is Ψi(Li(Φ(xxxt

k),aaa
s
i )) i = 1,2, · · · ,c (7.8)

where Φ = [Φ1 · · ·Ψn], and Φ = [Ψ1 · · ·Ψc] are the transformation mappings for

the input space and output space.

The final target model Mt
is chosen from the best among the models Mt

1, Mt
2

and Mt
3, i.e.,
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Mt
= Mt

i, if Mt
i ≥Mt

j, i, j = 1.2.3 (7.9)

where Mt
i ≥Mt

j means the performance of Mt
i on the target data HHHU is no worse

than Mt
j.

The construction of the mappings for the input and output spaces is the same

as for homogeneous domain adaptation, i.e., using a network to modify each input

or output variable. The parameters of the mappings are derived by minimizing

the following cost functions.

When changing the input space to get model Mt
1, the cost function below is

minimized

W1=

√√√√ 1

Nt1

Nt1

∑
k=1

(
c

∑
i=1

Ai(Φ(xxxt
k),Φ(vvvs

i ))

∑c
j=1A j(Φ(xxxt

k),Φ(vvvs
j))

Li(Φ(xxxt
k),aaa

s
i )− yt

k)
2+

λ2

2
wT w

(7.10)

The cost function includes two terms: one aims to decrease the gap between

the output of the constructed target model and the data’s real labels, and the other

is a structural risk term to control the complexity of the built model. Here, only

the target data with labels are applied to modify the existing model. The reason

target data without labels is not used is that the transformation from the original

feature space to the latent feature space may change the manifold of the input

space. The data that is close in distance in the latent feature space may be far from

each other in the original feature space. So using neighboring target data without

labels in the latent feature space to improve the result is risky, and may bring

negative impact to the performance of the constructed model. This is checked

experimentally in Section 6.4.

When changing the output space, the cost function W2 is minimized
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W2=

√√√√ 1

Nt1

Nt1

∑
k=1

(
c

∑
i=1

Ai(xxxt
k,vvv

s
i )

∑c
j=1A j(xxxt

k,vvv
s
j)

Ψi(Li(xxxt
k,aaa

s
i ))− yt

k)
2+

λ2

2
wT w (7.11)

Similarly, when changing the input and output space simultaneously, the cost

function W3 is minimized

W3=

√√√√ 1

Nt1

Nt1

∑
k=1

(
c

∑
i=1

Ai(Φ(xxxt
k),Φ(vvvs

i ))

∑c
j=1A j(Φ(xxxt

k),Φ(vvvs
j))

ψi(Li(Φ(xxxt
k),aaa

s
i ))− yt

k)
2+

λ2

2
wT w

(7.12)

The overall algorithm corresponding to the FHeDA method is provided in

Algorithm 3.

Algorithm 3. Heterogeneous domain adaptation procedure

Input: DDD, HHH,

Output: YYYU for HHHU

1. Use CCA to learn Us and Ut

2. Map xxxs
k to xxxs

k, and map xxxt
k to xxxt

k

3. Train model Ms
using DDD

4. Modify the fuzzy rules in Ms

4.1 Change input space to get Mt
1

4.2 Change output space to get Mt
2

4.3 Change both input and output spaces to get Mt
3

5. Compare Mt
1, Mt

2, and Mt
3, and choose the best one as Mt

6. Use Mt
to predict the output YYYU for HHHU
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7.4 Empirical results analysis

Both synthetic and real-world datasets are used to validate the FHeDA method

for the heterogeneous domain adaptation problems.

7.4.1 Experiments on synthetic datasets

This section comprises three subsections. Information about the synthetic datasets

and the experimental settings are provided, followed by the experimental results.

The second subsection validates the effectiveness of the FHeDA method, and

the third subsection discusses the impact of a critical parameter on the model’s

construction.

7.4.1.1 Datasets and experimental settings

Four datasets of different dimensions were generated according to different num-

bers of fuzzy rules to simulate various source and target domains in heterogeneous

spaces. Information about the generated datasets is provided in Table 7.1. For

example, ‘dataset 2’ contains 3-dimensional data, which was generated according

to 4 fuzzy rules.

Table 7.1 Information of four datasets

dimension number of fuzzy rules

dataset 1 3 3

dataset 2 3 4

dataset 3 4 3

dataset 4 4 4

The datasets in Table 7.1 were assembled to simulate six cases for experimen-

tation in heterogeneous domain adaptation as outlined in Table 7.2. The second
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and third columns indicate the origin of the source data and target data. The fourth

column shows the dimensionality of the source data and target data, while the last

columns show the number of fuzzy rules present in each domain.

Table 7.2 Heterogeneous domain adaptation datasets

Source domain Target domain dim(S) vs dim(T) rules(S) vs rules (T)

Exp 1 dataset 1 dataset 3

3 vs 4

3 vs 3

Exp 2 dataset 1 dataset 4 3 vs 4

Exp 3 dataset 2 dataset 3 4 vs 3

Exp 4 dataset 3 dataset 1

4 vs 3

3 vs 3

Exp 5 dataset 3 dataset 2 3 vs 4

Exp 6 dataset 4 dataset 1 4 vs 3

7.4.1.2 Regression results

The RMSE of the models on the target data HHHU for the six experiments are shown

in Table 7.3.

From the results in Table 7.3, we can conclude that the models Mt
1, Mt

2, and

Mt
3 are all superior to the existing source model Ms

. In the six experiments,

model Mt
2 showed the best performance in half the experiments, with model Mt

3

performing the best in the other half. Although model Mt
1 did not surpass the

other two models, we intend to retain it as an alternative model. The three models

show vast differences in performance on different datasets, and the availability of

different options for modifying an existing model enhance the probability of our

method to successfully fit the data to the target domain.
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Table 7.3 Results of the six experiments

Source to target
RMSE of the models

Ms Mt
1 Mt

2 Mt
3 Mt

Exp 1 9.5862± 3.3168± 2.9422± 3.1510± 2.9422±
0.0002 0.0021 0.0359 0.2120 0.0359

Exp 2 9.8785± 7.0799± 5.0758± 4.7611± 4.7611±
0.0003 0.0375 0.4040 0.0445 0.0445

Exp 3 8.2935± 3.9622± 3.2467± 2.6774± 2.6774±
0.0008 0.0333 0.1174 0.0090 0.0090

Exp 4 9.2541± 2.9019± 2.9033± 2.5138± 2.5138±
0.0009 0.3178 0.2476 1.0901 1.0901

Exp 5 9.6183± 8.8253± 3.9799± 4.6508± 3.9799±
0.0002 18.5659 1.8011 1.8893 1.8011

Exp 6 9.6353± 2.6874± 2.5636± 2.5900± 2.5636±
0.0001 0.1060 0.0141 0.0040 0.0141

Further, to verify the claim that using target data without labels is risky, we

conducted comparative experiments and provide those results in Table 7.4. The

results in columns with “W” represent models that were constructed with the help

of target data HHHU . These results indicate that using target data without labels has

a negative function in model construction, especially in the methods that change

the output space and change both the input and output space. Lower values are

shown in bold.
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Table 7.4 Using/not using HHHU - comparative experiments

RMSE of the models

Mt
1 Mt

1(W ) Mt
2 Mt

2(W ) Mt
3 Mt

3(W )

Exp 1 3.3168± 3.3153± 2.9422± 2.9487± 3.1510± 3.1020±
0.0021 0.0020 0.0359 0.0380 0.2120 0.1001

Exp 2 7.0799± 7.0860± 5.0758± 5.1412± 4.7611± 4.9762±
0.0375 0.0405 0.4040 0.4184 0.0445 0.0084

Exp 3 3.9622± 3.9518± 3.2467± 3.2265± 2.6774± 2.7944±
0.0333 0.0121 0.1174 0.1688 0.0090 0.0505

Exp 4 2.9019± 3.2590± 2.9033± 3.0016± 2.5138± 2.9480±
0.3178 0.5608 0.2476 0.2099 1.0901 0.5821

Exp 5 8.8253± 8.6197± 3.9799± 3.4271± 4.6508± 4.1819±
18.5659 16.5161 1.8011 0.3989 1.8893 0.1494

Exp 6 2.6874± 2.5686± 2.5636± 2.5778± 2.5900± 2.7160±
0.1060 0.0532 0.0141 0.0167 0.0040 0.0332

7.4.1.3 Parameter sensitivity analysis

In the FHeDA method, the number of fuzzy rules used to construct the model in

the latent feature space for the source domain is a significant parameter, because

this also determines the number of fuzzy rules for the target domain. We also

conducted the six experiments described in the last subsection with a varying c.

Table 7.5 shows the impact of c on model Mt
1, as an example.

From the results, we can see that model Mt
1’s performance was slightly differ-

ent when c was assigned with different values. The RMSE variance as c changes

is small in “Exp 1, 2, 3, and 6”. But when c is assigned with 5, 7, and 8, the RMSE

variances are large in a few cases in “Exp 4” and in almost all cases in “Exp 5”.

We attribute this to too little target data with labels – so little data with labels,

there isn’t enough to represent the characteristics of the entire target dataset. The

results in Table 7.3 for “Exp 5” also verify this.
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Table 7.5 Results of the sensitivity analysis for c

c
RMSE of the models

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

4 3.3001± 6.9353± 3.1835± 3.1793± 5.0963± 2.8555±
0.0110 0.0141 0.0019 0.1117 1.6004 0.0290

5 3.2807± 6.9348± 3.1703± 3.7702± 5.8903± 2.7982±
0.0079 0.0130 0.0022 3.1078 5.2418 0.0124

6 3.2774± 6.9372± 3.1649± 3.0173± 5.3352± 2.8711±
0.0064 0.0134 0.0193 0.0524 5.4235 0.0438

7 3.2842± 6.9370± 3.1738± 4.2752± 4.5622± 2.7861±
0.0090 0.0129 0.0252 6.1490 0.3267 0.0172

8 3.2806± 6.9346± 3.2164± 3.7475± 5.5040± 2.8241±
0.0084 0.0129 0.0030 3.3048 8.9666 0.0095

7.4.2 Experiments on real-world datasets

Three real-world datasets from the UCI Machine Learning Repository were used

to validate the FHeDA method in heterogeneous domain adaptation. Like the

experiments in the homogeneous domain adaptation, the datasets from machine

learning area are modified to simulate the scenarios of heterogeneous domain

adaptation problems. The detailed description of these datasets is given.

The “Concrete Compressive Strength” dataset aims to predict the concrete

compressive strength based on eight features, such as cement content, blast

furnace slag, fly ash. This dataset is dedicated to general regression tasks, so

it needed to be revised in several respects to simulate a heterogeneous domain

adaptation problem. First, the dataset was split into a source domain and a

target domain using the “age” feature; instances with an age of less than 100

were treated as data in the target domain, the remainder fell into the source

domain. To exacerbate the gap between the source and target domains, the features



7.4 Empirical results analysis 191

“blast furnace slag”, “fly ash” and “superplasticizer” were perturbed with random

numbers following the normal distributions N(0.1,0.1) and N(5,1) for source

data and target data, respectively. The feature “age” in the source domain was

then removed creating heterogeneous spaces across the two domains. Ultimately,

we arrived at two datasets: one 7-dimensional source domain containing 110 data

with labels, and one 8-dimensional target domain including 30 with labels and 80

without labels.

In the “Istanbul stock exchange”, two attributes “stock exchange returns” and

the “Istanbul stock exchange national 100 index” were used to predict the “MSCI

emerging marks index”. The first 200 instances fell into the source domain,

and the last 200 instances were used as the target data. The two features were

perturbed with random numbers following normal distribution N(0.1,0.1) for the

source data and N(5,1) for the target data. Further, the first feature in the source

domain was discarded. Again, we arrived at the two datasets: one 1-dimensional

source domain containing 200 data with labels, and one 2-dimensional target

domain including 30 with labels and 170 data without labels.

In the last dataset, "air quality", the features "temperature" and "relative

humidity" were chosen as the input data, and "absolute humidity" was chosen as

the output. The dataset was split based on the "relative humidity" value. Data with

a "relative humidity" of greater than 0.5 formed the source domain, the remaining

data was used for the target domain. The second feature in the target domain

was discarded. Both features in the source domain were perturbed with random

numbers following the normal distributions N(0.1,0.1) and N(7,1), respectively.

The input data of the target domain was changed with random numbers following

normal distributions N(0.1,0.1). The final two datasets were: one 2-dimensional

source domain containing 1200 data with labels, and one 1-dimensional target

domain including 30 with labels and 1170 without labels.
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To further prove our assertion that a model will not perform as well when

trained only using a small amount of target data with labels in heterogeneous

domain adaptation settings, we constructed and compared four models. The

first was built using source data in a latent feature space Ms
. The second was

constructed using insufficient target data with labels in the original feature space

M̃t
1. The third was built using target data with labels in a latent feature space M̃t

2.

And the fourth was built using the proposed FHeDA method.

From the results presented in Table 7.6, we can see that the performance of

models M̃t
1 and M̃t

2 on the target data was poor, confirming our assumption that

a model does not perform as well when being trained on less data. The target

model Mt
built using our method was superior to both the existing source model,

and the model constructed using only a small amount of target data with labels.

Table 7.6 Results for FHeDA on real-world datasets

Datasets
RMSE of the models

Ms Mt
1 Mt

2 Mt

Concrete compressive strength 74.70± 13144.46± 17.85± 2.10±
3968.07 8.00e+08 36.33 0.86

Istanbul stock exchange 0.17± 102.90± 1352.42± 0.14±
0.00 7314.52 2.03e+06 0.00

Air quality 0.15± 0.14± 186.08± 0.14±
0.00 0.00 1.73e+05 0.00

7.5 Summary

Heterogeneous domain adaptation problem is a significant type in transfer learning

because it is more general in practice, so it has attracted much attention of

research laboratories, such as reinforcement learning. This chapter has presented

a heterogeneous knowledge transfer method based on fuzzy system. A latent
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feature space is extracted to minimize the gap between the feature spaces of the

two domains. Heterogeneous domain adaptation is converted into homogeneous

domain adaptation after mapping all the input data from both domains into the new

latent feature space. Experiments completed on synthetic and real-world datasets

verify that the proposed methods greatly improve the performance of existing

models when solving regression tasks in the target domain in the heterogeneous

domain adaptation settings.

The presented methods offer three avenues for modifying the existing source

model: changing the input space, changing the output space, or changing both.

The model with the best performance is subsequently selected as the target model.

Future studies will explore an algorithm that can recognize the differences between

the fuzzy rules in the two domains in advance, so we can intentionally adopt a

specific algorithm to modify an existing model.



Chapter 8

Conclusion and Future Research

This chapter concludes the thesis and provides some further research directions

for this topic.

8.1 Conclusions

Transfer learning has attracted much attention in the area of machine learning

due to its powerful knowledge transfer ability and the need for less training data

when constructing a prediction model - especially for a newly emerging area.

Even though transfer learning has gained considerable attention and is undergoing

rapid development, its ability to extract abstract knowledge or transfer knowledge

to a domain without labeled data, such as transferring knowledge between two

quite different domains, and adapting to a totally new area, is still lacking. Yet,

knowledge transfer is one of most natural abilities of humans in order to adapt to

changing environments. Thus, as a part of artificial intelligence, transfer learning

has a great potential to be explored from the theoretical and practical aspects. The

findings of this study are summarised as follows:
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(a) This work proposes a fuzzy rule-based homogeneous domain adaptation

method (Chapter 3) to achieve research objectives 1 and 3. The proposed method

modifies the input space of the target data through mappings to ensure the fuzzy

rules of the source model are compatible with the regression tasks in the target

domain. The construction procedure of the mappings is guided by an optimization

process using labeled target data. The performance of this presented method is in-

fluenced by the optimization algorithms, and the experiment results on comparing

PSO and DE show that DE is superior to PSO in both stability and optimization

performance. Additionally, learning mappings for each input variable is better

than constructing mappings for input variables together. The results on real-world

datasets validate the effectiveness of our method in solving domain adaptation

problems in practice.

(b) This work proposes a granular domain adaptation framework (Chapter 4)

to achieve research objectives 2 and 3. The presented granular transfer learning

framework provides guidance for the different fuzzy domain adaptation cases:

where conditions differ, conclusions differ, or both differ between the source

and target domains. The methods can handle domain adaptation problems not

only for the regression tasks, but also have a good performance when solving the

classification problems. Although there is a specific algorithm for each case, the

experiments show that every method has the ability to cope with all the cases, and

the method of changing the output shows a powerful transfer capability.

(c) This work proposes a novel fuzzy domain adaptation method (Chapter

5) to achieve research objective 3. A fuzzy rule-based method is proposed to

cope with cases of mismatch in the fuzzy rules in domain adaptation, i.e. the

numbers of fuzzy rules in the two domains are not identical. The performance of

the TS fuzzy model with a greater number of fuzzy rules is superior with a high

probability than the performance of a model with a fewer number of fuzzy rules.
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Thus, this can be treated as a principle for the source domain’s selection. The

experiment results validate that the proposed method can handle the mismatch of

fuzzy rules in domain adaptation well.

(d) This work proposes a combined transfer learning method (Chapter 6) to

achieve research objectives 2 and 3. IGMM and active are applied to enhance

the performance of fuzzy rule-based domain adaptation. IGMM explores the

relationship between the data structures in the source and target domains and

provide guidance on a domain selection and transfer strategy. The idea of active

learning is applied to increase the amount of labeled information in target domain

by actively labeling the most informative data in the target domain.

(e) This work proposes a heterogeneous domain adaptation method (Chapter

7) to achieve research objective 4. CCA is used to extract a latent feature space

shared between the source and target domains. In the latent feature space, the

distribution gap is minimized and the heterogeneous domain adaptation problem

becomes a homogeneous domain adaptation problem. Since the relation of the

fuzzy rules of the two domains in the latent feature space is not clear, it is hard to

tell in which parts the fuzzy rules in the two domains are differ, the conditions or

the conclusion. The proposed method adopts the strategy of trying all the three

algorithms and selects the one with the best performance. And the experiments

on real-word datasets validate the practicability of the proposed method.

8.2 Future study

Although some work has been done to solve the regression tasks in the transfer

learning area, the current methods still lack the ability to transfer knowledge in an

unsupervised learning and extract a good latent feature space for both the source

and target domains. Additionally, although the proposed methods have been used
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to solve real-world datasets, they still lack efficiency when dealing with big data.

This thesis identifies the following directions as future work:

Extract a latent feature space to maintain the relation of the input variables and

the output, which means the relation of the input variables in each fuzzy rule will

remain. Meanwhile, the features in the latent features should have the property of

being more abstract than the original features in the source and target domains.

The unsupervised domain adaptation problem, where no labeled data are avail-

able in the target domain, will be developed. Compared with the classification

task, unsupervised domain adaptation in regression tasks is more challenging,

since the output depends on not only the input data, but also some hidden factors.

Therefore, how to explore the extra information beyond the input data in an unsu-

pervised situation is critical. The relation between the source domain and target

domain will be re-explored to extract more information to assist the knowledge

transfer for the regression tasks in an unsupervised learning process.

This parallel implementation will be developed to accelerate the transfer

learning speed with the help of a parallel machine. Current transfer learning

methods will be carefully redesigned and assigned to multi-threads (multi-core

parallel machines) or multi-machines (distributed parallel machines). Theoretical

support could also be distributed along with the task assignment of the original

problem.
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CCA canonical correlation analysis

DE differential evolution

EM expectation maximization

FCM fuzzy C- means

FHeDA fuzzy heterogeneous domain adaptation

FHoDA fuzzy homogeneous domain adaptation

IGMM infinite Gaussian mixture model

MDP Markov decision processes

MIL multiple instance learning

MMD maximum mean discrepancy

MSE mean square error

NLP natural language processing

NN neural networks

PSO partical swarm optimization

RBM restricted Boltzmann machine

RMSE root mean square error

SDA stacked denoising autoencoder

SVM support vector machine

TS Takagi- Sugino
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